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ABSTRACT

In designing imaging optical systems, the primary task is to correct aberrations.
Aberrations are deviations from perfect imagery. They depend on both the field size and
pupil position. When the Constant Optical Path Length (OPL) condition is satisfied, an
optical system is free of all orders of spherical aberrations, which have zero field
dependence. When the Abbe Sine condition is satisfied, all the aberrations with linear
field dependence are corrected. The Abbe Sine condition does not involve any off-axis
ray properties, but it predicts the correction of off-axis aberrations.

We go one step beyond the Constant OPL condition and the Abbe Sine
condition. By using Hamilton’s characteristic functions, we developed a set of criteria
for correcting the aberrations with quadratic field dependence and all orders of pupil
dependence. These criteria involve only properties of the rays originating from the on-
axis object point as the Abbe Sine condition does. Using these criteria, we analyzed
some known designs and obtained new information about these designs. We also
developed an algorithm to implement the criteria in designing well-corrected novel
optical systems. Even when the criteria are not exactly satisfied, we now have a way to
predict the residual quadratic field-dependent aberrations without tracing rays from any
off-axis object point. We extended the Hamiltonian treatment to bilateral systems and
developed similar criteria for correcting the quadratic field-dependent aberrations for

this type of systems.
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INTRODUCTION

The imaging optical systems, except for some very simple ones such as flat
mirrors, have aberrations. The aberrations of an optical system are usually classified in
terms of the combined order of their dependence on field and pupil. So there are 3¢
order, 5* order, 7" order aberrations and so on. For most of the optical systems, 3™ order
aberrations are the primary aberrations that need to be corrected, and higher order
aberrations are negligible. So this classification is reasonable. But in some special cases,
such as the microscope objective, resolution is more important than the field size. These
systems have a small field of view and a large numerical aperture. Then the aberrations
with higher order field dependence and lower order pupil dependence are not so critical
to the system performance as those with lower order field dependence and higher order
pupil dependence. Therefore just correcting the general lower order aberrations can not
improve the system performance significantly. This suggests the necessity of a different
method to group aberrations.

For optical systems that has a small field of view and a large numerical aperture,
it is a better way to group aberrations in terms of their field dependence only. Then we
have:

1. Spherical aberrations with no field dependence.
2. Linear field-dependent aberrations.

3. Quadratic field-dependent aberrations.



19

Criteria already exist for the correction of field-independent and linear field-dependent
aberrations. They are the Constant OPL condition and the Abbe Sine condition. This
dissertation carries out research on the correction of the quadratic field-dependent
aberrations. By using the Hamilton’s characteristic functions, we developed the criteria
for correcting the aberrations with quadratic field dependence and all orders of pupil
dependence. Since the criteria involve the astigmatism of the pupil aberration, we name
them the Pupil Astigmatism Conditions.

Similar to the Constant OPL condition and the Abbe Sine condition, the Pupil
Astigmatism conditions involve only the properties of the rays originating from the on-
axis object point, and they predict the correction of aberrations of all orders of pupil
dependence. Such conditions are completely new to people. As shown in this
dissertation, these conditions give new information of the optical systems that people are
already familiar with. They can also be used to design new systems with the quadratic
field-dependent aberrations fully or partially corrected. They are believed to be very
useful in designing high-resolution optical systems.

In chapter 1, a brief introduction to aberrations and Hamilton’s characteristic
functions is given. The Pupil Astigmatism conditions take two different forms. Both of
them are presented and derived in Chapter 2. By using the relations between the image
and pupil aberrations, the criteria are validated to 3" order in Chapter 3. In Chapter 4
some known designs are analyzed with the conditions and new information is extracted.
Chapter 5 gives a method to predict the quadratic field-dependent aberrations when the

criteria are not exactly satisfied, and some examples are given to verify the method. In
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Chapter 6, an algorithm is developed to apply the criteria in the numerical design of
optical systems, and some systems designed using the algorithm are shown. Similar
criteria for the plane symmetric system are derived in Chapter 7. In Appendix A, the
computer programs that apply the algorithm to design new optical systems are listed.
Since the algorithm generates an optical surface point by point, we have to use the user
defined surface feature in ZEMAX to simulate the performance of the generated system.
The computer files for implementing the surfaces made up of discrete points in ZEMAX

are listed in Appendix B.



