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ABSTRACT 
 
 

Computer-generated holograms (CGHs) use diffraction to create wavefronts of 

light with desired amplitude and phase variations.  The amplitdue control is well known.  

But the sensitivity of phase, which is most important for some applications, such as 

interferometry, is less known.  This dissertation studies phase errors resulted from design 

and fabrication limitations of CGHs. 

 

Fabrication uncertainties of CGHs are primarily responsible for the degradation of 

the quality of wavefronts generated by CGHs.  In this dissertation, the binary linear 

diffraction model is introduced to study wavefront phase errors caused by substrate figure 

errors, pattern distortion, grating duty-cycle and etching depth errors.  Wavefront 

sensitivity functions derived from diffraction model provide analytical solutions to 

estimate phase deviations due to duty-cycle or phase depth variations.  The results of the 

wavefront sensitivity analysis also enable us to identify hologram structures that are the 

most sensitive, as well as the least sensitive to fabrication uncertainties.  Experiments 

were conducted to validate the diffraction model.  Example error budgets for common 

CGH optical testing configurations are demonstrated.  In addition, a graphical 

representation of the diffraction fields is introduced.  It provides an intuitive way for 
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diffraction wavefront analysis and explains phase discontinuous observed in the 

diffraction model.   

  

Scalar diffraction models are commonly used in CGH analysis and modeling due 

to their computational simplicity compared with rigorous diffraction models.  The 

validity of the scalar diffraction models becomes unclear when they are used to analyze 

diffractive elements with wavelength-scaled features.  This dissertation discusses the 

validity of the scalar diffraction models with giving emphasis to wavefront phase.  

Fourier modal method (FMM) derived from rigorous diffraction theory is used to study a 

binary zone plate.  The result of this analysis is compared with experimental data.  This 

study shows that polarization sensitivities of the hologram are almost negligible for the 

chrome-on-glass zone plate with a minimum ring spacing of 2λ.  This result implies that 

scalar diffraction models may still be sufficient for modeling the phase from holograms 

with wavelength-scaled diffraction features for the case studied in this dissertation.   
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
 
 

  Computer-generated holograms (CGHs) are diffractive optical elements 

synthesized with the aid of computers, and they are capable of producing optical 

wavefronts with any desired shape.  The high degree of flexibility in generating complex 

wavefronts has made computer-generated holograms extremely useful.  CGHs are 

employed in many fields including optical data storage, laser scanning, image processing 

and optical testing. 

 

In the field of optical testing and metrology, CGHs are often used in optical 

interferometric systems to produce reference wavefronts.  The application of CGHs in 

optical interferometry allows complex non-spherical surfaces to be measured easily 

without using expensive reference surfaces or null lenses.  Errors in CGHs, however, 

result in phase errors in the diffracted wavefront.  This wavefront phase error directly 

affects the accuracy and validity of the interferometric measurements.  Therefore, 
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abilities to predict and correct these phase errors are essential for the applications of 

CGHs in optical testing.   

 

Much research has been conducted to improve design schemes and fabrication 

techniques for CGHs.  The majority of the work, however, has been directed toward 

optimizing diffraction efficiencies of the holograms.  Despite the fact that wavefront 

phase is of most concern in optical testing, few papers have touched upon the topic of 

sensitivity of the diffracted phase to fabrication errors. 

 

This dissertation addresses effects of both design and fabrication limitations on 

diffraction wavefront phase generated by computer-generated holograms.   Both scalar 

diffraction models and rigorous diffraction models are reviewed.  The limitations and 

validity of the widely employed scalar diffraction model are investigated.  CGH 

fabrication errors and their effects on diffraction wavefront phase and efficiency 

functions also are studied.  CGH pattern errors, especially duty-cycle and groove depth 

errors, are investigated in detail.  Both analytical and experimental results of the studies 

are presented.  In addition, a graphical representation of diffraction fields is introduced. 

  

The goal of this dissertation is to obtain a thorough understanding of both the 

design and fabrication aspects of the computer-generated holograms.  The results of this 

research provide guidance to the future design, analysis and fabrication of CGHs, 

especially in the field of optical testing and interferometry.  The wavefront sensitivity 
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analysis provides insights of CGH fabrication errors; it is a powerful reference to the 

error analysis and error budgeting for future CGH applications.  Using the wavefront 

sensitivity functions, we are able to identify hologram structures that are the most 

sensitive, as well as, the least sensitive, to fabrication uncertainties.  This information 

may also be used to obtain CGH designs that will reduce or eliminate effects of 

fabrication errors.  The graphical representation provides an intuitive way for diffraction 

fields analysis; diffraction amplitude and phase values can be easily retrieved for 

complex field plot.   The results from wavefront polarization sensitivity measurement 

implies that scalar diffraction model may still be sufficient for modeling CGHs with 

wavelength-scaled features.  

   

  The dissertation begins by providing an overview of the history of computer-

generated holograms.  Chapter 2 reviews basic principles of both conventional 

holography and computer-generated holography.  Modern fabrication techniques for 

CGHs are also described.  A review of optical interferometry leads to a discussion of the 

application of CGHs in the field of optical testing and metrology.  

 

Fabrication errors degrade the accuracy of wavefronts created by CGHs, and 

uncertainties in the manufacturing processes result in errors in the finished hologram.  

Sensitivities of the diffracted wavefront phase function to CGH fabrication errors are 

studied in Chapter 3 and Chapter 4.  A binary linear grating model is introduced to 

analyze wavefront phase dependence on CGH groove depth and duty-cycle variations in 
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Chapter 3.  Analytical solutions for diffraction efficiency, diffracted wavefront phase 

functions and wavefront sensitivity functions are derived.  These results are used to 

analyze the performance of phase gratings and chrome-on-glass gratings.  In addition, a 

graphical representation of diffraction fields is introduced.  The graphical representation 

provide an intuitive  

  

  The experimental results are compared with theoretical predictions in Chapter 4.  

A phase grating and a chrome-on-glass grating are fabricated with various groove depths 

and duty-cycles.  Both gratings are measured using a phase shifting interferometer.  The 

measured wavefront phase functions are used to determine their sensitivities to grating 

groove depth and duty-cycle variations.  

 

To illustrate how to use the results of CGH fabrication error analysis in practical 

optical testing problems, two examples are given in Chapter 5.  Typical CGH fabrication 

errors such as substrate figure errors, pattern distortions, duty-cycle and phase depth 

variations are considered in the analysis.  Total wavefront errors from the two CGHs 

produced by fabrication tolerances and uncertainties are estimated from the root-sum-

squared (RSS) of all error sources.  The calculated wavefront errors are used to estimate 

errors for both interferometric measurements. 

 

Limitations of the scalar diffraction models for hologram analysis are discussed in 

Chapter 6 and Chapter 7.  Rigorous diffraction theory is introduced at the beginning of 
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Chapter 6.  Fourier modal method derived from the rigorous diffraction theory is used to 

analyze diffractive elements with wavelength-scaled features.  Linear grating models are 

used to analyze diffraction wavefront sensitivities to the state of polarization of the 

incident field.  Numerical solutions obtained from the linear grating models are then used 

to simulate the performance of a binary zone plate with wavelength-scaled features.    

 
 

In Chapter 7, a sample chrome-on-glass zone plate is fabricated and measured 

with both TE and TM polarized incident fields using a phase shifting interferometer.  The 

measured wavefront phase functions are used to determine the polarization sensitivity of 

the zone plate.  Experimental results are compared with computer simulation data at the 

end of the chapter.  The results suggest that the scalar diffraction model may still be 

sufficient for modeling diffracted phase of CGH with minimum of 2λ features sizes.  

  

 Finally, we conclude the results of this research in Chapter 8.  Reviews and 

discussion of some of the important findings are given.  Suggestions to future research in 

this area are also provided.  
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CHAPTER 2 
 
 

APPLICATIONS OF  
COMPUTER-GENERATED HOLOGRAMS 

IN OPTICAL TESTING 
 
 
 
 
 

In this chapter, the principles and history of holography are briefly reviewed.  

Holographic recording, wavefront reconstruction and hologram fabrication processes are 

described.  Computer-generated holography and its advantages over conventional 

holographic recording methods are reviewed.  Different types of hologram encoding 

techniques and CGH fabrication methods using optical and e-beam lithography are 

presented.  A detail discussion on the applications of computer-generated holograms in 

the field of optical interferometry is given at the end.   

    

 

2.1.    PRINCIPLES OF HOLOGRAPHY 
 

Conventional photographic recording process records intensity variations of the 

subjects.  A photograph contains only the amplitude information of the original incident 
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wavefront.  Phase information of the object beam is lost because of the incoherent nature 

of the incident wave and time averaging.   

 

In order to preserve both amplitude and phase information of the recorded 

wavefront, a different recording technique was invented.  To distinguish this technique 

from conventional photography, it was named ‘holography’, where in Greek ‘holo’ 

means ‘total’.  Photographs produced using the means of holography are called 

holograms.  A hologram contains the ‘entire message’, both the amplitude and the phase 

information, of the incident wavefronts.  In addition, a hologram can be used to 

completely reconstruct the recorded wavefront in a later time.  In short, holography 

provides a way of recording and reconstructing complete wavefront information.  Loomis 

gave an interesting comparison of conventional photography and holography; he said, “If 

photography is compared to the art of painting, then holography can be compared to the 

art of sculpture.” [Loomis 1980] 

 

2.1.1. Holographic Recording  

Holograms may be recorded on the same type of media used for conventional 

photography, which respond only to the intensity variations of the incident light.  In order 

to store wavefront phase information onto this medium, a way of converting wavefront 

phase variations into intensity variations is necessary.  In holography, this task is 

accomplished through the phenomena of optical interference.   
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Optical interference occurs when two mutually coherent wavefronts intersect in 

space.  Amplitude functions of the two wavefronts add or subtract depending on the 

phase difference between the two.  The result of this interaction is a set of alternating 

bright and dark fringes, which are called interference fringes or an interferogram [Born 

and Wolf 1980; Hecht 1987].  Bright fringes are produced when the phase difference 

between the two interacting wavefront is a multiple of 2π.  Dark fringes are the results of 

π phase difference.  An interferogram can be interpreted as a map of constant phase 

difference between the two interfering wavefronts.  Through interference, wavefront 

phase functions are encoded and transformed into the form of intensity variations.   

 

Holographic recording processes can be demonstrated through a set of 

mathematical equations.  Different from photography, a reference beam is needed for the 

holographic recording.  Besides, the object wavefront and the reference wavefront must 

be mutually coherent.  The interference pattern between the reference and the object 

wavefront is recorded as a hologram.   

 

In Equation (2.1) and (2.2), a reference and an object wavefront are expressed as 

products of a real amplitude function and a phase factor. With the presumption of 

temporal coherency between the two wavefronts, the time harmonic factor e-iωt for both 

beams are suppressed in the expressions:  

  ),(
0 ),(),( yxieyxRyxR ϕ⋅=           (2.1) 
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  ),(
0 ),(),( yxieyxOyxO φ⋅=           (2.2) 

To further simplify the derivation, the reference wavefront is chosen to be a plane wave 

with a constant amplitude function,              

),(
0),( yxieRyxR ϕ⋅=            (2.3) 

Interference pattern produced from the interference between the object and the reference 

wavefronts is then: 

 
),(),(),(),(),(),(

),(),(),(
**22

2

yxOyxRyxOyxRyxOyxR

yxOyxRyxI

⋅+⋅++=

+=
     (2.4) 

and [ ]),(),(cos),(2),(),( 0
2
0

2
0 yxyxyxORyxORyxI o ϕφ −⋅⋅⋅++=       (2.5) 

 
The first two terms in Equation (2.5) are intensity values that are related to the amplitude 

functions of the object and the reference beams.  It is the last term in the equation that 

gives the spatial modulation of the recorded intensity, which is a function of the phase 

difference between the object and the reference wavefronts.  

 

A hologram is obtained by recording this intensity function (Equation 2.5) onto a 

photographic plate (see Figure 2.1).  The exposed photographic plate, in turn, will have a 

transmittance function (T) that is proportional to the recorded intensity function 

(Equation 2.6).  

 [ ]),(),(cos),(2),(),(
),(),(

0
2
0

2
0 yxyxyxORyxORyxT

yxIyxT

o ϕφ −⋅⋅⋅++∝

∝
     (2.6) 
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Figure 2.1.  Holographic recording process. 
 

 

2.1.2. Wavefront Reconstruction 

The original object wavefront used during the holographic recording process can 

also be completely reconstructed from the recorded hologram.  This is done by 

illuminating the hologram with a reconstructing beam C(x,y).  The transmitted wavefront 

N(x,y) through a transmission hologram is amplitude modulated by the transmittance 

function of the hologram, which is described by Equation (2.6).   The output wavefront 

function is then: 

  ),(),(),( yxTyxCyxN ⋅∝           (2.7) 
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or  4321),( UUUUyxN +++∝           (2.8) 

where:  
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         (2.9) 

 
It can be seen from Equation (2.7) that a hologram behaves just like a diffraction 

grating; and multiple diffractive orders may be produced.  The reconstructed wavefronts 

from a hologram can be separated into three parts: the first two terms U1 and U2 represent 

the zero diffraction order; while the +1 and –1 diffraction orders are described by U3 and 

U4 respectively (Equation 2.8).   

 

When the reconstruction wavefront C(x,y) is made identical to the reference 

wavefront R(x,y) used during the holographic recording process, U4 becomes: 
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       (2.10) 

In this case, the original object wavefront O(x,y) is completely reproduced with a 

constant amplitude factor R0
2.  The reconstructed wavefront diverges from the position of 

the original object; and a virtual image of the object is formed (Figure 2.2). 
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Figure 2.2.  Wavefront reconstruction from a hologram. 
Reconstructing a virtual image of the object 

 

When the reconstruction wavefront C(x,y) is made conjugate to the reference 

wavefront R(x,y), U3 becomes: 
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       (2.11) 

In this case,  wavefront that is conjugate to the original object wavefront is produced.  

This reconstructed wavefront converges to the position of the original object.  A real 

image of the object may be observed (Figure 2.3) under this condition.  

 
 
   

 

 

 

Figure 2.3.  Wavefront reconstruction from a hologram. 
Reconstructing a real image of the object. 
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In summary, holography uses optical interference phenomena to store both 

wavefront amplitude and phase information onto photographic recording media.  The 

recorded interference pattern, which is called hologram, behaves like a diffraction 

grating.  A hologram can be used to completely reproduce wavefronts with the same 

amplitude and the same phase function as the original object wavefront.  

 

 

2.2.   COMPUTER-GENERATED HOLOGRAMS  
 

As depicted in the previous section, holograms are constructed by the means of 

interferometry.  Physical existence of an object is required during the recording process.  

Computer-generated holography, on the other hand, eliminates this constraint.  A 

computer-generated hologram (CGH) is produced via computer synthesis, where the 

object does not exist physically but it is expressed in mathematical terms.   

 

Synthesizing holograms with the aid of computers allows complex waveforms to 

be produced that could not be realized otherwise.  Practical considerations in holographic 

recording process such as illumination coherence, vibration, or air turbulence are of no 

concern for computer-generated holograms.  Furthermore, CGH allows the study of 

certain holographic effects simply through computer simulation.  There are other 

advantages of computer-generated holograms, which are associated with the fact that a 
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binary diffraction pattern can be used instead of the recorded gray-scaled interference 

fringe pattern as for ordinary holograms [Brown and Lowmann 1969].   

 

High degree of flexibility in generating complex wavefront has made computer-

generated holograms extremely important and widely employed in the fields of optical 

data-storage, image processing, laser scanning systems, and optical testing and 

metrology.  

 

2.2.1.   Computer-Generated Holograms: General Description 

The process required for creating computer-generated holograms consists of four 

steps [Lee 1978; Bryngdahl and Wyrowski 1990; Goodman 1996].  The first step is to 

define a complex wavefront, called the object wavefront, which the finished CGH will be 

used to reproduce.  Then, propagation of the complex wavefront from the object position 

to the hologram plane is computed by using inverse wave-propagation relationship.  For 

example, if the object is located in the far field of the hologram plane, propagation from 

the object to the hologram can be computed using Fourier transform base on scalar 

diffraction theory.  Next, a suitable encoding method is chosen to encode both the 

amplitude and the phase information of the wavefront at the hologram plane to a real and 

non-negative function.  The last step of the process is to output the encoded hologram 

data via a proper output device.  A block diagram shown in Figure 2.4 summarizes the 

four-step procedure of producing a CGH. 
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Figure 2.4.  CGH generation flow-chart. 

 

Historically, CGHs were generated by plotting the encoded hologram pattern at a 

much large scale than the final size; then the pattern is photographically reduced to the 

desired dimension.  Nowadays, state of the art laser-beam lithography and electron-beam 

lithography technologies allow CGHs to be directly written at their finished size, which 

eliminate the photo-reduction process.  Micro-lithography also allows the hologram to be 

generated at a much higher accuracy than the conventional photo-reproduction process.  

In Section 2.3, a review on both laser and electron-beam lithography for CGH 

fabrications is given.   

Specifying desired wavefront for 
reconstruction  

Calculating complex wavefront at 
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wavefront
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2.2.2.   Different Types of CGHs 

There are two basic types of computer-generated hologram: amplitude holograms 

and phase holograms.  An amplitude hologram stores both the phase and the amplitude 

information of the incident wavefront.  A phase hologram assumes constant amplitude for 

the object wavefront.  A phase hologram operates only on the phase function of the 

reconstructing wavefront.   

 

Computer-generated holograms may be produced using different forms of 

wavefront encoding methods.  In the following section, three of the most representative 

forms of CGH encoding method are reviewed: detour-phase hologram, kinoform, and 

binary computer-generated hologram.  Binary holograms are normally preferred due to 

their advantages over gray-scaled holograms [Brown and Lohmann 1969].  In 

comparison to gray-scaled holograms, binary holograms are less sensitive to non-linearity 

of the photographic recording process; binary holograms are also more light efficient.  

 

Detour Phase Hologram 

Detour phase method, invented by Brown and Lohmann in 1966, is the oldest and 

the most studied technique for complex wavefront encoding [Brown and Lohmann 

1966].  As its name states, detour phase hologram encodes wavefront phase function 

using “detour phase” as in diffraction gratings.   
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 It is known that optical path difference (OPD) or phase difference between rays 

through adjacent slits of a perfect grating, in the first diffraction order, is exactly one 

wavelength.  The OPD for rays through a dislocated slit and its neighbor, on the other 

hand, will be greater or less than one wavelength (Figure 2.5).  This phase deviation from 

an integral wavelength due to the dislocation of the grating slit is called “detour phase”.  