21

CHAPTER1

ABERRATIONS AND HAMILTON’S CHARACTERISTIC
FUNCTIONS

1.1 INTRODUCTION

The work of this dissertation is on the correction of the quadratic field-dependent
aberrations of all orders. Criteria are developed to correct certain or all types of
aberrations with quadratic field dependence. The main tool used in developing these
criteria is the Hamilton’s characteristic functions. In Section 1.2, I give an introduction
to the aberrations of optical systems which includes the definition and classification of
aberrations, the definition of pupil aberrations and the principles to correct certain types
of aberrations. Then the Hamilton’s characteristic functions are introduced in Section
1.3, which includes the types of the characteristic functions and the use of them in

characterizing the general optical system.

1.2 INTRODUCTION TO ABERRATIONS

If an optical system can not image an object perfectly, then aberrations are present.
Perfect imagery is achieved in the case that any rays from an object point goes through
the same image point and the image as whole is a scaled replica of the object. From the

point of view of wave optics, aberrations are present if the spherical wave front from an
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object point can not be transformed into a perfect spherical wave front centered at the
ideal image point by the optical system, as a result all the rays originating from the
object point do not go through the ideal image point. Therefore aberrations can be
described in two ways. One is in terms of wave front deviation from the perfect
spherical reference; the other is in terms of the lateral ray deviation from a perfect
reference point. In the former case, the perfect spherical wave front is usually chosen to
be the sphere at the exit pupil of the optical system with the center at the ideal image
location. In the latter case, the reference point is chosen to be the ideal image point. See

Figure 1.1 for the illustration of wave and ray aberrations.

Real ray A berrati
Wave o y(ray aberration)
aberration . .
H(image height)
Optical Axis
Reference =7
Wavefront
Image Plane

Exit Pupil

Figure 1.1. Illustration of wave aberration and ray aberration.

The index of refraction of an optical media is a function of the wavelength of light.

The aberrations caused by this dependence on wave length are called chromatic
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aberrations. The work presented in this dissertation does not deal with chromatic
aberrations, so we restrict our discussions to monochromatic aberrations in this chapter
and the entire dissertation.

We also restrict our discussion about aberrations to axially symmetric systems
until Chapter 6. We will discuss the aberration corrections for bilateral systems in

Chapter 7.

1.2A RAY ABERRATION AND WAVE ABERRATION
Figure 1.1 illustrates the definition of the wave and ray aberration. The ray
aberration is the lateral deviation of the ray from its ideal position in the image plane.
The wave aberration is defined as the difference between the aberrated wave front and
the reference wave front, namely,
W =Wy-We (1.1)
The aberration of an optical system depends on both the field and aperture.

Assume the maximum field height is H,,, and the exit pupil radius is r,. Considering a
ray originating from a field point # and going through point 7 at the exit pupil, the
wave aberration of this ray is a function of both A and 7:

W =W(H,F). (1.2)
Often times it is convenient to use the normalized field and pupil coordinates 4 and /

instead, where

- H 7
h=—and p=—. 1.3
H. P r (1.3)
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W =W (h, p). 1.4
Since the wave aberration is a scalar and it does not depend on the rotation of the

axially symmetric systems about its optical axis, it can only be a function of three
quantities, namely, (il. -h),(p-p) and (h - p) . Then the aberration can be written in the
following form:

W, 5)= 3 Womst zuess (h)™ -(P7)" - (k- p)*. (1.5)

m.n.k

Depending on the value of 2(m+n+k), the aberration terms W, ,,... can be classified

into 3™ order aberration, 5" order aberration, etc. For example, when 2(m+n+k)=4, the
aberration is 3™ order. The 3™ order aberration includes:

Wouo (spherical aberration),
W31 (coma),

W32, (astigmatism),

W30 (field curvature),
Win (diStOl'tiOll).

When 2(m+n+k)=6, the aberration is 5th order (Shack, Shannon 1997). There are totally
10 types of Sth order aberrations:

Woso (spherical aberration),

Wisi (5th order coma),

W40 (Oblique spherical aberration),

W24, (tangential oblique spherical aberrations),
W33 (elliptical coma),

W33, (elliptical coma),

Wai2o (5"' order field curvature),

Wa22 (5" order astigmatism),

Wsii (5™ order distortion),

Weoo (piston).
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1.2B RELATIONS BETWEEN WAVE AND RAY ABERRATIONS

Wave and ray aberrations are closely correlated. If one is known, the other can
be calculated (Shack). Assume the ray aberration is £ , and the distance from the image
plane to the exit pupil is R, then ray and wave aberrations are related via the following

equation:

F=-2v w5 (1.6)

T

1.2C THE PUPIL ABERRATIONS

Every optical system has an aperture that determines the diameter of the cone of
light that the system will accept from an axial point on the object. This aperture is the
stop of the system. The image of the stop in object space is the entrance pupil and the
image of the stop in image space is the exir pupil (see Figure 1.2). The ray that starts
from the on-axis object point and goes through the edge of entrance pupil is named as
marginal ray, and the ray that starts from the edge of the object and goes through the
center of entrance pupil is named as chief ray.

The aberration definitions in previous sections give relationships that model
departure from ideal mapping from object points to image points. This modeling is used
to give aberrations corresponding to image blur or wavefront error. Itis also useful to
investigate non-ideal mapping of the pupils, or pupil aberrations. Similar to the image

aberrations, 3™ order pupil aberrations include spherical aberration, coma, astigmatism,
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field curvature and distortion. The pupil aberrations can be used for understanding the
source of image aberrations, and as we show later in this dissertation, they can be used

for deriving some general imaging relationships.

]
Plane E
[}

Entrance
Pupil

Stop

Figure 1.2. Illustration of the pupils. The Entrance Pupil is the image of stop in
object space, and the Exit Pupil is the image of stop in image space.

1.2D ANOTHER WAY TO GROUP WAVE ABERRATIONS

A typical optical design procedure starts from first order layout of a system, then
steps are taken to correct or balance 3™ order aberrations. In many cases, correction or
balance of 3™ order aberrations is sufficient. But in some special cases, such as grazing
incidence optics, 3™ order treatment fails. In other cases, such as the high NA
microscope objectives where resolution is more concerned than the size of field of view,
3™ order treatment is not enough. These cases suggest the necessity of a different way to

group aberrations. In the microscope case, aberrations of higher order pupil dependence
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are more vital to the performance than aberrations of higher order field dependence. So
we may classify aberrations in terms of their field dependence, then take a different
approach to correct them. Then we have:

1. field-independent aberrations including W40, Woso, Woso, -----. ,

2. linear field-dependent aberrations including W3, Wisi, Wiy, -..... .

3. quadratic field-dependent aberrations including: W20, W240, Wago, --....

and Wiz, Wa4z, Waea, -.....

Table 1.1. Grouping aberrations according to their field-dependence.

Aberrations
Field Aberration Type Conditions to correct Example
Dependence all Systems
Independent  Spherical aberrations the Optical Path Length(OPL)  Cartesian oval,
of all orders from an on-axis ‘l’bj“‘ pointto  reflecting
;;sc?;gnfomt along any ray ellipsoid
Linear Coma of all orders The Abbe Sine Condition Aplanatic
Telescopes
Quadratic Astigmatism, field The Pupil Astigmatism Aplanatic
curvature, etc. Condition anastigmats

Usually it does not make any sense to know the exact values of Wogo, Wi71, Wae0,
W2, €tc, but they still need to be corrected. If an on-axis object point is imaged
perfectly by an axial symmetric system, all field-independent aberrations are absent; this
is what I call the Constant Optical Path Length (OPL) Condition for correcting all orders
of spherical aberration. Similarly, the Abbe Sine Condition provides a tool for

eliminating all the aberrations with linear field dependence. Here we derive a condition I
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call Pupil Astigmatism Condition that is used to correct all the quadratic field-dependent
aberrations. Tablel.1 summarizes the new grouping methods. My dissertation work is
shown in the bold and italic fonts. The tool I used to develop the condition is Hamilton’s

characteristic functions, which will be introduced in Chapter 1.3.

1.3 INTRODUCTION TO HAMILTON’S CHARACTERISTIC FUNCTIONS
Characteristic functions were first introduced by Sir W. R. Hamilton (1828), later
expanded by Bruns as eikonal (1895). Hamilton’s characteristic functions are a set of
functions that represent the optical path length along a ray. Even though it is impossible
to get the analytical form of the Hamilton’s characteristic functions for optical systems
except very simple ones, they are nevertheless very powerful tools to study the general
properties of an optical system. The Hamilton’s characteristic functions have been very
useful in optical design. Luneburg (1970) used them to derive the Abbe Sine condition
and design the Luneburg lens. Buchdahl (1970) developed the formulas for calculating
aberration coefficients. They were used to show generally what imaging properties can
or cannot be realized (Walther 1989). Their application in the design of non-axially
symmetric systems was explored extensively by Stone and Forbes (1992-1994). They
were used to specify lens modules for modular lens design (Chang 1999). As personal
computer becomes more and more powerful, application of Hamilton’s characteristics in

real lens design becomes more practical.