Detour phase can be used for representing phase variations of a wavefront.  It also forms 

the basis for encoding wavefront phase information in computer-generated holograms.  

 

 

 

 

 

 

 

 

Figure 2.5.  Detour phase from unequally spaced grating slits. 

 

In a detour phase hologram, the hologram is divided into a matrix of equally 

spaced square cells.  A rectangular aperture is placed in each cell of the hologram (Figure 

2.6).  The rectangular aperture inside each cell is varied in height (hnm), width (wnm) and 

center position with respect to the center of the cell (cnm,) based on the amplitude and the 

phase values of the recorded wavefront at the cell location (Figure 2.7). 
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Figure 2.6.  Detour phase hologram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7.  Cell structure in a detour phase hologram. 
(subscripts m and n denote the x and y coordinates of the cell) 

 
 

In a detour phase hologram, the area of each rectangular aperture, hnm x wnm, is 

made to be proportional to the modulus of the amplitude of the represented complex field 

at the cell position.  At the same time, the aperture center position, Cnm, is made to be 

proportional to the phase value of the complex field at the cell location.  Using this 

wn

hnm 
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ndx 

mdy 
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method, both the amplitude and the phase function can be encoded in the hologram.  

When a reconstruction wavefront passes through a detour phase hologram, both the 

amplitude and the phase values are modulated at each cell position.    

 

Detour phase hologram relies on the dislocation of adjacent apertures in the 

hologram to store complex wavefront information.  This technique can only approximate 

the wavefront amplitude and phase values due to the quantization process.  Moreover, it 

is inadequate to handle large phase variations because the maximum phase variation that 

can be represented by the dislocation of each aperture is limited to 2π radiance.  When 

the phase variation of the wavefront exceeds multiple of 2π, adjacent apertures will 

overlap in detour phase holograms [Lee 1979].   

 

Although a number of techniques have been suggested to eliminate the 

overlapping aperture problem, the inaccuracy of phase representation using detour phase 

method and difficulties in managing large phase variations in the object wavefront are 

inherent to this encoding method. [Lohmann and Paris 1967; Brown and Lohmann 

1969; Lee 1970; Burckardt 1970; Hugonin and Chavel 1976; Hsueh and Sawchuck 

1978; Bartelt and Forster 1978].  
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Kinoform 

Kinoform was developed in 1969 by Lesem, Hirsch and Jordan [Lesem et. al. 

1969].  A Kinoform is produced by recording phase variations of the desired wavefront 

onto films as relief patterns rather than transmittance variations.  The magnitudes of the 

relief patterns are set to be proportional to the phase variations modulo of 2π [Lesem et. 

al. 1969].  In a Kinoform hologram, the amplitude of the incident object wavefront is 

assumed to be constant; and only the phase information is used for the construction of the 

image of the object.   

 

Kinoform can be thought as a simple phase-shaping element.  It transforms the 

incident wavefront shape into forms that is needed to produce the desired image.  A 

Fresnel lens shown in Figure 2.8 is a simple Kinoform, where the continuous phase 

function ),( yxφ is converted into surface relief height that can be determined using: 

   
)1(2 0

0
max −

=
n

d
π
λ         (2.12) 

where n0 is the index of refraction of the substrate at the incident wavelength (λ0). 

 

As shown in Section 2.1.1, an amplitude hologram produces multiple diffractive 

orders during the reconstruction process.  A Kinoform, on the other hand, eliminates 

multiple orders by modulating only on the phase function of the incident wavefront.  It 

provides higher diffraction efficiency by producing single image without undesired 

diffraction orders.  Because a Kinoform does not require a reference wave or fringe 
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carrier frequency, the reconstructed image may be centered on the optical axis.  Kinoform 

is also less computationally intensive when compared to other hologram encoding 

methods. 

 
 

 
 
 
 
 
 

 
 
 
 

Figure 2.8.  Structure of a Fresnel lens. 
 
 
Binary CGH 

In 1974, Lee introduced a new type of computer-generated hologram called 

binary computer-generated hologram.  The new hologram encoding method solves the 

two fundamental problems in detour phase holograms.  In his paper, Lee showed that 

patterns in binary computer-generated holograms could be interpreted as interference 

fringes in conventional holograms [Lee 1974].   

 

 It was shown that an interference pattern is obtained from the interference 

between the reference and the object beam (in Section 2.1.1).  If the reference wavefront 

is an off-axis plane wavefront with an angular spectrum of 2παx, then Equation (2.3) and 

(2.5) becomes: 

Original 
lens shape 

New surface 
relief profile 
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  x2i
0 eR)y,x(R πα⋅=          (2.12) 

  [ ]),(2cos),(2),(),( 0
22

0 yxxyxORyxORyxI o φπα −⋅⋅⋅++=           (2.13)  

The third term in Equation (2.13) gives the sinusoidal fringe modulation; bright and dark 

interference fringes are observed at locations where: 

Bright fringes:  n2)y,x(x2 π=φ−πα        (2.14) 

Dark fringes:  ⎟
⎠
⎞

⎜
⎝
⎛ +π=φ−πα

2
1n2)y,x(x2       (2.15)  

where, ...2,1,0n ±±=  

 

If the sinusoidal fringe function is hardclipped with zero threshold, the output 

function g(x,y) will have values of 1 and 0 where [ ])y,x(x2cos φ−πα  has values that are 

positive and negative respectively (Equation 2.16).   

  
otherwise

0)]y,x(x2cos[for
0
1

)y,x(g
≥φ−πα

⎩
⎨
⎧

=                               (2.16) 

This type of hologram is usually referred to as a binary phase hologram.  It is also the 

focus of this dissertation. 

 

It is not hard to realize that binary holograms generated by hardclipping the fringe 

function with a zero threshold will result in a lost of amplitude information of the object 

wavefront (see Equation 2.16).  This recording technique is sufficient only when constant 
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wavefront amplitude is assumed for the object beam.  When the amplitude information 

),(0 yxO  is needed, however, the hardclipping process must be re-considered.   

 

As Lee pointed out in his paper, when the constant threshold is replaced with a 

bias function [ ])(cos xqπ  for the hardclipping process, amplitude fluctuation of the object 

wavefront may be preserved.  Figure 2.9 shows the generation of binary fringes using the 

new bias function: 

 

 

 

 

 

 

 

 

Figure 2.9.  Binary CGH encoding process. 
 

Original fringe function along the modulation direction, x-direction, is biased and 

then hardclipped.  In 1-D, along x-axis, the output binary function g(x) has a leading and 

a trailing edge that may be defined by:  

   [ ] [ ]),(cos),(2cos yxqyxx πφπα =−       (2.17) 

and    ),(2),(2 yxqnyxx ππφπα ±=−       (2.18) 

cos[2παx + ϕ(x,y)] 

cos[πq(x)] 

output g(x) 

binary fringes 
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A Fourier series representation of the 2-D binary output function g(x,y) is: 

  [ ] [ ]),(2),(sin),( yxxim

m

e
m

yxqmyxg ϕπα

π
π −

∞

−∞=
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⎤
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⎡
= ∑     (2.19) 

 

There are many ways to encode wavefront amplitude information into the binary 

output function g(x,y).  One simple approach is to select the bias function so that: 

  [ ] ),(),(sin 0 yxOyxq =π                                                                        (2.20) 

In this case, the m = 1 term in the Fourier series will result in an amplitude factor in the 

Fourier expansion term: 

   [ ] ),(1),(sin
0 yxOyxq

ππ
π

=        (2.21) 

As a result of this, the original object wavefront ),(
0 ),( yxieyxO φ⋅  is reconstructed in the 

first diffracted order (m = ± 1).   

 

Using this method, both the phase and the amplitude information of the object 

wavefront are encoded in the position and the width of the binary fringe patterns.  This 

binary holographic encoding method allows the recording of complex wavefront 

information without resorting to approximations as in the detour phase method. 

 

2.2.3.   Separation of Multiple Diffraction Orders 

Similar to binary gratings, binary holograms generate multiple diffraction orders 

during the reconstruction process.  Although different diffraction orders are spatially 
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separated, cross talk between adjacent orders will occur when the separations between the 

orders are less than their width.  Overlapping diffraction orders degrade the quality of the 

diffraction wavefront.  One way to eliminate this order overlapping is to apply a “carrier 

frequency” to the encoded hologram fringe pattern [Creath and Wyant 1992].   

 

For a binary linear hologram, a linear carrier frequency that is equivalent to a 

wavefront tilt can be used to separate overlapping orders.  The linear carrier frequency 

added to the hologram pattern produces a lateral spatial shift to the diffracted orders in 

the image plane.   A carefully selected carrier frequency applied to a hologram can be 

used to increase the spacing between adjacent diffraction orders, which allows the desired 

diffraction order to be fully isolated from its neighbors.  Figure 2.10 shows a drawing of a 

linear CGH with 1 wave Zernike spherical and 36 waves of tilt. 

 
Figure 2.10.  A linear CGH with 1 wave Zernike spherical and 36 waves of tilt. 
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Figure 2.11 shows the spot diagram of multiple diffraction orders generated by 

the linear CGH that possesses 1λ Zernike spherical aberration.  The hologram produces a 

F/5 converging beam at a reference wavelength of 550nm.  

 
Figure 2.11.  Spot diagram showing multiple diffraction orders with orders overlapping. 

 

In order to separate the +1 and the +2 diffraction order beams, the two orders 

must be separated by at least the sum of the half width of the two beams; or 

22
21 ww

s +≥         (2.22) 

12
3 ws ≥         (2.20) 

where w1 and w2 are the geometrical spot diameters for the two diffraction orders;  and 

12 w2w = .  It is obvious that a minimum geometrical spot size for the +1 diffraction 

order is desired to achieve the lowest carrier frequency or wavefront tilt for the separation 

of +1 and +2 diffraction orders in this case.   
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Both wavefront aberration and ray aberration plots for the +1 diffraction order at 

the minimum geometrical spot size position are shown in Figure 2.12 and Figure 2.13 

respectively.  The beam width (w1) is found to be 66 um at this position.  Thus, a 

separation of 99 um between the +1 and the +2 orders is required to eliminate beam 

overlapping.  This lateral separation between the two beams corresponds to a wavefront 

tilt of 36 waves.  The finished hologram with 36 waves tilt is shown in Figure 2.10. 

 

 

Figure 2.12.  Wavefront aberration plot for +1 diffraction order. 
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Figure 2.13.  Ray aberration plot for +1 diffraction order. 
 

For ring shape holograms, multiple diffraction orders may appear along the 

optical axis of the hologram.  A quadratic carrier frequency, which may be treated as 

wavefront defocus, produces axis shifts to the diffracted beams.  It may be used to 

separate overlapping orders for ring holograms. 

 

 

2.3.    CGH FABRICATIONS 
 

Traditional method for fabricating computer-generated holograms is done through 

automated plotting and photographic reduction [Lohmann and Paris 1967].  Encoded 

hologram transmission function is first transferred to a mask by a computer-driven plotter 

at a greatly enlarged scale.  The resulting plot is then photographically reduced to the 
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desired size on high-resolution films.  The whole fabrication process could take several 

days to complete.  Accuracy of this fabrication process is limited by the precision of the 

plotter and errors associated with the photo-reduction process [Ono and Wyant 1974].  

These disadvantages of the photo-reproduction process have prevented CGH from broad 

applications in practice. 

 

With increasing demands for holograms with finer structure detail, new 

techniques for fabricating holograms are in need.  Advances in micro-lithographic 

technologies have made it possible to manufacture holograms with high precision and 

finesse.  Both electron beam lithography and laser beam lithography have been used to 

generate CGHs through direct writing process, or to produce replication masters for large 

volume production of CGHs. 

 

Micro-lithographic technique was originally developed for the semiconductor 

industry for integrated circuits (IC) fabrication.  The process contains four steps: 

exposure, development, etching, and cleaning.  The exposure process requires coating of 

a thin layer of metal following by a thin layer of resist over the substrate.  A laser or 

electron beam may be used to expose the resist layer where the beam strikes.  The 

finished piece is then cleaned with solvent.  If a negative type resist is used, the resist 

layer will become less soluble at the exposed areas.  If a positive type resist is used, the 

exposed regions become more soluble.  Next, an etching process removes regions on the 
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metal layer that are not covered with resist.  Finally, a second chemical solution strips the 

remaining resist from the substrate.  The described process is illustrated in Figure 2.14.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.14.  Schematic drawings show the processes of micro-lithography. 
 

System setups for both laser beam and electron-beam writers are very similar.  

They both require a precision translation stage and a writing head.  The servo controlled 

translation stage is usually mounted on an air-bearing table for friction free motion. 

Precise motion control of the stage is essential for obtaining high quality surface 

structures during the writing process.  Distance-measuring interferometers are typically 

used to maintain sub-micron accuracy of the stage position. 
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Electron beam lithography uses an electron beam to generate patterns onto an 

electron-resist layer coated on a glass plate.  Typically, an electron-beam writing head 

consists of an electron gun and electron-optics lenses for beam shaping, deflection and 

focusing.  There are two basic types of electron-beam writers, different by their beam 

shaping systems: electron beam focusing or variable beam shaping [Hessler 1997].  

 

Different from the e-beam systems, a laser source is incorporated in the writing 

head for a laser beam writer.  The wavelength of the laser source is chosen upon the need 

of the specific application and the photo-resist type.  Typically, a gas laser with operating 

wavelength in the range of 400 to 600 nm is used [Baber 1989; Haruna et. al. 1990; 

Bowen el. Al. 1997; Hessler 1997].  The laser source is frequency stabilized.  The output 

beam is filtered by a spatial filter and focused on the resist layer.  An acoustic-optical 

(AO) modulator is used to modulate the output beam intensity during the writing process.  

An auto-focusing unit is often used to control the beam focusing optics to ensure that the 

writing beam is focused on the resist layer at all time during the process.  

 

In general, an electron-beam writing system provides higher resolution than a 

laser beam writer does.  The minimum spot size of a laser beam writer is limited by the 

diffraction spot size of the output beam, which is limited by the wavelength of the laser 

source.  Minimum feature size that can be produced by a typical laser writer is about 500 

nm currently.  Electron beam writers, on the other hand, can achieve a minimum spot size 

of 100 nm.  In some e-beam systems less than 20 nm structures have been produced.  
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Despite of the high spatial resolution, equipment cost and maintenance cost for typical e-

beam writers are much higher in comparison to laser writers [Hessler 1997].  

 

 

2.4.    CGH MODELING THEORY 
 

Scalar diffraction theory is commonly used for analyzing diffractive optical 

elements.  Scalar diffraction theory assumes that light propagates in a linear, isotropic, 

homogeneous and non-dispersive media.  All components of the electric and the 

magnetic fields behave identically; and they can be fully described by a single 

homogeneous scalar wave equation [Born and Wolf 1980].  Scalar diffraction theory 

requires that the size of the diffracting feature much be large compared with a wavelength 

of the incident light; and the diffracting fields must not be observed too close to the 

diffracting structures [Goodman 1996].  

 

Detailed derivations and developments of the scalar diffraction theory are not 

presented in this paper, since a handful of textbooks are available that cover this topic in 

great details [Born and Wolf 1980; Goodman 1996].  The result of Rayleigh-

Sommerfeld approximation solution of the scalar diffraction theory is given in Equation 

(2.21).  The Rayleigh-Sommerfeld diffraction formula provides a general description of 

the relationship between the diffracted wavefront (U1(x,y)) and the incident wavefront 

(U0(ξ,η)).  The Rayleigh-Sommerfeld integral is often interpreted as one form of 
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mathematical statements of the famous Huygens-Fresnel principle [Born and Wolf 

1980].   
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where: 

U0 = incident wavefront function; 

U1 = complex diffraction wavefront at z1 plane; 

z01 = distance between the observation and the aperture planes; 

k = 2π/λ; 

λ = wavelength of incident light; 

),cos( 01rn rr  = direction cosine between surface normal nr  and vector 01rr .  

 

 

 

 

 

 

 

Figure 2.15.  Geometry for Rayleigh-Sommerfeld diffraction integral. 
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The Rayleigh-Sommerfeld formula can be applied generally to any diffraction 

situation, whenever the two requirements for scalar approximation are satisfied.  

Nevertheless, the complexity of the integral has limited the use of Rayleigh-Sommerfeld 

in practical applications.  In practice, simplified forms of the Rayleigh-Sommerfeld 

integral are usually used by imposing more approximations and restrictions.  

 

Fraunhofer Diffraction Approximation  

When the separation between the z0 and z1 plane in Figure 2.15 is much greater in 

comparison to both the maximum radial extent of the aperture (∑) and that of the 

observation region, r01 can be approximated as: 
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Equation (2.21) becomes: 
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This result is commonly known as the Fresnel diffraction integral.  Furthermore, when z12 

is much greater than 
2

)(k max
22 η+ξ , so that the quadratic phase term 

)(
z2

kj 22

e
η+ξ−

 in the 

Fresnel integral (Equation 2.23) can be neglected.  We will arrive: 
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This result is known as the Fraunhofer (or far-field) diffraction solution.  The expression 

for the Fraunhofer integral is mathematically equivalent to a 2D Fourier transform of the 

incident wavefront over the defined aperture.  In practice, the far field conditions 

described above are easily satisfied and the Fraunhofer solutions are often used.  

Computational simplicity of this solution makes it a powerful tool in diffraction analysis.   

 

The Fraunhofer solution is adequate in dealing with vast majority of diffraction 

problems.  It also serves as the theoretical foundation of our research from chapter 3 

through chapter 5.  In chapter 6 and 7, we will introduce the rigorous diffraction theory 

which impose no approximations to general diffraction problems.  Differences between 

the scalar diffraction model and the rigorous model are discussed in detail. 

  

 

2.5.     APPLICATIONS OF CGHS IN OPTICAL TESTING 
 

The ability of generating complex wavefront with arbitrary amplitude and phase 

functions has made CGHs extremely attractive in a wide range of applications.  To stay 

within the scope of this work, we will focus our discussion on the applications of CGH in 

the field of optical metrology and testing.   
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Among numerous types of optical metrology systems, CGH has found its greatest 

potentials in the field of optical interferometry [MacGovern and Wyant 1971].  A brief 

review of optical interferometry is provided in the following section; applications of 

CGH in interferometry are then introduced. 

 

2.5.1.   Optical Interferometric Systems 

Optical interferometry is based on the optical interference phenomena.  Two 

interfering wavefronts are produced by a reference surface and a test surface respectively.  

Shape differences between the reference and the test surface result in phase differences 

between the two wavefronts.  The generated interference pattern, also called 

interferogram, is interpreted as a contour map of constant height difference between the 

test and the reference surfaces.  The interferogram is captured and digitized by a CCD 

camera in an interferometer.  The shape of the test surface may then be obtained by 

analyzing the interferogram pattern and knowing the shape of the reference surface. 

 

A schematic drawing of a Twyman-Green interferometer is shown in Figure 2.16.  

The setup consists of a laser source, a beam splitter, a reference surface and a test surface. 

The laser beam output is split into two paths by the beam splitter: one towards the 

reference arm and one towards the test arm.  The configuration showed in Figure 2.16 is 

designed for testing concave spherical surfaces.  The test surface is placed at the position 

where its radius of curvature matches the radius of curvature of the diverging test beam. 

Both beams reflected off the reference and the test surfaces are recombined through the 
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beam splitter and interfere in space.  The formed interferogram is captured by a CCD 

camera.               

 
Figure 2.16.  Schematic drawing of a Twyman-Green interferometer. 

  

Optical interferometry is a relative measurement of the test surface against a 

reference.  A larger shape difference between the test and the reference surfaces will be 

seen as an increase in the number of fringes in the interferogram.  Sampling frequency of 

the CCD camera and the digitization process limits the maximum number of interference 

fringes allowed in an interferogram.  In order to avoid fringe aliasing, sampling condition 

described by the Whittaker-Shannon sampling theorem [see e.g. Gaskill 1978] must be 

met.  This fringe sampling restriction requires the reference surface to have almost the 

same shape as the surface under measurement.  Consequently, a large collection of 

reference surfaces must be made available in order to measure surfaces with a wide range 

of shapes for optical interferometry. 

 

 

DIVERGING 
LENS 
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2.5.2. CGHs in Optical Testing 

Aspheric surfaces play an important role in modern optical systems.  Many 

optical systems can benefit from the use of aspheric surfaces.  Extra degrees of freedom 

in controlling the shape of optical surfaces help optical designers in controlling wavefront 

aberrations in optical imaging systems.  By using aspheric optical elements, system 

performance can be improved while the number of optical elements may be reduced. 

Despite the advantages of aspheres, applications of aspheric components are still limited.  

The major obstacle in the broad usage of aspheres comes from the difficulties in asphere 

metrology and testing.   

 

As discussed in the previous section, optical interferometry requires the reference 

surface to have the same shape as the surface under test.  For asphere testing, this 

requirement translates into that an exact replicate of the asphere under test must be 

fabricated as the reference in order to measure the part.  Unfortunately, conventional 

optical fabrication process based on lapping has a natural tendency of producing spherical 

surfaces [Park 1987].  Non-spherical surfaces are difficult and costly to produce.  

 

One way to test aspheres without the use of reference aspheres is to design a set of 

additional optics.  The additional optics are used to generate a wavefront that matches the 

ideal shape of the test surface and replace the reference in an interferometer [Offner and 

Malacara 1992].   This set of optics is called “null lenses” to indicate its purpose: to 

reduce shape difference between the reference and the test wavefronts; or null the 



                                                                                                                                                             62              
 
 
interference fringes in the interferogram.  Depending upon the complexity of the desired 

reference wavefront, null lenses usually consist of several optical elements.  

 

It is expensive and time consuming to test aspheres using either reference 

aspheres or null lenses.  Besides, verifying the accuracy of the reference aspheres or the 

null lenses is no easy task of its own. 

 

State of the art fabrication techniques such as diamond turning and injection 

molding have made the production of aspheres easier and at costs not much more than 

spherical surfaces.  The ability of manufacturing aspheric components has again driven 

the demands of fast, accurate and low cost methods for asphere metrology. 

 

Computer-generated holograms allow complex wavefronts to be generated 

without the physical existence of the object.  This ability has made it desirable in the field 

of asphere metrology.  A reference asphere or a null lens is no longer needed with the 

help of CGH; the desired aspheric wavefront can be synthesized and stored in a CGH.  

The stored wavefront can later be reconstructed and used in an interferometer as the 

reference wavefront for testing aspheres or surfaces with essentially any shape.  

 

The first application of CGH for interferometric testing of aspheric surface was 

demonstrated by MacGovern and Wyant in 1971.  Figure 2.17 shows the configuration of 

a modified Twyman-Green interferometer incorporating a CGH for testing aspheric 
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elements.  In this configuration, the CGH is placed at the image plane of the exit pupil of 

the test element.  This arrangement allows both the test beam and the reference beam to 

travel through the CGH via the same optical path.  Because of this, the accuracy of the 

measurement is not affected by any thickness variations or inhomogeneity in the CGH 

plate [MacGovern and Wyant 1971]. 

DIVERGER
LENS

 
Figure 2.17.  Modified Twyman-Green interferometer for asphere testing using CGHs. 

 

The CGH used in Figure 2.17 setup stores the interference pattern expected from 

a perfect test surface.  During the test, an interferogram pattern is produced from the 

interference between the reference and the test surface.  This interferogram is imaged 

onto the CGH plane.  The two overlapping interference patterns produce another fringe 

pattern, which is called moiré pattern.  A moiré pattern is a ‘beat pattern’ produced by 

two gratings of approximately equal spacing [Creath and Wyant 1992].  Straight and 

equal-spaced moiré fringes will appear when the two interference patterns are identical.  

Differences between the two interferograms appear as variations of fringe spacing in the 
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moiré pattern.  By analyzing the moiré fringe pattern, shape differences between the test 

part and its ideal form can be quantitatively determined.  

 

There are other interferometers configurations that utilize computer-generated 

holograms.  For instance, a CGH may also be placed in the reference arm of an 

interferometer.  Figure 2.18 shows the layout of such system.  The CGH is positioned in 

the system so that its conjugate image is coincident with the image of the surface under 

test.  In this setup, the CGH produces a reference wavefront that matches the wavefront 

expected from an ideal test surface.   

 
Figure 2.18.  Interferometer configuration with CGH in the reference arm. 

 

One shortcoming of this configuration is that a high quality diverger lens is 

required. Otherwise, wavefront aberrations generated by the diverger lens will propagate 

into the reference beam, although aberrations introduced by the diverger can also be 

compensated by including the same amount of aberrations in the CGH designs.  
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One other commonly used interferometer configuration is to position the CGH in 

the test arm, as shown in Figure 2.19.  This arrangement allows an easier incorporation of 

the CGH with commercially available interferometers comparing to other configurations.  

Figure 2.19 shows that by placing the CGH in the path of the test arm, aberrations 

produced by the diverger lens can be eliminated.   

 

 
Figure 2.19.  Interferometer configuration with CGH in the test arm. 

 

However, in this setup, test beam is twice diffracted by the hologram and intensity 

of the test beam may be reduced.  When the intensity ratio between the reference beam 

and the test beam is too high, fringe contrast of the interferogram will be low.  The 

intensity of the test beam diffracted by a CGH is determined by the diffraction efficiency 

of the hologram. A typical chrome-on-glass CGH has a 10% diffraction efficiency 

[Arnold 1989; Burge 1995].  A double diffraction yields only 1% in the return beam.  

Therefore, CGHs with high diffraction efficiencies are necessary when used in such 

systems.  
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CGHs may also be used as the beam-splitter in optical testing.  Burge in 1995 

demonstrated that aspherical optics may be measured using Fizeau interferometer with a 

hologram recorded on the reference surface. The hologram pattern written onto the 

concave spherical reference surface separates and recombines the reference and the test 

wavefronts (Figure 2.20).  Light diffracted from the hologram on the spherical reference 

surface forms the reference wavefront, and light reflected from the test surface forms the 

test wavefront [Burge 1995].   

 
Figure 2.20.  Using CGHs as beam splitting elements. 

 

The advantage of this configuration is that the reference surface may have a 

spherical shape; it can be made and characterized to a high precision.  In addition, the 

small separation between the test and the reference surface helps to significantly reduce 

air turbulence in the optical path.  This interferometer configuration is very useful in 

testing large convex optical surfaces. 
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In summary, CGHs can be designed to produce wavefront with virtually any 

shape.  Applications of CGHs in optical interferometry allow surfaces with complex 

shape to be measured easily and accurately.  Computer-generated holograms are 

especially powerful in interferometric measurements for aspheric surfaces.  In order to 

explore the full potential of CGHs in the field of optical metrology and testing, a 

thorough understanding of the design and the fabrication limitations is necessary.  
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CHAPTER 3 
 
 

WAVEFRONT PHASE ERRORS  
PRODUCED BY 

 CGH FABRICATION UNCERTAINTIES 
 
 
 
 
 

Errors and uncertainties during CGH fabrication processes result in errors in the 

diffraction wavefronts created by the finished hologram.  When applying the finished 

hologram in optical testing, accuracy of the measurement results will be affected 

consequently.  Possible sources of errors in CGH fabrication such as substrate figure 

errors and pattern errors are discussed in this chapter.  A binary linear grating model is 

introduced to analyze wavefront phase errors produced by grating duty-cycle and etching 

depth variations.  Analytical solutions to diffraction efficiency, diffracted wavefront 

phase functions and wavefront sensitivity functions are derived.  These results are used to 

analyze the performance of phase gratings and chrome-on-glass gratings.  Moreover, a 

graphical representation of diffraction fields is introduced for diffraction wavefront 

analysis.   
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3.1.     CGH FABRICATION ERRORS 
 

Computer-generated holograms are commonly used in optical interferometry for 

producing reference wavefronts with desired shapes.  Uncertainties from the CGH 

manufacturing processes produce errors in the finished hologram and the generated 

reference wavefront.  CGH errors compromise the accuracy of the interferometric 

measurements.  Although errors in the CGHs may be introduced during either the design 

or the fabrication process, fabrication uncertainties are mostly responsible for the 

degradation of the quality of CGHs [Burge 1993]. 

 

A CGH may be treated as a set of complex diffraction fringe patterns written onto 

a substrate material.  Errors in both the recorded grating pattern and the shape of the 

substrate contribute to errors in the reproduced diffraction wavefront.  CGH fabrication 

errors may be classified into two basic types: substrate figure errors and CGH pattern 

errors.  CGH pattern errors may further be classified as fringe position errors, fringe duty-

cycle errors and fringe etching depth errors. These CGH fabrication errors will be 

discussed in detail in the following sections. 

• Substrate Figure Errors 

• Pattern Errors  

− fringe position errors 

− fringe duty-cycle errors 

− fringe etching depth errors 
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3.2.    BINARY LINEAR GRATING MODEL 
 

The simplest form of a hologram is a linear diffraction grating, where the spatial 

frequency of the grating pattern is constant over the entire hologram.  A computer-

generated hologram with variable fringe spacing may be viewed as a collection of linear 

gratings with variable spatial frequency.  By controlling the spatial frequencies of these 

linear gratings across the CGH, incident light can be deflected into any desired form 

[Burge 1993].   

 

The performance of a CGH may be directly related to the diffraction 

characteristics of a linear grating [Sawson 1989].  Linear gratings are often used for 

studies on CGH properties in order to avoid mathematical difficulties in modeling 

complex hologram fringe patterns.  To reduce the degree of complexity of our study, 

linear gratings are also chosen as the model for our work.  

 

3.2.1. Binary Linear Grating 

The linear grating model used in our studies is assumed to have binary amplitude 

and phase distributions.  A binary linear grating has a surface relief profile that can be 

described as an infinite train of rectangular pulses with a uniform width (Figure 3.1). 
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Figure 3.1.  Surface relief profile of a binary grating 

 
Using notations from Gaskill’s book titled “Linear systems, Fourier Transforms, 

and Optics” [Gaskill 1978], the grating surface relief function h(x) may be described 

mathematically as a convolution of a rectangular function with a width b and series of 

repeating delta functions equally spaced by S apart with a DC offset B0:  
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The scalar diffraction approximations can be applied when the wavelength of the 

incident light is much smaller in comparison to the grating period (S).  In this case, the 

output wavefront immediately past the grating, either reflected or transmitted, can be 

expressed as a simple product of the incident wavefront function and the grating surface 
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profile function.  In another word, the grating function modulates the incident wavefront 

directly.  For a normal incident plane wavefront, the output wavefront function can be 

written as:  
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The form of the output wavefront function expressed in Equation (3.2) resembles the 

shape of the grating profile (Figure 3.2). 

 

 

 

  
Figure 3.2.  Output complex wavefront function at the diffraction grating. 

 

In Equation (3.2), A0 and A1 correspond to the amplitude values of the output 

wavefront from the peaks and valleys of the grating respectively.  These two values are 

determined from the amplitude functions of the reflectance or the transmittance 

coefficients at the grating interface using Fresnel equations.  For a normal incident beam, 

the complex amplitude of reflectance and the complex amplitude of transmittance can be 

calculated as:  
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where n1 and n2 are the indices of refraction of the two homogeneous media.   

Phase function φ, in Equation (3.2), represents the wavefront phase difference between 

rays reflected off or transmitted through the peaks and the valleys of the grating structure.  

 

In this study, we are mostly interested in the behaviors of the diffraction 

wavefront in the far-field regime.  We have shown earlier in section 2.4 that the far-field 

diffraction wavefront is related to the original wavefront via a simply Fourier transform 

relationship based on the Fraunhofer diffraction theory.  Hence, the far-field wavefront 

function of a normally incident plane wavefront upon the grating described in Equation 

(3.2) is: 
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    or looking at one order at a time: 
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z
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λ
=ξ  and the duty-cycle of the linear grating is 

S
bD = . 

 

 Equation (3.5) shows that the diffraction wavefront function U(ξ) has non-zero 

values only when ξ takes values of multiples integer of 1/S.  This behavior describes the 

existence of multiple diffractive orders.  

  

In practice, a proper spatial filter may be applied to select a desired diffraction 

order and isolate it from the others. A typical spatial filter configuration is shown in 

Figure 3.3.  

 

 

 

 

 

Figure 3.3.  Spatial filtering using a 4-F configuration. 
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3.2.2. Diffraction Efficiency 

Diffraction efficiency (η) of a hologram is defined as the ratio of the intensity 

values of the diffracted wavefront to the intensity of the incident wavefront.  The 

diffraction efficiency of a specific diffraction order provides information of the efficiency 

of the hologram in deflecting light into a particular direction.   
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Diffraction efficiency for all orders are computed by evaluating the intensity 

values at the particular diffraction orders using Equation (3.15).  Hence, 
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3.2.3. Wavefront Phase 

Diffraction wavefront phase function can also be retrieved from Equation (3.5).  

The real part and the imaginary part of the complex wavefront U(ξ) are:  
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and the diffraction wavefront phase function, Ψ, is determined as: 
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For different diffraction orders, the phase functions are: 
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The wavefront phase value, Ψ, can therefore be obtained by taking arctangent of 

the above equations.  The phase unwrapping process uses the sign information of the real 

and the imaginary parts of the complex wavefront U(ξ) to allow calculation of phase 

between 0 to 2π period.  This is the reason why the sinc(mD) functions are left in both 

numerator and denominator of Equation (3.16); the sinc functions are there to preserve 

the sign information for the phase unwrapping process.  The new phase values, between 0 

and 2π, are then evaluated point by point.  A multiple number of 2π phase value can be 

added or to be subtracted to force the phase function to be continuous.  

 

 

3.3.    WAVEFRONT PHASE ERRORS  
 

CGH fabrication errors may be classified as substrate figure errors and fringe 

pattern errors.  Both types of errors produce deviations in the diffraction wavefront phase.  

In the following sections, effects of substrate figure errors, pattern distortion, duty-cycle 

errors, and etching depth errors on diffracted wavefront phase values are studied. 

 

3.3.1. Substrate Figure Errors 

Typical CGH substrate errors are low spatial frequency surface figure errors that 

are responsible for the low spatial frequency wavefront aberrations in the diffracted 
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wavefront.  The hologram substrate errors are usually results of the limitations in the 

fabrication and the testing processes. 

 

In a reflection hologram setup, CGH substrate figure error is 2x amplified in the 

reflected diffraction wavefront because of the double path configuration (see Figure 3.3).  

For instance, a surface defect on a CGH substrate with a peak-to-valley deviation of δs 

will produce a phase error in the reflected wavefront that equals to 2δs.  A transmission 

hologram that has the same peak-to-valley surface defect, on the other hand, will produce 

a wavefront phase error that is (n-1)δs, where n is the index of refraction of the substrate 

material. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4.  Wavefront deviations due to substrate surface defects  
for both reflective and transmissive type holograms. 

 

One method of eliminating figure errors of CGH is to measure the flatness of the 

substrate before the grating patterns are applied.  This usually can be done by using a 

Fizeau interferometer with a flat reference.  

CGH 
substrate 

Transmitted 
wavefront 

Reflected 
wavefront 

Incident 
wavefront 

δs  2δs 

(n = index of refraction) 

(n-1)δs 
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CGH substrate errors may also be estimated after the grating pattern is written.  

To show this, a 1-D grating with a high frequency binary fringe pattern and a low 

frequency substrate variation is demonstrated in Figure 3.5.  

 

 

 
 
 

Figure 3.5.  1-D grating profile with sinusoidal substrate figure errors. 
 

For a normal incident plane wave, the output wavefront through this grating can 

be expressed mathematically as a binary function u(x) (Equation 3.2) with a sinusoidal 

variation in the phase function from CGH substrate errors: 
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where  

a = amplitude of substrate errors;  

w = period of the cosine substrate error and w>>b.   

 
Taylor expansion of the substrate errors in Equation (3.17) can be written as: 
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Assuming the magnitude of the substrate error (a) is small, higher orders terms in 

Equation (3.18) may be ignored.  To the first order approximation, the wavefront function 

u′(x) can be expressed as:  
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The far-field diffraction wavefront function, according to the Fraunhofer diffraction 

integral, is therefore the Fourier transform of wavefront function u′(x): 
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where m in the equation corresponds to the diffraction order number. 

  

 It is realized from Equation (3.20) that CGH substrate errors affect all diffraction 

orders equally.  For example, using spatial filter, we are able to select zero-oder 

diffraction beam.  The complex amplitude of the zero-order diffraction beam at spatial 

filter can be expressed as: 
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The inverse Fourier transform of this function is therefore: 
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The second term in Equation (3.22) corresponds to the CGH substrate errors.  The 

substrate figure errors can therefore be retrieved this way.    

 

3.3.2. CGH Pattern Distortion  

A binary CGH stores both the amplitude and the phase information of the 

complex wavefronts by controlling positions, width and etching depth of the recorded 

fringe patterns.  Hence, errors in the recorded fringe pattern have direct effects on the 

accuracy of the reproduced diffraction wavefront.  The sources of CGH pattern errors are 

usually from the limitations in the hologram writer and uncertainties during the 

replication process.  

 

The effects of the CGH distortion errors can be determined by modeling local 

areas on a CGH as linear gratings.  Linear grating equation in Equation (3.23) can be 

used to describe the behavior of the grating and the diffracted wavefront function.  