29

1.3A DEFINITION OF CHARACTERISTIC FUNCTIONS
For my dissertation work, I used Hamilton’s characteristic functions to derive the
criteria for correcting all the quadratic field-dependence aberrations. In this section, the

definition and use of the Hamilton’s characteristic functions are described.

(PLq1.My)

Figure 1.3. Interpretation of Hamilton’s characteristic functions when the initial and
final media are homogeneous.

In Figure 1.3, a ray originates from a point Py(Xo, Yo, Zo) in object space, and
passes through P;(x1, y1, 21) in image space. Oy and O; are origins of local coordinate
systems. (po, go, mo) and (p;, q;, m;) are ray vectors in object space and image space
respectively. A ray vector is the vector along the ray with length equal to the index of
refraction of the local medium. By definition,

P +qy +my’ =n,’, (1.7a)
and

Plz +q|2 +m12 = nlz s (1.7b)
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where ng and n; are the refractive indices in object space and image space respectively.
Qv and Q; are the intersections of perpendiculars drawn from Op and O; to the ray in
object space and image space respectively.
If we make the following definition:
[AB] = optical path length along the ray from Point 4 to Point B, (1.8)

then the Hamilton’s characteristic functions are defined as follows:

Point characteristic: V(X0,¥0.20; X1,Y1,Zi) = [PoP1],
Mixed characteristic: W(x0,¥0.20; P1,q1) = [PoQ1],
Angle characteristic: T(po.qo; P1,91) = [QoQ1].

Hamilton's characteristic functions are very powerful tools for investigation of
the general properties of optical systems. If one of the Hamilton characteristics is

known, we can obtain all the information about any ray. For example,

If V is known, then
ov oV
== , == 1.9a
Po= ", 7 Ty, (1:%)
and
oV ov
==, = 1.9b
% 17y, (1:56)
If W is known, then
ow ow
=—, =, 1.10a
Po= ", P T T, (1-102)

and
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x, =W y__W (1.10b)

op, oq,
Here (X, Y)) is the coordinate of the ray intersection with the plane that passes point O,

and is perpendicular to the optical axis.

If T is known, then
oT oT
X,=—, ¥, =—o, (1.11a)
° op, ° oq,
and
x, ==L y-_°T (1.11b)
ap, oq,

Here (Xo, Yo) is the coordinate of the ray intersection with the plane that passes point O

and is perpendicular to the optical axis, and (X, Y1) is the coordinate of the ray

intersection with the plane that passes point O, and is perpendicular to the optical axis.
Since the Hamilton’s mixed and angle characteristic functions can be used to

calculate the ray intercept at a plane, we can then use them to calculate ray aberrations.

1.3B TAYLOR SERIES EXPANSION OF THE CHARACTERISTIC
FUNCTIONS

Similar to the wave aberration described in Chapter 1.2A, the characteristic
functions are scalars and they are rotationally invariant for an axially symmetric system.
For an axially symmetric system, the mixed characteristic function # only depends on

the following 3 quantities:
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2 2 2
h=x,"+y,,

P =p'+q’, (1.12)

h-p=x,p+ o
Expand W in the power series of the field, and neglect the 3™ and higher powers:
W (x5 Y03 P1591320:21) = Wo (P) + (xo P, + ¥oq, )W, (P)
+ (%P, + Y@, ) W (P) +(x," + Yo W (P) + .. (1.13)
For a field point in x-z plane, yp = 0. Then
W (xgs Vo5 Prs91320021) = Wo(p) + X0 p W, (P)
+x° (P Wy(P) + Wy () + wooeee (1.14)

In analogy, for an axially symmetric system, the angle characteristic function T

only depends on the following 3 quantities:

h? =1’o2 +4, ,
p’=p’+q’, (1.15)
h-p=p,p +4.4,-

Expand T in the power series of the field, and neglect the 3™ and higher powers, we
obtain
T(Po>905 Pis91320,2) =W (P) + (Do Py + 409, )W, (P)
+(PoPy + 40 Wo(P) +(Py” +45" W (P) + ... (1.16)
For a field point in x-z plane, go = 0. Then

T(Pos90sP1+9132052) = W,(p)+ p,p.W,(P)

+ 0o (P Wy (p) + W, (P)) + ... (1.17)



33

In Chapter 2, Eq. (1.14) is used to derive the Pupil Astigmatism conditions for
correcting the quadratic field-dependent aberrations for optical systems with the object a
finite distance away, and Eq. (1.17) is used to derive the similar conditions for optical

systems with the object at infinity.