Constructive interference, bright images, are observed at the observation plane when the 

condition imposed by Equation (3.24) is satisfied: 

m0

m0

sinSsinS

ddOPD

θ⋅+θ⋅=

+=
                                                   (3.23) 

        λ= mOPD ;                                                                                   (3.24)      

where: 

 d0, dm = incident and diffracted path length, see Figure 3.6.  

S   = grating spacing; 

m = 0,±1, ±2,……… 
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θ0  = incident beam angle; 

θm = mth order diffraction beam angle; 

λ   = wavelength of the incident beam. 

 

In Figure 3.6, optical path difference (OPD) between adjacent slits in the linear 

grating equals to an integer number of wavelength for a particular diffraction order.  For 

the mth order diffraction beam, the OPD between the neighboring slits is exactly mλ.  A 

dislocated slit in the grating, however, destroys this relationship.  The OPD for beams 

passing through a dislocated slit and its neighbors will be greater or less than mλ.  The 

displacement of the slit, or the recorded fringe in CGH, from its ideal position is 

commonly referred as pattern distortion.  Pattern distortion is the dominant type of CGH 

fabrication error [Burge 1993].  CGH pattern distortions produce phase errors in the 

reproduced diffraction wavefront.   

Figure 3.6.  Schematic drawing of a linear diffraction grating. 

S 

dm 

θm θ0 

d0 
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The amount of wavefront phase errors produced by CGH pattern distortions can 

be expressed as a product of the gradient of the diffracted wavefront function and the 

pattern distortion vector ),( yxE
r

 [Fercher 1976]: 

),(),(),( yxEyxWyxW ⋅∇−=∆ λ                                                 (3.25) 

where:  

)y,x(W∆  = wavefront phase error; 

)y,x(Wλ   = diffraction wavefront; 

)y,x(Wλ∇ = gradient of the diffraction wavefront (in the direction that is 
perpendicular to the fringes); 

 
),( yxE  = CGH pattern distortion vector.      

 

In a linear grating hologram, wavefront phase errors produced by pattern 

distortion is:  

)y,x(S
)y,x(m)y,x(W ε

λ−=∆          (3.26) 

where: 

ε(x,y) = grating position error in direction perpendicular to the fringes;   

S(x,y) = localized fringe spacing; 

 
Equation (3.26) shows that wavefront phase errors due to pattern distortions are linearly 

proportional to the diffraction order number and inversely proportional to the local fringe 
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spacing.  Furthermore, CGH pattern distortion errors do not affect the zero-order 

diffraction beam.  

 

3.3.3.   CGH Duty-Cycle Errors 
 

Besides pattern distortions or fringe position errors, variations in both fringe duty-

cycle (D) and etching depth (φ) are also potential sources of error in CGHs fabrication.  

In order to study the effects of duty-cycle and phase depth variations on diffracted phase 

functions, binary linear grating models are used.  Diffracted wavefront phase as functions 

of duty-cycle and phase depth derived in section 3.2.3 are used.  Wavefront phase 

deviations result from one unit variation in grating duty-cycle at different diffraction 

orders are calculated as:   
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The deviations of the diffracted wavefront phase values due to variations in either 

grating duty-cycle or phase depth are defined as the wavefront sensitivity functions.  

Equation (3.27) and (2.28) give the zero-order and non-zero order wavefront sensitivity 

functions in terms of grating duty-cycle variations respectively.  It is noticed that CGH 

duty-cycle errors produce wavefront phase errors only in the zero-order diffraction beam; 

diffraction wavefront phase functions are not sensitive to CGH duty-cycle errors at non-

zero diffraction orders.  

 

3.3.4.   CGH Etching Depth Errors 
 

Diffraction wavefront phase sensitivities to CGH etching depth variations at 

different diffraction orders are also determined from Equation (3.15) and (3.16).  

Equation (3.29) and (2.30) give the zero-order and the non-zero order wavefront 

sensitivity functions in terms of phase depth variations. 

 

  

[ ]

φ−+−+

φ−+
=

φ∂

Ψ∂
⋅

Ψ+
=

φ∂

Ψ∂ =

=

=

=

cos)D1(DAA2)D1(ADA
cos)D1(DAADA

)tan(
)tan(1

1

10
22

0
22

1

10
22

1

0m
2

0m

0m

:0m

     (3.29) 



 86 
 

[ ]

φ−+

φ−
=

φ∂

Ψ∂
⋅

Ψ+
=

φ∂

Ψ∂ ≠

≠

≠

±±=

cosAA2AA
cosAAA

)tan(
)tan(1

1

10
2
0

2
1

10
2
1

0m
2

0m

0m

:,...2,1m

       (3.30) 

 

The wavefront sensitivity functions (Equation (3.27) through Equation (3.30)) 

provide insights of CGH fabrication errors and their effects on diffraction wavefront 

phase values.  Using the wavefront sensitivity functions, we are able to identify the most 

and the least sensitive hologram structures, duty-cycle and phase depth, to fabrication 

uncertainties.  The information may also be used to exercise error budget and analysis for 

applications using CGH.  It is extremely valuable to the design and fabrication practices 

of computer-generated hologram.   

 

In the following sections, we are going to evaluate two types of binary gratings: 

chrome-on-glass grating and phase grating.  Wavefront sensitivity functions for both 

types of gratings are studied based on the analytical solutions derived in this section.  The 

grating models described are assumed to operate in reflection modes. 
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3.4.    NUMERICAL SIMULATION OF PHASE GRATING 
 

Phase gratings modulate only the phase function of the incident wavefront.   They 

are typically produced by etching the grating patterns onto a bare glass substrate.  A 

drawing that shows the surface relief function of a typical phase grating is given in Figure 

3.7.  

 

 

 

 

Figure 3.7.  Schematic drawing of a phase grating surface profile. 
 

In our study, the grating substrate is assumed to have an index of refraction of 1.5.  

The binary linear grating model introduced in the previous section is employed for the 

analysis.  The coefficients A0, A1, and φ in Equation (3.2) are determined using Fresnel 

equations and A0= A1= 0.2.  The phase function φ for the grating in reflection mode is 

calculated as: 
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3.4.1.   Diffraction Efficiency 

Diffraction efficiencies of the phase grating at different diffraction orders are 

calculated using Equation (3.10) and (3.11).  The results are shown in Figure 3.8 through 

Figure 3.12.  Figure 3.8 shows the diffraction efficiency of the zero-order beam as a 

function of both duty-cycle and phase depth in a 3-D coordinate.  As demonstrated in the 

diagram, the diffraction efficiency function is symmetrical about the 50% duty-cycle and 

half-wave phase depth point.   

Figure 3.8.  Diffraction efficiency of phase grating as a function of grating duty-cycle  
and phase depth for zero-order diffraction beam.  

 

 
Figure 3.9 and Figure 3.10 show the cross-section profile plots of the diffraction 

efficiency function.  Figure 3.9 shows that the diffraction efficiency function with  
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Figure 3.9.  Diffraction efficiency of a phase grating as a function of phase depth for  

the zero-order diffraction beam for nine duty-cycle values. 
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Figure 3.10.  Diffraction efficiency of a phase grating as a function of duty-cycle  

for the zero-order diffraction beam for five phase depth values. 
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different duty-cycles reach the minimum value when the phase depth is λ/2.  Figure 3.10 

shows that phase gratings with 50% duty-cycle have the minimum diffraction efficiency 

regardless of the grating phase depth. 

 

For the non-zero diffraction orders, the diffraction efficiency functions are also 

symmetrical about the 50% duty-cycle and the half-wave phase depth points (Figure 3.11 

and Figure 3.12).  Figure 3.11 gives the relationship between diffraction efficiency for 

non-zero order beams and duty-cycle.  It shows that diffraction efficiency of the non-zero 

order beams vary periodically with changes in the grating duty-cycle for phase gratings 

with λ/2 phase depth.   In addition, the number of times that maximum efficiency values 

are reached for each diffraction beam equals to the diffraction order number of beam. 
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Figure 3.11.  Diffraction efficiency of a phase grating as a function of duty-cycle for 

non-zero order diffraction beams with 0.5λ phase depth.    

φ = 0.5 λ 
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Figure 3.12 illustrates the diffraction efficiency values for the non-zero order 

beams as a function of phase depth variations.  Phase gratings with a 50% duty-cycle 

produce maximum efficiency at λ/2 phase depth for all non-zero order beams.  
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Figure 3.12.  Diffraction efficiency of a phase grating as a function of phase depth for 

non-zero order diffraction beams at 50% duty-cycle.  
 

 
3.4.2. Wavefront Phase 
 

Diffraction wavefront phase functions for phase gratings are calculated using 

Equation (3.15) and Equation (3.16) for different diffraction orders.  Diffraction 

wavefront phase values as functions of grating phase depth and duty-cycle for the zero-

order (m=0) diffraction beam are shown in Figure 3.13 through Figure 3.21.  Figure 3.13 

displays the zero-order diffracted wavefront phase functions as a function of phase depth 

D = 50% 
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and duty-cycle in a 3-D coordinate.  A phase discontinuity is observed along the 50% 

duty-cycle line for the zero-order beam at the half-wave phase depth point.  This phase 

discontinuity may be better observed in Figure 3.14. 

 
Figure 3.13.   Diffraction wavefront phase values of a phase grating as a function of 

grating phase depth and duty-cycle for the zero-order diffraction beam.  
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Figure 3.14.  Wavefront phase vs. phase depth for a phase grating  

in the zero diffraction order.  
 

As shown in the figure above, the diffracted phase values of all duty-cycle values 

appear continuous as the function of phase depth except for the 50% duty-cycle.  The 

occurrence of discontinuity in phase for 50% duty-cycle at λ/2 phase depth is anomalous.  

It implies a phase reversal in the diffracted wavefront when grating phase depth varied 

through the λ/2 phase depth point.  It also indicates a high sensitivity of the wavefront 

phase function in zero diffraction order to phase depth fabrication errors for gratings with 

a 50% duty-cycle and a λ/2 phase depth.  More discussions on this phase discontinuity 

are given in section 3.5 using the complex fields representation.  
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Diffraction wavefront phase sensitivities to fabrication errors for phase gratings 

are studied using the wavefront phase sensitivity function from Equation (3.29).  Figure 

3.15 shows the wavefront phase deviations in the zero diffraction orders beam produced 

by one unit grating phase depth variation for phase gratings with different duty-cycles.   
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Figure 3.15.  Wavefront phase sensitivity of a phase grating to grating phase depth 

variation for the zero-order beams for various duty-cycle values. 
 

A 0.1λ phase depth error will produce a -0.075λ wavefront phase error for phase gratings 

with a 30% duty-cycle and a nominal phase depth of 0.5λ.  The same phase depth error 

(0.1λ) produces +0.03λ wavefront phase error for phase gratings with a 30% duty-cycle 

and a nominal phase depth value of 0.1λ.  It is also realized that phase gratings with 50% 

duty-cycle is extremely to phase depth variations at a 0.5λ nominal phase depth.  
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Using Figure 3.15, we are able to identify grating structures that are the most or 

the least subject to phase depth errors.  All data points in Figure 3.15 where dΨm=0/dφ = 0 

represent grating structures that are not sensitive to phase depth variations.  Figure 3.16 

shows the complete solutions of all possible phase depths and duty cycle(s) combinations 

for phase gratings that are not subject to phase depth errors in the zero-order diffraction 

wavefront. 
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Figure 3.16.  Phase depths and duty-cycle(s) combinations of phase gratings that are not 

sensitive to phase depth variations (dΨm=0/dφ = 0) for the zero-order beam.  
 

Figure 3.17 shows the corresponding diffraction efficiencies for the gratings in Figure 

3.16.  As shown from the plot that the diffraction efficiency values of the zero-order 

diffraction beam decreases linearly with increasing in grating duty-cycle values. 
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Figure 3.17.  Diffraction efficiency values for phase gratings given in Figure 3.16 that 

are not sensitive to phase depth errors for the zero-order beam. 
 

Figure 3.18 shows the phase values for the zero-order beam as functions of 

grating duty-cycle variations.  Figure 3.19 shows the wavefront phase sensitivity function 

with variations in grating duty-cycle.  The plot indicates that a 1% duty-cycle variation 

will result in a –0.004 waves phase error in the zero-order diffraction wavefront for phase 

gratings with a 30% duty-cycle and a 0.6 waves nominal phase depth.  
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Figure 3.18.  Wavefront phase vs. duty-cycle for the zero-order diffraction beam  

of a phase grating. 
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Figure 3.19.  Wavefront phase sensitivity of a phase grating to grating duty-cycle 

variation for zero-order beam for various phase depth values. 
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Diffracted wavefront phase functions, calculated from Equation (3.16), for non-

zero order beams (m ≠ 0) are shown in both Figure 3.20 and Figure 3.21.  Figure 3.20 

gives the relationship between the diffracted wavefront phase functions and the grating 

phase depth for all non-zero order beams.  It is shown that the wavefront phase functions 

vary linearly with the grating phase depth; and  the dependence of diffracted wavefront 

functions on variation of phase depth errors is constant. 
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Figure 3.20.  Wavefront phase vs. grating phase depth for the 1st-order and the 2nd-order 

diffraction beam for all grating duty-cycle values from phase gratings. 
 

Figure 3.21 shows the relationship between wavefront phase values and duty-

cycle for non-zero order beams.  It is noticed that wavefront phase functions exhibit λ/2 

discontinuities for higher than 1st diffraction orders (m>1).  A λ/2 phase discontinuity is 

observed at the 50% duty-cycle point for the 2nd order diffraction beam.  Two λ/2 phase 

steps are seen for the 3rd order diffraction beam at 33.3% and 66.6% duty-cycle points. 

Duty-cycle: 
0% - 100%
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Duty-cycle: 
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Duty-cycle: 
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This characteristic of the phase function is the direct result of the sign changes of the 

sinc(mD) function in Equation (3.16).  The alteration between positive and negative 

values of the sinc function causes the calculated phase values to change by +/-π radians.  

The number of phase discontinuities occurs in the phase function, or number of sign 

changes for sinc(mD), when grating duty-cycle is varied from 0% to 100%,  equals to the 

diffraction order number minus one.   
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Figure 3.21.  Wavefront phase vs. grating duty-cycle for non-zero diffraction orders at 

0.5 waves phase depth from a phase grating. 
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  Figure 3.21.  (continued) Wavefront phase vs. grating duty-cycle for non-zero 

diffraction orders at 0.5 waves phase depth from a phase grating. 
 

Figure 3.21 also indicates that wavefront phase functions are not affected by duty-cycle 

variations in phase gratings for all non-zero diffraction orders.  In other words, duty-cycle 

errors may be ignored for phase grating applications where only non-zero order phase 

function is of concern.  This phenomenon has been predicted in theory by Equation 

(3.28).      

 

 

3.5.    GRAPHICAL REPRESENTATION OF DIFFRACTION FIELD 
 

A graphical representation of the complex diffraction field can be obtained by 

plotting the real and the imaginary parts of the diffraction wavefront in the complex 

coordinates.  Figure 3.22 gives a graphical illustration of the solution of the zero-order 

diffraction field for a phase grating with 40% duty-cycle.  

m =5 m =6
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Figure 3.22.  Graphical representation of the complex diffraction wavefront produced by 

a phase grating with 40% duty-cycle for the zero-order beam.  
 

The circle in the plot gives the complete solution to the diffraction fields produced 

by the grating at a specific diffraction order.  Each point in the circle corresponds to 

different values of grating phase depth.  A vector (r) pointing from the origin of the 

complex coordinate to a point on the circle corresponds to a solution of the diffraction 

fields produced by the grating at a specific phase depth.  As the grating phase depth 

increases, the solution point travels along the circle in the counter-clockwise direction 

that is indicated by the arrow along the circle.  The magnitude of the vector (r) gives the 

amplitude of the diffraction field; while the angle between the vector (r) and the real axis 

gives the phase value (Ψ) of the diffraction field.  As an example, in Figure 3.22, the 

vector r is pointing to the φ=0.2λ point on the circle.  This point corresponds to the zero-

order diffraction beam of a phase grating with 40% duty-cycle and 0.2 waves phase 

depth.  The magnitude of the vector is 0.82 and the corresponding efficiency is η = 0.822 

Real axis 

φ = 0 

φ = 0.8 λ 

Imaginary 
axis 

r

φ = 0.2 λ 

φ = 0.5 λ 

φ = 0.4 λ 

φ = 0.6 λ 

Ψ 

m=0 
duty-cycle=40%



 102 
 

= 67%.  The angle between vector r and the real axis is approximately 28o which gives a 

wavefront phase value of φ = 28o/360o  = 0.077λ. 

 

Figure 3.23 shows the diffraction wavefront solution at zero diffraction order for a 

phase grating with different duty-cycle values.  Figure 3.23 contains the same amount of 

information on the diffraction wavefront functions that Figure 3.9 and Figure 3.14 

combined.   
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Figure 3.23.  Graphical representation of the complex diffraction fields in the zero 

diffraction order produced by a phase grating with nine duty-cycle values. 
 

Recall Figure 3.14, a phase discontinuity was observed for the zero-order diffraction beam along the 50% 

duty-cycle line at λ/2 phase depth.  The explanation of the phase discontinuity was not obvious from the 

derived equations.  It may however by be explained directly using the complex field representation.  

Figure 3.24 shows the solution of the complex diffraction field of the zero-order beam at 



 103 
 

50% duty-cycle with the grating phase depth varied from 0 to 1 wave.  The zero phase 

depth point is located on the real axis one unit away from the origin.  As the phase depth 

increases, the solution points travels counter-clockwise along the circle.  It passes through 

the origin when the phase depth equals to λ/2, where the angle of the vector (r) varies 

abruptly from +90 degree to –90 degree, or the phase value of the wavefront displays a π 

phase change.  At this point, the diffraction efficiency of the grating is zero.  Therefore, 

the apparent discontinuity in phase (see Figure 3.14) is actually continuous transition for 

the complex field.  
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Figure 3.24.   Graphical representation of the complex diffraction fields in the zero 

diffraction order produced by a phase grating with 50% duty-cycle. 
 

Figure 3.25 shows the graphical representations of the complex diffraction fields 

for both zero and non-zero diffraction orders.  Figure 3.26 combines all plots in Figure 

3.25 in a 3-D space with an additional axis of grating duty-cycle.  
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Figure 3.25.  Graphical representations of the complex diffraction fields at various     

diffraction orders for gratings with different duty-cycles.  
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Figure 3.26.  3-D complex diffraction fields illustration of  Figure 3.25. 

(from left to right: D = 60%, 50%, and 40%). 
 

 

3.6. NUMERICAL SIMULATION OF CHROME-ON-GLASS         
GRATINGS 

 
 A chrome-on-glass grating consists of a flat glass substrate and a thin chrome 

coating with grating pattern written on it.  A schematic drawing of the structure of a 

linear chrome-on-glass grating is shown as following:  
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Figure 3.27.  Schematic drawing of a chrome-on-glass grating. 

Chrome has a complex value of index of refraction of 3.6-i4.4 at λ = 633 nm [Lynch and 

Hunter 1991].  The binary linear grating model is again used in this study and the 

complex amplitude functions A0 = 0.2, A1 = 0.8, and phase π−
λ
π

=φ 0879.0t4 .  

 

A complete model of thin metal coating grating must include the effects of 

multiple reflections inside the metal layer [Born and Wolf 1980].  Figure 3.28 shows the 

calculated amplitude and phase values of the multiple reflection beam off the chrome 

layer as a function of the chrome thickness.  The values of the amplitude and the phase 

functions stay constant when the chrome thickness is greater than 50 nm.  This result 

indicates that the effects of multiple reflections in the chrome layer may be neglected for 

chrome coating over 50 nm thick.  In our diffraction analysis, the chrome layer is 

modeled to have a thickness that is greater than 50 nm to eliminate multiple reflections 

effects.   

Glass substrate 
nglass=1.5 

Chrome 
nCr=3.6-i4.4 t 

S 
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Figure 3.28.  Reflectance amplitude and phase functions calculated for multi-reflection 

beams from a thin chrome coating at difference thickness. 
 

 
3.6.1.   Diffraction Efficiency 

Equation (3.10) and (3.11) are used to calculate the diffraction efficiency values 

for the chrome-on-glass grating, as shown in Figure 3.29, 3.29, and 3.31.  For the zero-

order diffraction beam (m=0), the diffraction efficiency functions increases non-

monotonically with duty-cycle (Figure 3.29).  The diffraction efficiency decreases 

linearly as the chrome thickness increases (Figure 3.30). 
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Figure 3.29.  Diffraction efficiency for zero-order beam vs. duty-cycle for 

chrome-on-glass gratings with different chrome thicknesses.  
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Figure 3.30.  Diffraction efficiency for zero-order beam vs. chrome thickness for 

chrome-on-glass gratings at various grating duty-cycles. 
 

Diffraction efficiency values for non-zero order beams (m≠0) vary periodically 

with changes in the grating duty-cycle for chrome-on-glass gratings, as shown in Figure 

3.31.  The number of times that maximum efficiency value are obtained for each 
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diffraction beam equals to its order number.  The 1st order diffraction beam achieves the 

maximum diffraction efficiency at 50% duty-cycle.  
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Figure 3.31.  Diffraction efficiency for non-zero diffraction orders vs. duty-cycle for a 

chrome-on-glass grating with 80 nm chrome thickness. 
 

 

3.6.2.  Wavefront Phase 

Wavefront phase values for all diffraction orders are calculated using Equation 

(3.15) and Equation (3.16).  Diffraction wavefront phase as functions of grating duty-

cycle and chrome thickness for the zero-order (m=0) diffraction beam are shown in 

Figure 3.32 through 3.37.  Figure 3.32 displays the relationship among zero-order 

wavefront phase values, chrome thickness and duty-cycle in a 3-D coordinate.  Figure 

3.33 shows the diffracted phase verse grating duty-cycle.  Figure 3.34 shows the 

diffracted phase in terms of chrome thickness.      
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Figure 3.32.  Wavefront phase for the zero-order beam vs. duty-cycle  
and chrome thickness for chrome-on-glass grating. 
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Figure 3.33.  Wavefront phase for the zero-order beam vs. duty-cycle  

for chrome-on-glass gratings with different chrome thicknesses. 
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Figure 3.34.  Wavefront phase for the zero-order beam vs. chrome thickness  

for chrome-on-glass gratings with various duty-cycles.  
 

Wavefront phase sensitivity functions for the zero-order diffraction beam are 

calculated for the chrome-on-glass grating.  Figure 3.35 shows the deviations in phase 

values with 1% duty-cycle variation for gratings with different chrome thickness.  
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Figure 3.35.  Wavefront phase sensitivity function to 1% duty-cycle variation in the 

zero-order beam for chrome-on-glass gratings with different chrome thicknesses. 
 

Using the wavefront phase sensitivity plot, we are able to estimate the amount of 

potential wavefront phase errors that may be resulted from the uncertainties in the 

manufacturing process.  For example, a 1% error in the grating duty-cycle produces a 

0.0055 waves phase deviation in the diffraction wavefront for a chrome-on-glass grating 

with a 10% nominal duty-cycle and a 80 nm chrome thickness.  Figure 3.35 also shows 

that the phase sensitivity function reaches its maximum value at approximately 10% 

duty-cycle point for chrome-on-glass gratings with 100 nm chrome thickness.  

 

Figure 3.36 shows the diffraction wavefront sensitivity to chrome thickness 

variations.  As an example, for a grating with 50 nm chrome and 20% duty-cycle, 1 nm 
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thickness variation of chrome would cause 0.0015λ deviations for the zero-order 

diffracted wavefront. 
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Figure 3.36.  Wavefront phase sensitivity function to 1 nm chrome thickness variations 

for chrome-on-glass gratings in zero-order diffraction beam. 
 

Grating duty-cycle (D) is defined as the grating line width (W) divided by the 

grating period (T): 
T
WD = ; therefore, W

T
1D δ=δ .  Wavefront phase sensitivity to the 

grating line width variation can be calculated using the phase sensitivity function for 

grating duty-cycle through the following relationship:  

T
1

DW
⋅

δ
Ψδ

=
δ

Ψδ       (3.32) 

Therefore, wavefront phase sensitivity as a function of fractional grating line width 

variations (δW/W) can be calculated as: 
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Figure 3.37 shows the wavefront phase sensitivity to 1% variation in grating line 

width from the nominal value for zero order diffraction beam.  For example, consider a 

chrome-on-glass grating with 100 nm chrome thickness and 20% duty-cycle, a 10% line 

width tolerance, which is equivalent to a 2% duty-cycle tolerance, will experience a 

wavefront phase error of ±0.011λ. 
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Figure 3.37.  Wavefront phase sensitivity function for chrome-on-glass gratings  

with different chrome thickness per 1% line width variation from the nominal value  
in the zero-order beam. 
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 Diffracted wavefront phase for all non-zero orders (m≠0) are shown in Figure 

3.38 and Figure 3.39.  Figure 3.38 gives the relationship between the diffracted wavefront 

phase functions and the chrome thickness.  Like phase grating, diffracted phases vary 

linearly with the chrome thickness or phase depth for all non-zero order beams.  The 

dependent of diffracted phase on chrome thickness variation is constant.    

   

0

0.1

0.2

0.3

0.4

50 60 70 80 90 100
chrome thickness [nm]

ph
as

e 
[w

av
es

]

         

-0.4

-0.2

0

0.2

0.4

50 60 70 80 90 100
chrome thickness [nm]

ph
as

e 
[w

av
es

]

 
Figure 3.38.  Wavefront phase vs. chrome thickness for the 1st-order and 2nd- 

order diffraction beams for all duty-cycle from chrome-on-glass gratings. 
 

Diffracted wavefront phase versus duty-cycle for non-zero order beams are shown 

in Figure 3.39.  Again similar to phase grating, the phase discontinuities phenomena is 

observed.  The number of phase discontinuity appeared for each order equals to the order 

number minus one.  Grating duty-cycle deviations have no effects on non-zero order 

wavefronts.   
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  Figure 3.39.  Wavefront phase vs. grating duty-cycle for non-zero diffraction orders for 

chrome-on-glass gratings with 100 nm chrome thickness. 
 

Using scalar diffraction model, grating duty-cycle and phase depth errors and 

their effects on diffracted wavefront efficiency and phase functions are studied.  

Wavefront phase sensitivity functions for the binary linear grating model are determined.  

Using the wavefront sensitivity functions, potential wavefront phase and efficiency errors 
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can be estimated with knowledge of the uncertainties from the CGH fabrication 

processes.  The wavefront sensitivity functions can also be used as guidance for the 

design of CGHs to reduce or eliminate wavefront errors produced by fabrication 

uncertainties.  In the following chapter, we will present experimental data on wavefront 

phase measurements for both phase and chrome-on-glass gratings.  The results will be 

used to verify our theoretical model.   
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CHAPTER 4 
 
 

DIFFRACTION WAVEFRONT PHASE  
MEASUREMENTS OF BINARY GRATINGS 

 
 
 
 
 

In Chapter 3, mathematical model of binary linear gratings is used for analyzing 

diffraction wavefront phase deviations as results of hologram fabrication tolerance and 

uncertainties.  Both phase and chrome-on-glass gratings are studied.  Analytical solutions 

to the wavefront sensitivity function for both gratings are derived and presented.  In this 

chapter, we describe measurements of sample phase and chrome-on-glass gratings with 

varied groove depth and duty-cycle values.  Descriptions of the structures for both grating 

designs are given. The samples are measured using phase-shifting interferometers and the 

measured wavefront phase variations as functions of grating duty-cycles and groove 

depth are calculated.  The experimental results are compared with theoretical models 

presented in the previous chapter.  
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4.1.     PHASE GRATING 
 
4.1.1.   Description of the Sample Phase Grating 

Results of the phase sensitivity analysis from Chapter 3 show that wavefront 

phase functions are most sensitive to grating phase depth variations for zero-order 

diffraction beam produced by a phase grating with 50% duty-cycle and 0.5 wave phase 

depth.  Wavefront phase functions are most subjective to grating duty-cycle errors for 

zero-order diffraction beam produced by a phase grating with 0.5 wave phase depth at 

50% duty-cycle.  In this section, sample phase gratings with duty-cycle ranging from 

40% to 60% and phase depth ranging from 0.44 waves to 0.58 waves were manufactured 

by direct laser beam writing and measured using a phase-shifting interferometer.  

Diffraction wavefront phase functions produced by the sample gratings are evaluated to 

determine the wavefront phase sensitivity functions. 

 

Figure 4.1 shows the layout of the sample phase grating design for this 

experiment.  The sample grating is divided into a 5 x 11 array, where each cell in the 

array contains a linear grating with specific duty-cycle and groove depth.  The gratings 

were designed for a reference wavelength of 0.633 um.  Along each row of the grating 

array, duty-cycle values are varied in a 2% increment from 44% to 60%.  A 0% and a 100 

% duty-cycle grating are placed at the first and the last cell of each row in the grating 

array.  Along each column of the grating array, groove depth or half phase depth values 

are designed at 0.22λ, 0.24λ, 0.25λ, 0.27λ and 0.29λ.  
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Figure 4.1.  Design layout of the sample phase grating.   
It is a 5 x 11 array where each cell in the array contains a linear grating. 

 

The sample grating is 30 mm by 30 mm in square.  Each column has a width of 

2.17 mm.  Adjacent columns are separated by a 20 um gap.  Column #2 in the finished 

grating sample, which contains gratings with 44% duty-cycle, was made three times 

wider than the design value due to manufacturing errors.  Linear gratings in all cells have 

50 um grating period with the groove directions parallel to the row direction of the 

grating array.  Figure 4.2 shows an enlarged view of a small area on the sample grating 

array.  Figure 4.3 shows a profile plot of a cross-section of the sample grating. 
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Figure 4.2.  An enlarged top view of a small area on the sample grating array.   
Duty-cycle varies along the row direction of the grating.  

 
 
 
 

 
 
 

 
Figure 4.3.  Cross-section view of column #3 (50% duty-cycle) of the sample grating 

array.  Groove depth varies along the column direction.  
 

The sample grating array is engraved on a 60 mm x 60 mm square glass plate (see 

Figure 4.4).  It is designed to be used in the reflection mode and the grating surface is 

coated with a uniform layer of chrome (Cr) to improve surface reflectance.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4.  Sample grating array engraved on a glass substrate.  
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4.1.2.   Procedure  
 

A phase-shifting Fizeau interferometer was used to measure diffraction 

wavefronts produced by the sample gratings.  The set-up of the experiment is shown in 

Figure 4.5.  The sample grating was treated as a flat test plate and a transmission flat with 

λ/20 accuracy (λ = 632.8 nm) was used as the reference.  The distance between the test 

grating and reference flat was reduced to minimum during the experiments in order to 

reduce air turbulence in the test beam path.  

 

 

 

 

(a) For zero-order wavefront measurement 

 

 

 

 

(b) For non-zero order wavefront measurement 

Figure 4.5.  Experimental setup for sample gratings wavefronts measurements.  
 

Multiple diffraction orders were produced by the linear grating sample.  In this 

study, only the zero-order diffraction wavefront and the first-order diffraction wavefront 

were measured.   

Fizeau interferometer with  
a reference flat  

Binary linear grating 
tested as a flat 
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tested as a flat Fizeau interferometer with  

a reference flat  
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I.  Zero-Order Diffraction Wavefront Measurement 

In order to measure the zero-order diffraction beams, the sample grating was 

aligned parallel to the reference flat, as shown in Figure 4.5(a).  An interferogram 

obtained during the measurements is shown in Figure 4.6.  A large amount of substrate 

figure errors and residual aberrations from the interferometer was observed in the 

measured wavefront.  In order to reduce the effects of the substrate errors and the residual 

aberrations, low order Seidel aberrations were removed from the measured raw wavefront 

phase functions.  A measured wavefront phase map with tilt, power and astigmatism 

removed is shown in Figure 4.7. 

 

     

Figure 4.6.  Interferograms obtained for the sample phase grating  
shown in the zero-order.  (Note the phase shift around the center of the pattern).   
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Figure 4.7.  Measured zero-order wavefront phase of the sample phase grating  
with tilt, power and astigmatism removed. 

 

Removal of tilt from the measured phase function eliminates the linear variation 

in the measured wavefront due to mechanical misalignments of the sample grating 

respect to the reference flat.  It undermines, at the same time, the linear wavefront phase 

variation produced due to the grating duty-cycle change (see Figure 4.8).  In order to 

compensate the over-corrected wavefront tilt, areas outside the grating array on the 

sample is utilized.  The sample grating was measured with a clear aperture that is larger 

than the actual area of the grating array.  Ideally, the same phase value should be obtained 

from areas outside the sample grating array where the surface is coated with a uniform 

layer of chrome, when substrate figure errors are ignored and tilt in the test surface is 

removed.  Using the phase values from the surrounding areas of the grating array, 

wavefront tilt can be compensated to achieve zero phase difference between both sides of 

the grating array.  
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Figure 4.8.  Phase profile plots of the sample grating array with  
surrounding Cr coated glass substrate.  

 

II.  First-Order Diffraction Wavefront Measurement 

In order to measure first diffraction order wavefront, the sample grating must be 

tilted respective to the reference flat so that the 1st diffraction beam was seen by the 

interferometer (see Figure 4.5(b)). 

 

4.1.3.   Results and Analysis  

I. Wavefront Phase Sensitivity for the Zero Diffraction Order 

Optical interferometric measurements provide information on the wavefront phase 

function of the test beam relative to the reference wavefront.  In order to avoid 

unnecessary complications or confusions when comparing the experimental results with 
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the theoretical data, phase deviations between adjacent grating cells were used in our 

analysis instead of the absolute phase values.  The presented phase deviations functions 

in the following section represent wavefront phase changes as results of the grating duty-

cycle or the groove depth variations on the sample grating array.  

 

Linear gratings with the same duty-cycle on the sample grating array were 

measured together to determine wavefront phase sensitivities as a function of grating 

phase depth variations.  In order to reduce random noises in the measured wavefront 

phase values, four sets of measurement were conducted for each analysis.  The standard 

deviation of the four sets of data were calculated.  Measured wavefront phase deviations 

per unit grating groove depth variation for grating with various duty-cycles are shown in 

Figure 4.9.  Theoretical wavefront phase sensitivity values derived from Chapter 3 are 

overlaid on the experimental results in the same charts.  The error bars of the 

experimental data provides information on the noise and confidence level of our results.  

A large standard deviation of the data implies a high noise level or a large amount of 

random errors in our measurement procedures.  For the phase sensitivity versus grating 

phase depth analysis, good agreement  among the experimental results and the theoretical 

data are observed in most cases.  At 50% duty-cycle, zero diffraction efficiency is 

obtained at 0.25 waves groove depth.  As a result of this, no interference fringes were 

seen for the 0.27 waves and 0.24 waves gratings, and phase values for the two gratings 

are missing in the chart.     
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Figure 4.9.  Diffraction wavefront phase deviations per grating etching depth variation 
for the zero-order beam of the sample phase grating.   

Experimental data (vertical bar) vs. Theoretical results (solid line). 
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Figure 4.9. (continued) Diffraction wavefront phase deviations per grating etching depth 

variation for the zero-order beam of the sample phase grating. 
Experimental data (vertical bar) vs. Theoretical results (solid line). 
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Gratings with the same phase depth were measured together in order to determine 

wavefront phase sensitivities as a function of grating duty-cycle variations.  Four sets of 

data were again taken for each measurement.  The results of wavefront phase deviations 

per duty-cycle variations for gratings with various grating phase depths are given in 

Figure 4.10.  Large deviations of measured data are seen.  Although the measured data 

did not agree perfectly with the theoretical predication, general behaviors of the 

wavefront phase deviation as a function of grating groove depth variations hypothesized 

by our analytical models are observed. 
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Figure 4.10.  Diffraction wavefront phase deviations per grating duty-cycle variation for 
the zero-order beam of the sample phase grating. 

Experimental data (vertical bar) vs. Theoretical results (solid line). 
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Figure 4.10. (continued) Diffraction wavefront phase deviations per 1% duty-cycle 
variation for the zero-order beam of the sample phase grating.   

Experimental data (vertical bar) vs. Theoretical results (solid line). 
 
 

II.  Wavefront Phase Sensitivity for the First Diffraction Order 

 The same wavefront phase analysis that was conducted for the zero-order 

diffraction wavefront was performed for the first order diffraction beam.  The measured 

φ=0.58 waves

φ=0.5 waves φ=0.54 waves 
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1st-order diffracted phase to phase depth and duty-cycle variations are shown in Figure 

4.11 and Figure 4.12.   

 

Our analytical model predicts constant sensitivity phase depth variations to all 

non-zero order diffraction beams.  This agrees with the data, shown in Figure 4.11.      
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Figure 4.11. Wavefront phase sensitivity functions per phase depth variations for the 1st 
order diffraction wavefront of the sample phase grating. 

Experimental data (vertical bars) vs. Theoretical data (solid line).  
 