1.4 CONCLUSION

In this chapter, I go over the basics about the aberrations of an optical system,
which include the definition of aberration, the relation between the ray aberration and
wave aberration, the definition of pupil aberration, the types of monochromatic
aberrations and the different ways in grouping aberrations. The conditions for correcting
certain types of aberrations are listed in Table 1.1. Hamilton’s characteristic functions

are introduced in Section 1.3. Their definition, physical meaning and use are described.
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CHAPTER 2

THE PUPIL ASTIGMATISM CONDITIONS FOR
CORRECTING THE QUADRATIC FIELD-DEPENDENT
ABERRATIONS

2.1 INTRODUCTION

In this chapter, we use Hamilton’s characteristic functions to derive conditions
that predict and allow complete correction of all aberrations that have quadratic field
dependence. For this analysis, we consider an arbitrary optical imaging system that has
a small field of view. We then use Hamilton’s characteristic functions to define some
simple relationships between the pupil’s astigmatism and the image aberrations that have
quadratic field dependence.

For this analysis, we first define an exit pupil at infinity and look at the
aberrations in entrance pupil, which occurs at an image of the exit pupil. It is important
to understand that the pupils defined here are mathematical, and do not correspond to the
pupil in the real system which is defined as an image of a real aperture. The analysis
proves that a particular relationship must be held between the sagittal and tangential
pupil images in order to correct the quadratic field-dependent image aberrations. If
these pupil astigmatism relations are maintained for all points in the pupil, then the

quadratic field-dependent aberrations will be zero for all points in the field.
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The general derivation of the pupil astigmatism relations requires analysis of the
exit pupil — entrance pupil transformation, which requires the optical system to be
modeled by tracing rays backwards, starting in image space and propagating into object
space. We know that light always travels the same forwards as backwards, so
mathematically the two are equivalent. Nonetheless, it feels wrong to trace the system
backwards, even if it does provide a simple solution. We are justified in violating this
directional bias because the exit pupil — entrance pupil relation allows a derivation of the
pupil astigmatism relations that are simple and general. By making a second
assumption, that the first order field relations are also corrected, we can show a less
general, but more useful form of the pupil astigmatism relations that uses the entrance
pupil to exit pupil transformation. This lets us use our convenient computer and mental
models where light travels from left to right.

Just like the Abbe Sine condition, the pupil astigmatism criteria take different
forms for systems with object a finite distance away and systems with object at infinity,
so in the presentation and derivation of the criteria, we deal with the two types of
systems separately. The tools used in the derivation of the criteria are the Hamilton’s
characteristic functions. Specifically, the mixed characteristic function is used to derive
the criteria for the finite conjugate system, and the angle characteristic function is used

for the infinite conjugate systems.
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2.2 DEPENDENCE OF QUADRATIC FIELD-DEPENDENT ABERRATIONS ON
ENTRANCE PUPIL ASTIGMATISM

2.2.1A SUMMARY FOR SYSTEMS WITH FINITE CONJUGATES

Consider the case of an optical system imaging a point which is a finite distance
away. This system forms an image which is nominally a point, but may have some
aberrations (which we assume to be small compared to the dimensions of the imaging
system). To evaluate an exit pupil at infinity, we treat small bundles of parallel rays that
go through the object point. Their angle defines the pupil coordinate. The entrance
pupil is defined as an image of this exit pupil, so it can be found by tracing these bundles

of rays backward through the system.

Figure 2.1. Trace a thin bundle of parallel rays backwards through an optical system
(finite conjugate case). T is the tangential focus and S is the sagittal focus.
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In general, each bundle of rays will come to focus with some amount of
astigmatism. The bundles are made small enough that only aberrations up to second
order are considered. This geometry is shown in Figure 2.1 where / is the image point.
It is useful to map two different versions of this entrance pupil -- one is defined by the
tangential focus, and the other by the sagittal focus. This is similar to the field curves
that are commonly used for image evaluation, except here we are investigating the
image of an infinite exit pupil so these curves are not physically significant.