The measured wavefront sensitivities to grating duty-cycle variations are shown 

in Figure 4.12.  According to our analytical model, the diffracted wavefront phase values 

are not sensitive to grating duty-cycle variations.  The measured data agrees well with 

this theoretical predication. 
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Figure 4.12. Wavefront phase sensitivity functions per 1% duty-cycle variations for the 

1st order diffraction wavefront of the sample phase grating. 
Experimental data (vertical bars) vs. Theoretical data (solid line).  
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4.2.     CHROME-ON-GLASS GRATINGS  

 
4.2.1.   Description of the Sample Chrome-on-Glass Grating 

A sample chrome-on-glass grating was also fabricated by direct laser beam 

writing.  Figure 4.12 illustrates the layout of the sample chrome-on-glass grating design.  

The sample was divided into eleven columns, where each column contains a linear 

grating with specific duty-cycle value.  The eleven linear gratings have duty-cycle values 

varying from 0% to 100% in a 10% increment.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13.  Design layout of the sample chrome-on-glass grating.   
 

The sample grating is engraved on a 60 mm by 60 mm square glass plate, where 

the grating array occupies a 30 mm by 30 mm area in the center of the plate.  Each 

column or linear grating has a width of 2.71 mm.  Adjacent columns are separated by a 

20 um gap.  All linear gratings on the sample have the same grating period (50 um) with 

0%  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
20 um 
gap 

Details are shown 
in Figure 4.14  
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the groove direction parallel to the horizontal direction of the sample grating.  Figure 4.14 

shows a magnified view of a small section on the sample grating captured by an optical 

microscope.  It shows that grating duty-cycle varies from 40% to 50% between adjacent 

grating columns.   

 

 
Figure 4.14.  Microscope image of a small area on the sample chrome-on-glass grating 

with 50 um grating period and duty-cycle varied from 40% to 50%.  
 

It is technically difficult to control the exact thickness of the chrome layer.  

Because of this manufacturing difficulty and our limited resources, film thickness of the 

sample grating were not varied.  Wavefront sensitivities of the chrome-on-glass grating 

with grating phase depth variations was not included in this studied.  Chrome thickness of 

the sample grating was designed to be 100 nm in order to eliminate multiple reflections in 

the chrome layer (see Section 3.6).  

 

Duty-cycle = 40% 
Spacing = 50 um 

Duty-cycle = 50%   
Spacing = 50 um 

20um gap 

D = 40% D = 50% 
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4.2.2.   Procedure  

The same experimental set-up used for the phase grating measurements was used 

for testing the chrome-on-glass grating.  The chrome-on-grating was aligned parallel to 

the reference flat for zero-order diffraction beam measurements.  A blue coating was 

applied to the second surface of the grating to reduce back reflection from the surface. 

Wavefront phase sensitivities to grating duty-cycle variations for both the zero-order and 

the first-order diffraction beams were studied.   

 

In addition, diffraction efficiencies for zero through 7th order diffraction beams 

were analyzed and compared with the theoretical results from Chapter 3.  The sample 

was tilted respect to the reference during the diffraction efficiency analysis on higher 

order diffraction beams. 

 
 

4.2.3.   Results and Analysis 

I. Wavefront Phase Sensitivity for the Zero Diffraction Order  

An interferogram obtained from the chrome-on-glass grating is shown in Figure 

4.15. 
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Figure 4.15.  Interferogram obtained from the sample chrome-on-glass grating. 

 

Our theoretical model predicted, in Section 3.6.2, a phase difference of 0.27 

waves may be observed between a 100 nm chrome layer and a bare glass substrate at 

632.8 nm wavelength.  However, our experimental results show that measured phase 

difference between the bare glass (0% duty-cycle grating) substrate and the chrome 

coating on the sample grating was only 0.05±0.01 waves.  

 

This significant discrepancy between the theoretical and the measured phase 

depth implies uncertainties in either the chrome coating thickness and/or the index of 

refraction of the chrome coating.  The nominal thickness of the chrome coating, 

according to the vendor’s specification, is 1030 ± 50 angstroms.  Using an atomic-force-

microscope (AFM), the chrome coating thickness of the sample grating was measured.  

The grating chrome coating was sampled at multiple points; and the average of the 

measurements indicates a chrome thickness of approximately 50 nm [Perterson 1999].   

 

Direction of increasing duty cycle 
Grating area 

Surrounding 
chrome coated 
glass plate 
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The index of refraction of the chrome coating of the sample grating was also 

measured using an ellipsometer.  The measured index of refraction of the chrome coating 

is n = 2.534 and k = 3.61 at wavelength = 632.8, as shown in Figure 4.16 [J. A. Woolam 

Co., INC].  This value again differs from the nominal value of n = 3.6 and k = 4.4 

suggested by the specification.   

 

Figure 4.16.  Measured index of refraction curves for chromium using ellipsometer. 
By J.A. Woolam Co., INC. 

 

Using both the measured chrome thickness and the index of refraction, phase 

depth for the chrome-on-glass grating was calculated to be 0.1 waves.  This result is 

different from both the theoretical and the measured result obtained from the Fizeau 

interferometer.  One more measurement of the grating phase depth was conducted using a 

microscope interferometer.  The measured phase depths were averaged at 0.12 waves 

from multiple sample points on the sample grating.  This result agrees with the 

calculation using the measured chrome thickness and the index of refraction.  The AFM 
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measured chrome thickness and the ellipsometer determined index values are believed to 

be reliable.  (The discrepancy between the results from the Fizeau interferometer and the 

calculated phase value is not understood; and this issue is subjected for further 

investigation.)    

 

The wavefront phase sensitivity to duty-cycle variations for the zero diffraction 

order was measured for the chrome-on-glass grating (see Figure 4.17).  The experimental 

data (shown in vertical bars) are compared with the theoretical model (shown in solid 

line) assuming the measured parameters of 50 nm chrome thickness and complex index 

of refraction 2.56-i3.6. 
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Figure 4.17.  Wavefront phase sensitivity functions per 1% duty-cycle variations  
for the zero order diffraction wavefront for the sample chrome-on-glass grating. 

Experimental data (vertical bars) vs. Calculated data (solid line).  
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As shown in the figure above, the majority of measured data shows a good agreement 

with the theoretical model.  Based on all the evidence, it is clear that vendor’s 

specification of the chrome thickness (100 nm) and index of refraction from “Handbook 

Of Optical Constants Of Solids II “ for bulk chrome does not apply.   

  

II.  Wavefront Phase Sensitivity for the First Diffraction Order 

 Based on the theoretical models, wavefront phase values are not sensitive to 

grating duty-cycle variations for all non-zero diffraction orders.  Wavefront phase 

sensitivity function for the first diffraction order beam of the sample grating was 

calculated and compared with the theoretical data.  
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Figure 4.18.  Wavefront phase sensitivity functions per 1% duty-cycle variations for the 

1st order diffraction wavefront for the sample chrome-on-glass grating. 
Experimental data (vertical bars) vs. Theoretical data (solid line). 
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Figure 4.18 shows the standard deviation of the experimental data.  Good match 

between the experimental result and the theoretical predications are observed.  Small 

fluctuations in the data are results of random errors in the measurement.  

 

III. Diffraction Efficiency Distributions 

 In Chapter 3, we have derived the relationships between diffraction efficiency and 

grating duty-cycle at different diffraction orders.  Our mathematical model shows that 

diffraction efficiency functions increases non-monotonically with duty-cycle (see Figure 

3.29) for the zero-order beam.  Diffraction efficiency for non-zero beams varies 

periodically with changes in grating duty-cycle (see Figure 3.31).  The number of times 

that maximum efficiency values can be obtained for each diffraction order equals to the 

order number.  This conclusion is verified with our experiments. 

 

Diffraction efficiency functions for all desired diffraction orders of the sample 

grating are analyzed with helps from interferograms.  Figures 4.19 shows the observed 

interferograms for zero through 7th order diffraction beams.  Parallel fringes seen across 

the vertical direction (y-direction) of all interferograms indicate tilt of the sample grating 

in the vertical direction.  Tilt of the sample grating in the horizontal direction was 

eliminated and no tilt fringes in the x-direction is seen.  Observed intensity levels along 

x-direction across the interferograms in this analysis correspond directly to the diffraction 

efficiency values for gratings with various duty-cycles at specific diffraction order.   
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A normalized intensity distribution plot calculated based on the theoretical 

diffraction efficiency values is attached to each interferogram.  For non-zero order beams, 

the phase reversal effects between different grating duty-cycles are also included in the 

intensity plots.  Discontinuities of the fringes in the intergerograms correspond to the 

discontinuities of the phase function, or phase reversal.   
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Figure 4.19.  Interferogram indicating diffraction efficiency distribution and wavefront 
phase as a function of grating duty-cycle at different diffraction orders.  

Top chart shows the corresponding theoretical values.  
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Figure 4.19. (Continued) Interferogram indicating diffraction efficiency distribution and 
wavefront phase as a function of grating duty-cycle at different diffraction orders.   

Top chart shows the corresponding theoretical values. 
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As seen from the figures, observed intensity distribution functions at different 

diffraction orders with variations in grating duty-cycle agree perfectly with the theoretical 

predictions.  Periodicity of the diffraction efficiency functions for non-zero order beam 

produced by the chrome-on-glass grating can be clearly identified.  Phase reversals, or 

the λ/2 phase discontinuities, in the diffraction efficiency for non-zero order beams 

predicted in Section 3.6.2 are also observed in the interferograms.  
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CHAPTER 5 
 
 

EXAMPLES OF CGH ERROR ANALYSIS  
FOR OPTICAL TESTS 

 
 
 
 
 

The objective of this chapter is to demonstrate one of the many applications using 

the results of CGH fabrication error analysis in practical problems.  Two examples of 

utilizing CGHs in optical interferometry for aspheric surfaces measurements are given.  

Typical CGH fabrication errors such as substrate figure errors, pattern distortions, duty-

cycle and phase depth variations are considered in the analysis.  Wavefront errors 

produced by the two CGHs due to fabrication tolerances and uncertainties are estimated 

from the root-sum-squared (RSS) of all error sources.  The calculated wavefront errors 

are used to determine errors for the interferometric measurements. 
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5.1. PHASE CGH 
 

In the first example, a phase CGH is used with a Fizeau interferometer for testing 

aspheric optical components.  The measurement set-up is shown in Figure 5.1.  

 

 

 

 

Figure 5.1.  Asphere metrology uses a Fizeau interferometer with a phase CGH.  

 

The phase CGH is designed to be used in the 1st order transmission mode.  It can 

be fabricated using a direct laser/electron beam writing process.  The hologram has a 

glass substrate with an index of refraction of n=1.5.  It has a grating groove depth of π 

radians and a 50% duty-cycle.  In this example, we assume a potential pattern distortion 

of 1um in the hologram.  The averaged fringe spacing on the CGH is approximated 40 

um.  Because the hologram is used in the transmission mode, surface figure errors from 

both the front and the back surface of the CGH contribute to diffraction wavefront 

aberrations; errors on both surfaces must be included in the error analysis.  The phase 

CGH has a RMS substrate figure error of λ/10 on both the front and the back surface.  It 

may be noticed from Figure 5.1 that the test beam passes through the CGH twice in this 

setup.  Consequently, the total wavefront phase error for the setup is twice the value of 

the calculated error per pass.   

Fizeau interferometer  
Phase CGH Asphere 

Test Piece  

Spherical  
reference 



 147

Table 5.1.  Phase CGH structure parameters. 
Parameters Values 
Grating Type Binary Phase Grating 

Material Glass:  n = 1.5 
Operating Mode Transmission 
Diffraction Order 1st order 

Averaging Grating Period 40 um 
Substrate Figure Errors λ/10 rms 

 Pattern Distortion 1 um 
Grating Groove Depth 0.5λ ± 5% 

Grating Duty-cycle 50% ± 2% 

 

Wavefront phase deviations caused by CGH fabrication errors can be determined 

using the wavefront phase errors analysis results shown in Chapter 3.  For example, 

pattern distortion is calculated using Equation (3.26); wavefront phase errors contributed 

from grating groove depth errors and duty-cycle errors are determined using the 

wavefront phase sensitivity functions Equation (3.28) and Equation (3.30).  The 

calculated wavefront phase errors per pass for each error source are listed below:  

 

Table 5.2.  Diffraction wavefront phase errors from CGH fabrication uncertainties. 

Source of Errors Fabrication 
Tolerances 

Wavefront Phase 
Errors per Pass 

RMS Substrate Figure Error 
(Front Surface) λ/10 λ/20 

RMS Substrate Figure Error 
(Back Surface) λ/10 λ/20 

Pattern Distortion ±1 um ±λ/40 
Grating Groove Depth Error ±5% ±λ/80 

Duty-cycle Error ±2% 0 
   

Root-Sum-Squared Errors : ±0.076λ 
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Assuming the calculated CGH errors are un-correlated and independent from each 

other, the total wavefront phase errors for the phase hologram can then be estimated as 

the root-sum-square (RSS) of these errors.  The calculation shows that the estimated 

diffraction wavefront phase errors produced by fabrication uncertainties and tolerance in 

the phase CGH is approximately 0.152λ including the effect of the double path of the test 

beam.  In other words, the accuracy of the asphere measurement using the setup in Figure 

5.1 and the example CGH is limited by ±0.152λ even when other sources of errors, such 

as interferometer errors and air turbulence, are eliminated. 

 

As shown in Table 5.2, the largest individual error source is the substrate figure 

errors of the CGH.  Normally the substrate error may be identified and eliminated.  CGH 

substrate errors can be measured using the zero-order diffraction beam.  In this example, 

however, the phase grating is constructed by a 50% duty-cycle and λ/2 phase depth.  

Recall section 3.4.2, diffracted wavefront phase shows extremely high sensitivities to 

duty-cycle variations for grating with a 50% duty-cycle and λ/2 phase depth.  In other 

words, a 1% duty-cycle fabrication error on the grating could produce up to λ/2 

wavefront phase deviations.  This phase error overwhelms the effects of CGH substrate 

error in the zero diffraction order and prohibits the substrate figure measurement in this 

example. 
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5.2.    CHROME-ON-GLASS CGH 
 

In the second example, a chrome-on-glass CGH is used to test a convex aspheric 

optics.  A Fizeau interferometer is used again in this measurement.  A schematic drawing 

of the system setup is given in Figure 5.2.  

 
Figure 5.2.  Asphere metrology setup using Fizeau interferometer with  

a chrome-on-glass CGH.  
 

The CGH pattern is written on a glass substrate with a spherical shape.  The CGH 

test plate is placed close to the test surface during the measurement procedure.  The CGH 

used in the measurement is designed to produce a wavefront that matches the shape of the 

ideal test asphere.  An enlarged drawing of the test plate and the asphere under 

measurement is shown in Figure 5.3 
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Figure 5.3.  Schematic drawing shows the constructions of the test  

and the reference wavefronts. 
 

The test plate is illuminated with coherent light.  A portion of the incident light 

transmits through the test plate at zero diffraction order and strikes the asphere at normal 

incident for all points.  This transmitted beam is retro-reflected by the asphere surface to 

form the test wavefront.  The test wavefront passes through the hologram again at zero 

diffraction order where the wavefront is not deflected by the hologram.  The reference 

wavefront of the setup is formed by the –1 diffraction order beam reflected off the CGH 

surface. 

 

The reference beam retraces the incident beam path as indicated in the drawing 

above.  The test wavefront and the reference wavefront coincide everywhere in the 

system except between the gap of the asphere and the test plate.  The CGH on the 



 151

concave spherical reference behaves like a beam-splitter in this configuration that 

separates and recombines the reference and the test wavefronts.  

 

The chrome-on-glass CGH is assumed to produce –1 reflected diffraction order 

for the reference beam and transmitted zero order for the test beam.  In this example, the 

index of refraction of the glass test plate is nglass=1.5, and the index of refraction of the 

chrome coating is nchrome=3.6-i4.4.  The chrome layer thickness is 50 nm.  The hologram 

fringe pattern has a 20% duty-cycle, and the average fringe spacing on the hologram is 

approximately 100 um.  The hologram pattern has an radial pattern distortion of 1um.  

The test plate has λ/10 rms figure error on both the front and the back surface.  Table 5.3 

summarizes the stated parameters for the chrome-on-glass CGH.  

 
Table 5.3.  Chrome-on-glass CGH structure parameters. 

Parameters Values 
Grating Type Binary Chrome-on-glass Grating 

Material (chrome) nchrome = 3.6-i4.4 
Material (glass) nglass = 1.5 
Reference Beam -1 reflected order (glass-cr) 

Test Beam 0 transmitted order (glass-cr) 
Averaging Grating Period 100 um 

Substrate Figure Errors λ/10 rms 
Pattern Distortion 1 um 
Chrome Thickness 50 nm ± 2 nm 
Grating Duty-cycle 20% ± 2% 
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 As described earlier that both the test and the reference beams pass through the 

CGH in this configuration; both beams travel through the test plate via the same optical 

path.  Optical interferometry is a relative measurement of the wavefront difference 

between the reference and the test wavefront; common errors in both wavefronts are 

cancelled in the final measurement results.  In our example, test plate figure errors on the 

front surface may be neglected because the common path configuration.  Figure errors on 

the CGH surface may not be ignored, since it directly affects the reference wavefront 

function; this error is included in the reference wavefront calculation.  Wavefront phase 

errors in both the reference and the test beams induced by hologram pattern errors are 

determined independently for each beam, since the two beams are generated by the CGH 

at different diffraction orders.   

 
 

Table 5.4.  Diffraction wavefront phase errors from CGH fabrication uncertainties. 
          (A).  Reference Wavefront: –1 order reflected beam (Glass-Cr): 

Source of Errors Fabrication 
Tolerances 

Wavefront Phase 
Errors  

RMS Substrate Figure Error* 
(CGH Surface) λ/10 (λ/5)* 

Pattern Distortion ±1 um ±λ/100 
Chrome Thickness Error ±2 nm 0 

Duty-cycle Error ±2% 0 
   

Root-Sum-Squared Errors : λ/100 
*CGH surface figure error may be removed using CGH surface figure measurement. 
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Table 5.4.  (continued) Diffraction wavefront phase errors from CGH  
fabrication uncertainties. 

(B).  Test Wavefront: zero order transmitted beam (Glass-Cr): 

Source of Errors Fabrication 
Tolerances 

Wavefront Phase 
Errors  

Pattern Distortion ±1 um 0 
Chrome Thickness Error ±2 nm 0 

Duty-cycle Error ±2% 0 
   

Root-Sum-Squared Errors : 0 
 

 

As shown in Table 5.4(a), duty-cycle and chrome thickness variations have no 

effects on the reference wavefront.  CGH duty-cycle cycle error has no effect because 

Equation (3.28) shows that all non-zero order diffraction wavefronts are independent of 

duty-cycle variations.  The chrome thickness error has no effect because the reference 

beam reflects off the chrome coated surface figure, and the chrome thickness does not 

affect the wavefront phase function of the reference beam.  For the test wavefront (Table 

5.4b), wavefront phase function is independent of the pattern distortion, the chrome 

thickness errors and the duty-cycle variations.  CGH pattern distortion has no effect 

because Equation (3.26) shows that zero-order diffraction beam is free of distortion.  

Chrome thickness error does not affect the test wavefront phase function because the 

chrome coating is assumed to be 100% reflective (opaque); test beam has zero amplitude 

at where the CGH surface is coated with chrome.   
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 The dominant source of errors for this example is from the CGH surface figure 

deviations.  This error can be measured and eliminated.  Figure 5.4 shows the 

configuration of the CGH surface figure measurement.  

 
 
 
 
 
 
 
 

Figure 5.4.  CGH surface figure measurement. 
 

The test plate is measured at zero diffraction order, where the diverging test beam retro 

reflect off the CGH surface.  The accuracy of this measurement is affected by the 

hologram pattern on the test plate surface.  In this measurement, chrome thickness and 

grating duty-cycle variations are the sources of errors.  The effect of the chrome thickness 

error is calculated to be 0.0015815 λ/nm using the wavefront sensitivity function 

Equation (3.29).  The sensitivity of the duty-cycle variation is determined to be 0.001897 

λ/1%duty-cycle using the wavefront sensitivity function Equation (3.27).  These values 

can also be obtained directly from Figure 3.38 and Figure 3.37.  

 
 Table 5.5.  Wavefront phase errors for CGH surface figure measurement. 

Source of Errors Fabrication 
Tolerances Sensitivity Wavefront Phase 

Errors  
Chrome Thickness Error ±2 nm ±0.0015815 λ/nm ±0.003163λ 

Duty-cycle Error ±2% ±0.001897 λ/1%duty-cycle ±0.003794λ 
    

Root-Sum-Squared Errors : 0.004938λ 
 

Fizeau interferometer  

Spherical  
reference 

Test plate 
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Wavefront phase errors of the reference and the test beams due to CGH 

fabrication uncertainties are calculated.  The dominant error source is CGH surface figure 

errors in this example.  This error can be measured and eliminated, although errors 

introduced by the CGH surface measurement should be considered when removing the 

CGH substrate errors.  Overall wavefront phase errors resulted from the CGH fabrication 

uncertainties can be estimated as the RSS error of the reference, the test wavefront phase 

errors and the CGH surface measurement errors, and: 

( ) ( ) ( )2
surf

2
test

2
ref δψ+δψ+δψ±=δψ    (5.1) 

( ) ( ) ( ) λ±=λ++λ±=δψ 0115.0004938.0001.0 222  
 

Therefore, the accuracy of the asphere measurement using the stated interferometry setup 

and the chrome-on-glass CGH will be limited by ±0.0115λ.  This error corresponds to 

surface measurement accuracy of ±0.00575λ rms. 
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CHAPTER 6 
 
 

VALIDITY OF  
THE SCALAR DIFFRACTION MODEL  

IN CGH ANALYSIS 
 
 
 
 
 

Scalar diffraction models are commonly used for the design and the analysis of 

diffractive elements because of their computational simplicity over rigorous models.  

New generation CGHs with high performance contains wavelength-scaled diffraction 

features.  It is not obvious whether scalar diffraction analysis is still valid under this 

condition.  In this chapter, validity of the scalar diffraction models for CGH analysis will 

be studied by analyzing hologram wavefront phase sensitivities to the changes of the state 

of polarization of the incident beam.   

 

The chapter begins by introducing the concept of rigorous diffraction models and 

Fourier modal method (FMM).  Numerical analysis of linear binary gratings are given.  

Diffraction wavefront phase and efficiency functions for linear gratings with various 

spatial frequency, etching depth and duty-cycles are calculated using the rigorous model.  
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The results of the analysis are then used to model binary zone plates.  Wavefront phase 

variations due to changes in the polarization characteristics of the incident fields are 

studied.  

 

 
6.1.    RIGOROUS ANALYSIS OF GRATING DIFFRACTION  

 

Recent advances in the field of micro-lithography have dramatically improved the 

capabilities of CGH fabrications.  Nowadays, diffractive optical elements (DOE) with 

micrometer or sub-micrometer structures may be fabricated at high precision and low 

cost.  Reduction in the minimum manufacturable diffraction feature size has led to a new 

generation of computer-generated holograms with higher diffraction efficiency.  The 

analysis and the designs of this type of CGHs, however, require more rigorous 

mathematical models than the scalar diffraction theory.  

 

In scalar diffraction model, light is assumed to propagate in a linear, isotropic, 

homogeneous and non-dispersive media.  All components of the electric and the 

magnetic fields behave identically; they can be fully described by a single homogeneous 

scalar wave equation.  Scalar diffraction theory also requires that: the size of the 

diffracting feature to be much large compare to the wavelength of the incident light; and 

the observation plane must not be too close to the diffracting surface.  With these 

assumptions and limitations, scalar diffraction theory offers an approximate solution to 
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diffraction problems.  It is generally preferred because of its computational simplicity.  

Scalar diffraction models are typically used on diffraction gratings with the minimum 

feature size that is greater than 10 wavelengths of the incident light.   

 

In rigorous diffraction models, couplings between the various components of 

electric and the magnetic fields are taken into account.  A complete set of wave equations 

and the associated boundary conditions are solved exactly without introducing any 

approximation.  Although rigorous diffraction method provides a general solution and 

can be applied to all diffraction problems, analytical solutions from this model are 

difficult to achieve due to its mathematical complexity.  Over the years, a handful of 

numerical solutions have been proposed based on the rigorous models.  For the purpose 

of this dissertation, we will not discuss each of the solutions in detail since several 

excellent reviews on this topic are available [Petit 1980; Huntley 1982; Mayster 1984].  

In this paper, Fourier modal method (FMM) is chosen and used for the study on the 

validity of the scalar diffraction model. 

 

Fourier modal method (FMM), which is also referred to as couple wave method 

[Moharam and Gaylord 1986], is considered one of the simplest and most efficient 

rigorous diffraction solutions [Li 1996].  In the FMM, periodic grating structure, as well 

as the diffracted field, are expressed in the form of Fourier series.  The Fourier expression 

helps to reduce the mathematical complexity of the boundary problem.  In order to stay 
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within the scope of this dissertation, only a brief discussion of the FMM is presented in 

the following. 

 

Fourier Modal Method 

Figure 6.1 shows a simple diffraction grating geometry, where the space is 

divided into three regions labeled as I (Z < 0), II (0≤ Z ≤ h) and III (Z > h).  The media in 

Region I and Region III are supposed to be homogeneous.  Region II consists of a 

periodic structure, which is modulated in the x-direction but is invariant in the y-

direction.   This periodic structure allows the decomposition of the TE and the TM 

components of the electromagnetic field inside Region II [Herzig 1997]. 

 

 

 

  

 

 

 

Figure 6.1.  Geometry of the grating diffraction problem. 
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A unit amplitude monochromatic plane wave (I0) with wavelength λ incident 

from Region I onto Region II at an angle θ with respect to the z-axis in the xz-plane.  The 

diffracted fields in both Region I and Region III are expressed as series of plane waves:  

[ ]∑
∞

−∞=

+α=
m

mmmI )zrx(iexpR)z,x(U       (6.1) 

  )]}hz(tx[i{expT)z,x(U mm
m

mIII −−α= ∑
∞

−∞=

     (6.2) 

where 

Rm = complex amplitude of the reflected diffraction beam; 

Tm = complex amplitude of the transmitted diffraction beam; 

m  = diffraction order; 

dmknm πθα 2sin1 += ; 

rm
2 = [(kn1)2 - αm

2];   

tm
2 = [(kn3)2 - αm

2];   

k = 2π/λ. 

 

The electromagnetic field inside Region II can be decomposed into two 

orthogonal components TE (electric-field vector parallel to the grating grooves) and TM 

(electric-field vector perpendicular to the grating grooves).  In the TE polarization 

direction, the field can be separated as Ey(x,z)=X(x)Z(z) and applied into the Helmholtz 

wave equation: 
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[ ] 0)x(X)x(ˆk)x(X
dx
d 2

r
2

2

2

=γ−ε+      (6.3) 

0)z(Z)z(Z
dz
d 2

2

2

=γ+       (6.4) 

where  

 )x(ˆ rε = complex relative permittivity; 

 2γ      = separation constant. 

 

The solutions of Equation (6.4) can be expressed as: 

[ ])hz(iexpB)ziexp(A)z(Z −γ−+γ=     (6.5) 

The solution of Equation (6.3) is assumed to have a pseudo-periodic form: 

∑
∞

−∞=

α=
m

mm )xiexp(P)x(X       (6.6) 

The above expression is inserted into Equation (6.3) to arrive a set of linear 

equations that may be expressed in a matrix form MP=γ2P.  The electromagnetic field in 

Region II, in the TE polarization, can be expressed as: 

{ }∑ ∑
∞

−∞=

∞

=

−γ−+γα=
m 1n

nnnnmmny )]hz(iexp[B]ziexp[A)xiexp(P)z,x(E   (6.7) 

where coefficients Pnm and γn are solved from the matrix M eigenvalue problem by 

standard numerical techniques.  A similar expression can be obtained for the TM 

polarization field. 
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With the exact representations of the electromagnetic fields in all regions I-III, 

FMM solves the unknown parameters Rm, Tm, An and Bn from the electromagnetic 

boundary conditions.  

 

 

6.2.    BINARY LINEAR GRATING 
 

In this section, FMM is used to analyze binary linear gratings with various grating 

period (S), depth (t) and duty-cycle (D).  The linear gratings studied are chrome-on-glass 

gratings.  The structure of the gratings is shown in Figure 6.2.  

Glass substrate
nglass=1.5

Chrome
nCr=3.6-i4.4t

S

 
Figure 6.2.  Schematic drawing of the geometry of a chrome-on-glass grating. 

 

 Lifeng Li’s computer code, KAPPA, for rigorous diffraction analysis [Li 1998] is 

used here in our study.  The algorithm of the computer program is based on the FMM 

described in the previous section.  The program is capable of dealing with diffraction 

problems on dielectric and metallic linear gratings with arbitrary incident beam angle and 

state of polarization.  The program computes the complex diffraction fields for both the 

reflected and the transmitted diffraction orders produced by the linear grating.   
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Complex diffraction field for the first Littrow reflection order of a linear grating is 

calculated for our analysis.  In a Littrow configuration, the angle between the incident 

beam and the diffracted beam of the –1st order is 180o.  Wavefront phase functions and 

diffraction efficiencies for both the TE and the TM polarization components of the 

reflected diffraction beams are studied as functions of grating period, grating depth and 

duty cycle.  In the study, grating period is varied from 0.6λ to 5λ with 0.05λ increment; 

grating depth is varied from 0.1λ to 0.22λ; and grating duty-cycle is varied from 10% to 

90%. 

   

Figure 6.3 shows the calculated phase values of the TE and the TM polarization 

fields as a function of normalized grating period (S/λ).  In this case, duty-cycle values 

and chrome thickness of the linear gratings are fixed at 50% and 0.15λ respectively.  The 

phase differences between the two polarization components are minimal when grating 

spacing are greater than 2λ.  A plot of the phase differences between the TE and the TM 

fields is given in Figure 6.4.  A large phase deviation between the two fields occurs when 

the grating period is less than 1.5λ.  Diffraction efficiency of the TE and the TM fields as 

functions of normalized grating spacing are shown in Figure 6.5.   
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Figure 6.3.  Phase values as a function of grating period for both the TE and the TM 

fields for a chrome-on-glass grating with 50% duty-cycle and 0.15λ chrome thickness.  
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Figure 6.4.  Phase differences between the TE and the TM fields as a function of grating 
period for a chrome-on-glass grating with 50% duty-cycle and 0.15λ chrome thickness. 
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Figure 6.5.  Diffraction efficiency as a function of grating period for both the TE and the 

TM fields for a chrome-on-glass grating with 50% duty-cycle  
and 0.15λ chrome thickness.  

 

Figure 6.6 and Figure 6.7 show the phase differences between the TE and the TM 

polarization fields for chrome-on-glass gratings with different grating duty-cycle and 

chrome thickness.    
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Figure 6.6.  Phase differences between the TE and the TM fields as a function of grating 
period for a chrome-on-glass grating with 0.15λ chrome thickness at different duty-cycles. 
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Figure 6.7.  Phase differences between the TE and the TM fields as a function of grating 
period for a chrome-on-glass grating with 50% duty-cycle at different chrome thicknesses. 
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 Scalar diffraction theory assumes no polarization sensitivities of the hologram to 

the incident wavefront.  Wavefront phase difference between the TE and the TM 

polarization components is zero in scalar models.  Rigorous diffraction models, on the 

other hand, take the coupling between the two polarization components in the electric 

field into account.  Rigorous diffraction models predict different behaviors between the 

TE and the TM diffraction wavefronts.   

 

The results of our analysis show that polarization sensitivity of the linear grating 

predicted by the rigorous theory is almost negligible when the grating period is greater 

than 2λ.  This conclusion suggests that scalar diffraction theory may still be valid for 

diffraction analysis when the minimum features of the diffractive elements greater than 

2λ.  

 

 

6.3.     BINARY ZONE PLATE   
 

 A CGH with annular ring pattern is commonly referred to as a zone plate.  It is 

often used to test rotational symmetric optical elements in optical testing.  There are 

several advantages associated with the use of zone plates in optical interferometry.  Zone 

plates produce multiple diffraction orders along the optical axis.  This characteristic of 

the zone plates simplifies the setup and the alignment procedure of the interferometry by 
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allowing the CGH to be mounted on the same axis as the test parts [Burge 1993].  By 

preserving the axial symmetry, the design and the analysis of the hologram are also 

reduced from the 2-D to 1-D.  Furthermore, the rotational symmetry allows a direct 

certification of the hologram through the verification of the positions of the rings fringes 

[Burge 1993].  

 

In this section, we will study binary zone plates with minimum diffraction feature 

size that is on the order of the wavelength of the incident wavefront using rigorous 

diffraction model.  To simplify the analysis, the binary zone plate is modeled as a 

collection of linear gratings with variable grating period.  The results of the rigorous 

diffraction analysis of the 1-D binary linear gratings from the previous section are used in 

our study.  

 

6.3.1.   Modeling Scheme 

A zone plate consists of a collection of concentric rings, where the spacing 

between adjacent rings decreases as the ring radius increases (Figure 6.6).  In our model, 

the zone plate is divided into two regions.  In Region I (r < r0), the smallest ring spacing 

is larger or equal to 5λ; and scalar diffraction analysis will be applied to this region.  In 

Region II (r0 < r < R) where the ring spacing are less than 5λ, rigorous diffraction 

analysis is used [Sheng, Feng and Larochelle 1997].  
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Figure 6.8.  A binary zone plate. 

 

Region II on the zone plate is further divided into N equal sections along its 

angular direction (θn = 2πi/N, with n = 0, 1, …N-1), and M equal sections along its radial 

direction (rm=mR/M, with m = 0, 1, …M).  By doing so, each segment in Region II may 

be treated as a linear binary grating (see Figure 6.6). 

 

A normally incident plane wavefront (Ei) is assumed to have a linear polarization.  

It can be mathematically expressed as: 

⎥
⎦
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Ei                                                                                    (6.5) 

In order to reduce the complexity of our analysis, the incident wavefront is assumed to 

have a unit amplitude and a linear polarization that is parallel to either the x or the y-axis 
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of the zone plate coordinate.  A y-direction polarized incident wavefront can be expressed 

as:  

⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

iE                                                                                      (6.6) 

 

Separate Cartesian coordinate (x’-y’) is assigned for each segment in Region II on the 

zone plate (see Figure 6.6).  Depending on the position of the viewed grating segment on 

the zone plate, local coordinate defined for the segment may not align with the global 

coordinate of the zone plate.  A y-direction polarized incident field is seen as TM 

polarization fields for grating segments on the zone plate where θ = π/2 and 3π/2.  The 

same incident field is seen as TE polarization fields for grating segments on the zone 

plate where θ = 0 and π.   

 

The results from the rigorous analysis in Section 6.2 are given in the TE and the 

TM polarization directions.  For grating segments on the zone plate where the orientation 

of the local coordinate is not aligned with either the x or the y-axis of the zone plate, 

results from Section 6.2 can not be applied directly.  The incident electromagnetic field 

must be decomposed into a TE and a TM components respect to the local coordinate for 

each segment.  The diffracted wavefront in both the TE and the TM polarization direction 

from these grating segments are then recombined and re-mapped back to the global 

coordinate of the zone plate.  Mathematically, decomposition and composition process 

are completed with the help of the rotating matrix (R) 
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Using the calculated diffraction efficiency and phase values from Section 6.2, complex 

diffraction wavefront function produced by a binary linear grating can be written as 

Equation 6.8 when the grating is aligned with the x or the y-axis of the zone plate. 
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Figure 6.9.  Linear grating rotated by an angle θ respected to the y-axis of the zone plate.  
 

When the linear grating is rotated respect to the y-axis by an angle θ (see Figure 

6.9), the incident field relative to the rotated coordinate system (x’-y’) becomes R(θ)Ei.  

The complex diffraction field from this tilted grating is simply the multiplication of the 

rotated field matrix and the matrix T.  The new diffraction field matrix can then be re-

mapped back to the original coordinate (x-y) using again the rotating matrix R(-θ).  In a 

general form, complex diffraction field produced by a linear grating with arbitrary 

rotation angle respect to the y-axis of the zone plate coordinate can be written as:  

x 

y 

y’ 

x’ 

-θ Ey 

Ex 



 172

 i
y

x ETRR
E
E

E )()('

'
' θθ−=⎥

⎦

⎤
⎢
⎣

⎡
=                                                                                (6.9) 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−−
−−

= −

−

y

x
i

y

i
x

E
E

e
e

y

x

)cos()sin(
)sin()cos(0

0)cos()sin(
)sin()cos(

θθ
θθ

η
η

θθ
θθ

φ

φ

 

[ ]
[ ]

[ ]
[ ] ⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⋅+

−⋅

−⋅+

+⋅

=

−−

−−

−−

−−

)(cos)(sin

)cos()sin()cos()sin(

)cos()sin()cos()sin(

)(sin)(cos

22

22

θηθη

θθηθθη

θθηθθη

θηθη

φφ

φφ

φφ

φφ

yx

yx

yx

yx

i
y

i
xy

i
y

i
xx

i
y

i
xy

i
y

i
xx

eeE

eeE

eeE

eeE

 

   

Diffraction wavefront functions for all grating segments in Region II of the zone 

plate are calculated using the above relationships.  The total diffraction wavefront 

produced by Region II of the zone plate is formed by combining the calculated wavefront 

functions from all grating segments.  Furthermore, the complete far-field diffraction 

wavefront function of the entire zone plate is formed by combining the diffraction 

analysis results from both Region I and Region II.  