As shown in Fig. 2.1, the pupil coordinate is defined using the angle from the
object to the particular point in the entrance pupil. Denoting the tangential focus as T
and the sagittal focus as S, define the distance from object to T as ¢, and object to S as s.
Clearly, ¢ and s are functions of 8. Using these definitions and relationships from
Hamilton’s characteristic functions, we will prove that the imaging system will be free

from all quadratic field dependent aberrations if

1(6)

s6)= cos? (@

=constant. (2.1)

The derivation of this condition is given in Section 2.2.1B. From the derivation we also
obtain the following criteria for partially correcting the quadratic field-dependent
aberrations:

e The criterion for correcting all the quadratic field-dependent aberrations in tangential

plane is
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1))
cos*(0)

=constant. 2.2)

e The criterion for correcting all the quadratic field-dependent aberrations of the form
of Wi,owhere n is even is
5(6) =constant. 2.3)
e The criterion for correcting all the quadratic field-dependent astigmatism of the form

W>a2 where n is even is

1(0)
cos’(8)

s(8) = (2.4)

As these criteria are written in terms of the astigmatic image of the exit pupil, we call

them the pupil astigmatism criteria or pupil astigmatism conditions.

2.2.1B DERIVATION OF PUPIL ASTIGMATISM CONDITIONS FOR
SYSTEMS WITH FINITE CONJUGATES

To prove the pupil astigmatism conditions, given above, we start with the Taylor

series expansion of the mixed characteristic function W, as given in Chapter 1:
W (Xqs Y03 Pos o3 Z0s2) = Wo(P) + (Xopy + ¥0q I, (P) + (Xopy + Y001 ) W3 (P)
+(Xo" + 3, Wy (P) + eeenee (2.5)

Consider an object point in x-z plane, then y; = 0. According to Eq. (1.10b),
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ow
X, =-—
op,
oW, 0 7]
=), O (0N -5 (p WPV Wi (), (263)
p, ap, ap,
S oW
b o
oW, 0 0 2
= 2A0) 2 (p (o) -5 o (p W) WP . (26D)
oq, oq, oq,
According to Eq. (1.10a),
Po =—PW (pP), 2.7)
for a small field in the vicinity of Point O. And we know Po s the magnification, in
P

general it is a function of p. Define the magnification as M(p):

M(p)=2e. (2.8)

P
The ideal image of a point at (xo, 0, zo) will be at (x;’, 0, z;) where
x,'=M(0)x,. 2.9)
Let Ax and Ay be the lateral aberrations and substitute Eq. (2.9) into Eqs. (2.6a) and
(2.6b), we then obtain
Ax = x, - x,

=‘au;°(p)+xo 0 (Pn(M(P)-M(O)))—xozi(plez(p)+W’3(p)) (2.10a)
Py op, o
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Ay =y,

My(p), 0
0

oq, oq,

(0 M(p) - x,’ %(p.zwz () +W,(p)) (2.10b)

The first term of the right hand side of equations in (2.10) gives rise to spherical
aberration. The second term is coma. For linear field-dependent aberration to be
corrected, M(p) must be constant,

M(p) = M(0) = constant, (2.11)
which is the famous Abbe Sine condition. To correct the quadratic field-dependent
aberration, the following equation must be true:

plle (p) +W,(p) =constant. (2.12)

Apparently, W»(p) determines astigmatism and W3(p) determines field curvature and
oblique spherical aberrations.

We would like to know what p,sz (p) + W,(p) represents physically. After
differentiating Eq. (2.5) with respect to x, twice and using the relations in Eq. (1.10b),
we obtain

10p
'W.(p) +W,(p) = ———=>
pW,(p) 5(P) 23

0

(2.13)

for a field in the close vicinity of point O.
The partial differentiation in Eq. (2.13) means everything else doesn’t change,

i.e. keep yo. p1. q; unchanged, see how p, changes with infinitesimal change of x,.
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Tracing the thin bundle of parallel rays backward through an optical system maintains

the values of yp p; and q,.

X1

o

Yo t —

(@)

mmm ety ———---o-

(b)

Figure 2.2. [llustration of how to get p,’W,(p) + W,(p) for a finite conjugate system in
(a) the tangential plane, and (b) the sagittal plane.

In Figure 2.2(a), in tangential plane, at xo=0, p, = n,sin(8), let OT =¢(<0 in

this case), then
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dp, = n,cos(8)66 , (2.14)
and

_ dx, cos(6)
-

50 (2.15)

So, in the tangential plane,

zo = °°tsz(9), 2.16)
0

therefore

1 n, cos’(6
Plez(p)"’ W,(p)= ___o__().