 

 

6.3.2. Computer Simulation 

A computer program was written in Interactive Data Language (IDL) to simulate 

the performance of a binary zone plate with a minimal ring spacing of 0.6λ.  Relationship 

between the ring spacing and the ring radius on the zone plate is given in Figure 6.10. 
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Figure 6.10.  Ring spacing vs. radial position of zone plate used in the 1st-order. 

 
The ring spacing varies in a non-linear fashion with the ring radius.  The inverse ring 

spacing values increase linearly with the radius of the ring (see Figure 6.11).  The 

modeled zone plate has a ring spacing of 5λ when the ring radius reaches 15 mm.   
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Figure 6.11.  Inverse ring spacing vs. radial position of zone plate used in 1st-order. 
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In our computer simulation, Region II of the zone plate is divided into 360 

sections in the angular direction and 89 sections along the radial direction.  The incident 

wavefront is assumed to have a linear polarization that is parallel to the x-axis of the zone 

plate (Ex = 1 and Ey = 0).  The results of the computer simulation are given in Figure 

6.12 through Figure 6.16.  The complex diffraction wavefront phase and efficiency 

functions for both the TE polarization and the TM polarization wavefront produced with 

a TE polarized incident field are given in Figure 6.13 and Figure 6.14 respectively.  

 

                  
(a)  wavefront phase                                             (b)  diffraction efficiency 

Figure 6.12.   Calculated wavefront phase and diffraction efficiency fucntion for the TE 
polarization wavefront with TE polarized incident field. 
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  (a)  wavefront phase                            (b)  diffraction efficiency 

Figure 6.13. Calculated wavefront phase and diffraction efficiency function for the TM 
polarization wavefront with TE polarized incident field. 

 

Profile plots of the wavefront phase and diffraction efficiency functions shown in 

Figure 6.12 are given in Figure 6.14 and Figure 6.15.  

 

 
(a) x-axis profile    (b) y-axis profile 

Figure 6.14.  Profile plots of the calculated wavefront phase function for the TE 
polarization wavefront with TE polarized incident field. 
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(a) x-axis profile   (b) y-axis profile 

Figure 6.15.  Profile plots of the calculated diffraction efficiency function for the TE 
polarization wavefront with TE polarized incident field. 

 

Because of the rotational symmetry of the zone plate, a TM polarized incident 

field produces a diffracted wavefront that is orthogonal to the wavefront produced by a 

TE polarized incident field.  The phase and the diffraction efficiency functions for the 

TM polarization wavefront with a TM polarized field are shown in (Figure 6.16) 

 

                  
(a)  wavefront phase                                 (b)  diffraction efficiency  

Figure 6.16.  Calculated wavefront phase and diffraction efficiency function for the TM 
polarization wavefront with TM polarized incident field. 
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Rigorous diffraction models predict that diffraction wavefront functions are 

sensitivity to the state of polarization of the incident field.  Different diffractive 

wavefront functions are obtained by our model when the polarization direction of the 

incident field is varied from TE to TM direction.  The phase differences between the TE 

and the TM polarization wavefronts are presented in Figure 6.17.  Both x and y-direction 

profiles plots of the phase difference function is given in Figure 6.18. 

  

        
(a)  phase difference map                      (b) 3-D plot of the phase difference map 

Figure 6.17.  Calculated wavefront phase difference between the TE and the TM 
polarization wavefronts. 

 

0.11λ 

-0.11λ 
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(a) x-axis profile    (b)  y-axis profile 

Figure 6.18.  Profile plots of the calculated phase difference between the TE and the TM 
polarization wavefronts. 

 

 In our simulation, the smallest ring spacing on the zone plate is 0.6λ.  A 

0.22λ peak-to-valley phase difference between the TE and the TM polarization 

wavefronts is observed at the edge of the zone plate.  It is also indictated in Figure 6.18 

that the phase differences between the TE and the TM polarization wavefronts are less 

than 0.02λ for zone plate regions where the ring spacings are greater than 2λ.   

 

Scalar diffraction theory predicts no polarization sensitivity of diffractive 

elements.  Rigorous diffraction models must be applied to holograms with wavelength-

scaled diffraction features.  The result of our simulation indicates, however, changes in 

the polarization state of the incident field has minimal effects on the diffraction 

wavefront phase functions for diffractive elements with minimum feature size that is 

greater than 2λ.  In the following chapter, we will verify this conclusion with 
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experimental data.  A binary chrome-on-glass grating is fabricated and mesured using a 

phase-shifting interferometer with both TE and TM polarized incident fields.  
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CHAPTER 7 
 
 

POLARIZATION SENSITIVITIES OF 
CGHS WITH ANNULAR RING PATTERN 

 
 
 
 
 

The simulation results of the binary zone plate obtained from the previous chapter 

suggest that the scalar diffraction model may still provide reasonably accurate results for 

CGHs with feature size that is greater than 2λ.  In this chapter, we will verify the 

theoretical analysis with experimental results.  The polarization sensitivity for hologram 

with annular ring patterns will be studied using a phase shifting interferometer.  

Wavefront phase variations between different polarization fields are analyzed.  

 

 

7.1.    HOLOGRAM DESCRIPTION 
  

The CGH used in our experiments has a binary ring-pattern.  The hologram is 

constructed with a plane bare glass substrate and a thin chrome layer.  The diffraction 

features of the hologram were generated using a direct laser beam writing method.  This 
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process relies on a thermo-chemical reaction of the chrome layer to generate desired 

patterns.  The diffraction grating pattern is written directly onto the chrome layer; it 

eliminates difficulties in applying and controlling photo-resist in conventional 

manufacturing process [Burge 1995].   

 

Figure 7.1. demonstrates the four basic steps of the direct beam writing process.  

First, a thin chrome layer with a 50 to 100 nm thickness is coated onto the glass substrate.  

During the writing process, focused laser beam raises temperature at selected regions on 

the chrome surface where thermo-oxidation takes place.  Local areas of the chrome layer 

become chrome-oxide (Cr2O3) that forms a latent image of the hologram pattern.  The 

hologram may later be cleaned with NaOH + K3Fe(CN)6 solvent, where the un-oxidized 

chrome layer is dissolved.  The remaining chrome-oxide image on the glass substrate 

forms the finished hologram. 

GLASS SUBSTRATE

CHROME COATING

LASER ILLUMINATION

Cr O
2 3

NaOH + K Fe(CN)
3 6

1.  COAT SUBSTRATE 2.  WRITE PATTERN 3.  ETCH 4.  FINAL PATTERN

 

Figure 7.1.  Direct beam writing process using thermo-chemical reaction. 

 

A reflection CGH is used in the experiments.  It was designed to generate a 

spherical wavefront with 132.96 mm radius of curvature at 632.8 nm wavelength in the 

first diffraction order.  A 2-D surface height map of the hologram near its central area is 
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shown in Figure 7.2.  This surface map is captured using a microscope with a 10x 

magnification.  A cross pattern seen in the center of the hologram is a test mark used to 

accurately locate the center of the hologram during the fabrication process. 

  

Figure 7.2.  Surface profiles of the central area of the hologram. 

 

The hologram has a circular aperture with a diameter of 58 mm.  It contains 9879 

rings where the spacing between adjacent rings in the hologram decreases with increasing 

ring radius.  The largest ring spacing is 141 um (222.8 waves) at the center, and the 

smallest ring spacing is 1.484 um (2.35 waves) at the edge of the hologram.  The ring 

pattern on the hologram has a 50% duty-cycle and the chrome thickness is 100 nm. 

 

Figure 7.3 shows the relationship between the ring spacing and the ring radius in 

the zone plate.  The ring spacing becomes less than 5λ when the ring radius exceeds 13 

mm.  Both TE and TM fields of the diffraction wavefront off the hologram will be 
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measured using a phase shifting interferometer and compared with computer simulation 

results. 
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Figure 7.3.  Ring spacing vs. ring radius of the hologram.  

 

 

7.2.    COMPUTER SIMULATION 
 

The zone plate model derived in section 6.3 is used here for calculating both TE 

and TM polarized diffraction wavefronts from the binary-ring hologram.  The parameter 

M is chosen to be 360 and the parameter N is set to be 70 in the computer model.  A 

linear grating profile with 0.157 waves etched depth and 50% duty-cycle is applied to the 

model to match the parameters of the real hologram.   
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The calculated wavefront phase maps for both TE and TM components of the 

diffraction beam are presented in Figure 7.4 through Figure 7.7.  The incident wavefront 

is assumed to be linearly polarized.  Figure 7.4(a) and (b) show the calculated wavefront 

phase maps for both the TE and the TM polarized incident beams respectively.  

 

                    
                             (a)                                                                           (b) 

Figure 7.4.  Calculated phase maps for incident beam in (a) TE mode and (b) TM mode. 
 

As shown in the figures above, different diffraction wavefront phase functions are 

produces when the polarization state of incident wavefront is varied.  Because of the 

rotational symmetry of the ring–patterned hologram, however, the phase functions for the  

TE and the TM polarized incident beams share essential the same mathematical form but 

orthogonal to each other.  Profile plots of the phase maps in both horizontal and vertical 

directions are given in Figure 7.5(a) and (b). 

-0.245λ 

-0.227λ 

-0.245λ 

-0.227λ 
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(a) horizontal  profile                                    (b) vertical profile 

Figure 7.5.  Profile plots of phase map produced by TE incident beam. 

 

The wavefront phase difference between the TE and the TM fields is shown in 

Figure 7.6 and Figure 7.7.   

     

Figure 7.6.  Phase difference between TE and TM fields. 

 

-0.012λ 

0.012λ 
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          (a)  x-axis plot                                                   (b)  y-axis profile   

Figure 7.7.  Phase difference profiles 

 

The maximum phase difference between the TE and the TM fields predicted by computer 

simulation is 0.024λ.  In the following section, this conclusion will be compared with 

experimental data.   

 

 

7.3. EXPERIMENTAL PROCEDURES AND RESULTS 
 

7.3.1. Measurement Procedures 

A phase-shifting Fizeau interferometer was used to measure the diffraction 

wavefront phase functions of the CGH.  The experimental set-up is illustrated in Figure 

7.8.  The hologram was measured exactly as if it was a concave sphere and positioned 

132.96 mm behind the focal spot of the test beam.  The hologram has an equivalent f/# of 
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2.3; and a f/1.5 reference sphere was chosen for the experiments in order to have a 

complete coverage of the entire hologram.  

 

 

  

 

  

Figure 7.8.  Experimental setup for CGH polarization sensitivity measurement. 

 

In order to study the sensitivities of the diffraction wavefront as a function of the 

polarization states of the incident beam, the CGH was measured with linearly polarized 

test beams in both TE and TM modes.  The original output beam from the interferometer 

was pre-examined to be circular polarized.  A linear polarizer was placed inside the 

interferometer in a collimated beam path before the reference sphere.  The polarization 

state of the modified test beam may therefore be controlled by adjusting the orientation of 

the linear polarizer (see Figure 7.8).      

 

7.3.2. Experimental Results 

In order to reduce random errors in the measured wavefront phase function, the 

sample hologram was measured eight times for each linear polarized incident fields (TE 

and TM).  Figure 7.9 and Figure 7.10 show the averaged phase maps calculated from 

each set of the eight measurements for the TE and the TM polarization field respectively.  

Linear Polarizer 

Reference sphere 
with λ/20  
accuracy CGH 

Step #1: 
0o direction 

Step #2: 
90o direction 
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In order to reduce alignment errors, i.e., tilt and defocus of the sample hologram, during 

the interferometric measurements, wavefront tilt and power are removed from the raw 

phase maps. 

 

 
Figure 7.9. Contour plot of the diffracted wavefront for the sample CGH with  

TE polarized incident field. 
 

 
Figure 7.10.  Contour plot of the diffracted wavefront for the sample CGH with  

TM polarized incident field. 
   

Phase differences between the TE and the TM polarization fields were calculated 

by subtracting the two measured phase maps (see Figure 7.11).  
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Figure 7.11.  Wavefront phase difference map between TE and TM polarization fields 

 

Third-order Seidel aberration terms were removed from the raw phase difference 

map in order to eliminate noises in the measurement procedure and residual aberrations 

the interferometer.  The processed phase difference map with tilt, power and third order 

spherical removed is shown in Figure 7.12.  The data are then low pass filtered to reduce 

high frequency noise.  The final phase difference map is shown in Figure 7.13.    

 

 

Figure 7.12.  Phase difference map after removing tilt, power and 3rd order spherical. 
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Figure 7.13.  Phase difference map after low pass filtering. 

 

 
Figure 7.14.  3-D plot of the final wavefront phase difference map. 

 

Computer simulation results from the earlier section predicted a 2-fold symmetry 

of the phase difference function between the TE and the TM polarization fields.  A peak-

to-valley phase difference of 0.024λ was expected.  Our experimental data show, on the 

other hand, a peak-to-valley phase difference of 2.87 nm or 0.005λ.  The measured RMS 

wavefront phase difference is only 0.0006λ.  Despite the differences in the phase values, 
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the basic saddle shape of the phase difference function predicted by the computer model 

is noticed from the experimental result.  The differences between the experimental data 

and the computer simulation results are likely due to the hologram manufacture errors. 

Due to the limited resource, we didn’t verify the precision of the hologram.  This should 

be included in the future work.   

 

In conclusion, our study shows that CGHs with wavelength-scaled diffraction 

features are sensitivity to the state of polarization changes of the incident wavefront.  

This polarization sensitivity is not modeled by the scalar diffraction theory.  Rigorous 

diffraction analysis must be applied in order to accurately determine the diffraction 

wavefront functions produced by such holograms.  However, our measurements show 

less than λ/200 PV and λ/1600 RMS phase deviations in the diffraction wavefront when 

the polarization direction of the incident beam was varied from TE to TM model.  This 

result indicates that the effects of polarization changes in the incident beam on diffraction 

wavefront phase values are negligible when the minimum diffraction structure size is 

greater than 2 waves.  Scalar diffraction theory is sufficient for CGH analysis under such 

circumstance.   
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CHAPTER 8 
 
 

DISCUSSIONS AND CONCLUSIONS 
 
 
 
 
 

In this dissertation, we have studied both design and fabrication issues for CGHs.  

The binary linear grating model was introduced to study wavefront phase and efficiency 

sensitivities to duty-cycle and groove depth variations due to CGH fabrication 

uncertainties.  To validate the diffraction model, experimental studies for both phase and 

chrome-on-glass CGHs were conducted.  The diffracted wavefronts generated by these 

samples were measured using a phase shifting interferometer.  The experimental results 

were then compared with the theoretical models.  In general, good agreements between 

the experimental and the theoretical data were obtained.  The results of our experiments 

demonstrated the effects of CGH fabrication errors on diffraction wavefront phase and 

amplitude functions for both phase and chrome-on-glass holograms. 

 

Examples of CGH errors analysis for optical testing were provided in this dissertation.  

The examples showed how to estimate CGH errors from fabrication tolerance and 

uncertainties using the wavefront sensitivity functions presented.  Using the wavefront 
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sensitivity functions, we were able to identify hologram structures that are the most 

sensitive, as well as, the least sensitive to fabrication uncertainties.  This information may 

also be used to direct CGH designs that will reduce or eliminate effects from fabrication 

errors.  This information is extremely valuable to the design and fabrication practices for 

computer-generated holograms.   

 

The graphical presentation of diffraction fields was also introduced in this 

dissertation.  This complex field representation provides an intuitive view of the 

diffraction wavefront function.  Both diffraction efficiency and wavefront phase 

functions may be retrieved from the plot easily.  The plot also shows changes in 

wavefront functions as result of variations in grating duty-cycle and groove depth.  Using 

the complex field plot, we were able to explain the observed anomalous phase 

discontinuities.  

 

A discussion on the design and the modeling of CGH was also given in this dissertation.  

Both scalar and rigorous models were studied.  Fourier modal method derived from the 

rigorous diffraction model was used to analyze a zone plate hologram with a minimum 

fringe spacing of 0.6 λ.  A chrome-on-glass sample zone plate was fabricated and 

measured using a phase-shifting interferometer.  The experimental data were compared 

against the theoretical model.  The results from experimental measurement showed that 

polarization sensitivities of the hologram were almost negligible for the chrome-on-glass 
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zone plate sample with a minimum ring spacing of 2λ.  A peak-to-valley phase difference 

of 0.005λ between the TE and the TM polarization wavefronts was observed for the 

sample zone plate.  This conclusion implies that the scalar diffraction model may be 

sufficient for modeling holograms with wavelength-scaled diffraction features for the 

case studied in this dissertation.  

 

It is technically challenging to control the chrome layer thickness of a chrome-on-

glass grating.  Our limited resources prevented us from obtaining grating samples with 

various chrome thickness.  Although analytical studies of wavefront sensitivities to 

hologram phase depth variations for chrome-on-glass gratings were provided, no grating 

samples were made and measured to verify the theoretical results.  This analysis should 

be included as part of future study on this topic.  

 

During our study, we also observed disagreements among the measured phase value for 

the chrome-on-glass grating sample.  Phase values obtained from the Fizeau 

interferometer differed from the values obtained from the microscope interferometer and 

the calculation using the chrome thickness and the index of refraction of the chrome 

coating (see Section 4.2.3).  This discrepancy is not understood or explained and requires 

further investigation as part of a future study.  In addition, a large number of CGH 

substrate errors were seen on our sample holograms.  The sample grating substrates were 

not certified before the hologram patterns were applied.  These substrate errors produced 
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wavefront aberrations that interfered with the diffraction wavefront functions produced 

by the diffraction gratings.  As a result, the sensitivities of our wavefront phase 

measurements were compromised.  We suggest a pre-measurement of the hologram 

substrate before the grating pattern is written.  The measured substrate figure errors can 

then be eliminated from the measured diffraction wavefront functions in future 

experiments.  

 

In conclusion, this research work provides a thorough analysis of both the fabrication and 

modeling aspects of computer-generated holograms.  The results of our studies have been 

proven both theoretically and experimentally.  The wavefront sensitivity analysis 

provides insights of CGH fabrication errors; it becomes a powerful tool for CGH error 

analysis and error budgeting.  The graphical representation of diffraction fields gives an 

intuitive view of diffraction wavefronts.  Our conclusion from the studies on CGH 

modeling methods validates broader implementations of the scalar diffraction models in 

practical applications.   
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