> ; 2.17)

In Figure 2.2(b), in sagittal plane, at xo =0, po =0, p; = 0, trace a thin bundle of
parallel rays backwards again, S is the focus, denote OS = 5 (<0 in this case), then
op, = n,00 (2.18)
and

&, =566 . (2.19)

So, in the sagittal plane,

P "o , (2.20)
&, s
therefore
2 1n,
W, (p)+ Wi (p)=W,(p) = W (2.21)

So, combining Equations (2.17), (2.21) and (2.10), we draw the following conclusions:
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e When s(@) = t( 0)/cos2(0) = constant, then Wy(p) = 0 and W3(p) = constant, and the

optical system is free of all the quadratic field-dependent aberrations.
e When ((8)/cos’(6) = constant, then P12Wz (p) + W,(p) is constant in the tangential

plane, so all the quadratic field-dependent aberrations in the tangential plane is
corrected.

e When s(6) = constant, then W,(p) = constant, so all the quadratic field-dependent

aberrations in the sagittal plane are corrected.
e When s = t/cos’(6), then Wi(p) = 0, so astigmatism of the form W2y, (n is even) is

corrected.

2.2.2A INFINITE CONJUGATE SYSTEMS

If the object is at infinity, the definitions of r and s must be modified. For the
optical system in Figure 2.3, still trace a thin bundle of parallel rays backwards through
the system, the tangential focus is T and the sagittal focus is S. Denote the distance from
T to a plane penpendicular to the optical axis as ¢ and the distance from § to the same
plane as s, r and s are functions of the ray height 4 in the object space.

With 7 and s defined and obtained this way, the criteria for correcting the

quadratic field-dependent aberrations are:

To correct all the quadratic field-dependent aberrations:

s(h) = t(h) = constant. (2.22a)



To correct all the quadratic field-dependent aberrations in tangential plane:

t(h) = constant. (2.22b)
To correct all the quadratic field-dependent aberrations of the form of W,,o where n is
even:

s(h) = constant. (2.22¢)
The correct all the quadratic field-dependent aberrations of the form W>,, where n is

even:

s(h) = t(h). (2.22d)

o

Figure 2.3. Trace a thin bundle of parallel rays backward through an aplanatic
optical system (infinite conjugate case). T is the tangential focus and S is the sagittal
focus.
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Criterion (2.22a) indicates that if a system with object at infinity is to be
corrected for all the quadratic field-dependent aberrations, then the 3" order entrance

pupil astigmatism and field curvature are perfectly corrected.

2.2.2B DERIVATION OF THE PUPIL ASTIGMATISM CONDITIONS FOR
THE INFINITE CONJUGATE SYSTEM

To characterize the optical system with the object at infinity, the angle
characteristic function is more convenient to use. The Taylor series expansion of the

angle characteristic function T given in Chapter 1 is

T(Porqo; Pird1Z0:21) = Wo(P) + (Po Py + 4o W, (P) +(Po P + 909:) W2 (P)

+(Dy +qo W, (P) +...... (2.23)
Compared to the mixed characteristic function, the field size is angle (po, Qo) now
instead of the height (x¢, yo). The ray intersection at the image plane is calculated in a
similar way.

Consider a ray in the x-z plane, then pg = 0. According to Eq. (1.11b),

oT
X, =——
op,
W, 2
= D), O (oD bW ()W (P)),  (2248)
op, op, op,
L oT
',
oW, (p) 0 2 O 2
_ P _ |, 2 W) - Pt (p W (p)+ WP . (2.24b
e GNPl L AT A RS
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According to Eq. (1.11a), the ray height 4 in object space is

h=2L_ pW.(0) 225)

" op,

for a small field angle. And we know - L is the effective focal length, in general itis a
P,

function of p. Define the effective focal length as f{p), then

S(p)=-W(p). (2.26)
The ideal image of a field point (po, 0, mg) will be at (x,’, 0, 0) where

x,'= f(0)p,. (2:27)

Let Ax and Ay be the lateral aberrations and substitute Eq. (2.26) into Egs. (2.24a) and

(2.24b), we then obtain
Ax =x, —Xx;
oW, 2 2
D) O () - SON - b 2 (p Wy (0 + W, (p)),  (2:283)
apl op, ap,
Ay =y,
- oW, (p) 0 2 i 2
2, + P, 2, (p.f(P)-pPo 2, (P W, (p)+W,(p)). (2.28b)

For the linear field-dependent aberration to be corrected, f{p) must be constant,
f(p) = f(0) = constant, (2.29)
which is the Abbe Sine condition for systems with object at infinity. To correct the

quadratic field dependent aberration, again the following equation must be true:

p,ZW2 (p) + W,(p) =constant. (2.30)
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We then proceed to find out what p,’W, (p) + W,(p) represents physically. Similar to

Eq. (2.13), we now have

Lax,

P, (p)+Wy(p) = 2% @.31)
for a small field angle.
t
Xi

A :
b Sh/f—‘/ ' / L -
» &0 i /,/

o L I

Yo E
(a)

(b)

Figure 2.4. Illustration of how to get P’ W,(p) +W,(p) for an infinite conjugate
system in (a) the tangential plane, and (b) the sagittal plane.
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We again trace a thin bundle of parallel rays backward through the optical

system. In Figure 4(a), in tangential plane, at po=0, x, = &, let OT =t (<0 in this case),

then
&P, = "°t&' : (2.32)
So, in the tangential plane,
oh t
=— (2.33)
o, n,
and
1 ¢
P W, (p)+W,(p)=——. (2.34)
2n,

In Figure 4(b), in sagittal plane, at pg = 0, xo = h, p; = 0, trace a thin bundle of parallel

rays backwards again, S is the focus, denote OS = s (<0 in this case), then

op, = n,060 (2.35)
and

& =560. (2.36)
So, in sagittal plane,

ax s

=— 2.37)

P, n

and
1
PW,(P)+W,(p) = W,(p) = ——. (2.38)

2 n,
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So, combining Equations (2.38), (2.34) and (2.28), we draw the following conclusions
similar to those in Section 2.2.1B:
e When s(h) = t(h) = constant, then W>(p) = 0 and W;(p) = constant, so all the

quadratic field-dependent aberrations are corrected.
e When t(h) = constant, then p,’W,(p) +W,(p) is constant in the tangential plane, so

all the quadratic field-dependent aberrations in the tangential plane are corrected.

e When s(h) = constant, then W, () =constant, so all the quadratic field-dependent

aberrations in the sagittal plane are corrected.
e When s(h) = t(h), then W#,(p) = 0, astigmatism of the form W3, (n is even) is

corrected.

It is important to notice that we used the ideal image position as the reference and
the ray vector as the pupil coordinate when deriving these conditions. Usually in an
optical design program, the chief ray position is used as the reference instead. Therefore,
in our approach, the change of the stop location does not affect the types of aberrations

present in the system. That is why we can choose the exit pupil at infinity.

2.3 FORARD RAY-TRACING VERSION OF THE PUPIL ASTIGMATISM
CRITERIA

The backward ray-tracing version of the Pupil Astigmatism Criteria for
correcting the quadratic field-dependent aberrations is presented in Section 2.2.

Although it is quite straightforward to trace rays backward to derive the criteria, it is not
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so convenient to use them this way. First of all, it is difficult to perform backward ray
tracing in a computer ray trace program. Second, we need ways to validate the criteria,
but there is no known way to connect these backward ray tracing properties with the
image aberrations. Facing these difficulties, we decided to develop the forward ray
tracing version of the criteria. To do this, we define an entrance pupil at infinity and look

at the aberrations in exit pupil.

2.3A THE FINITE CONJUGATE SYSTEM

Figure 2.5 shows an optical system with object a finite distance away. A thin
bundle of parallel rays are traced forward through the system. The center ray of the
bundle is a marginal ray from Point O to Point /. The Tangential focus of the bundle is
T’ and the sagittal focus is S*; let /T" =¢’ and IS’ =s'". The marginal ray has an angle 6
with the optical axis in the object space and an angle 8’ in the image space.

Figure 2.6 shows the side view of the optical system shown in Figure 2.5. Both
the forward and backward ray tracing are shown in this figure. ¢ and ¢’ can then be
calculated by the following formulas:

t =dx,cos(8)/do,

(2.39)
t'=dx;cos(8')/d6'.

Then,

_ dx; cos(6') d6 t=m cos(6') d6
dx, cos(6) do' cos(8) do'

t, (2.40)

where m is the magnification.
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Figure 2.5. Trace a thin bundle of parallel rays forwards through an optical system
(finite conjugate case). T is the tangential focus and S is the sagittal focus.

+ w @ BN
dxo T T I
AN
0] 4] l o’ dx;
2 t

Figure 2.6. The side view of an optical system with the object a finite distance away. T
is the tangential focus of a thin bundle of parallel rays traced backwards through the
optical system. T’ is its counterpart when a thin bundle of parallel rays are traced
forward through the optical system.
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Now consider a patch of object (dx, high and dy, wide) around point O whose

image is dx; high and dy; wide around point /, consider a beam around the ray with

direction cosines (sin(8), 0, cos(8)) which spreads d@in x-z plane and df in y-z plane in

the object space. In the image space, the beam is along the ray with direction cosines (-

sin(8), 0, cos(8")) and spreads d@’ in x-z plane and df3’in y-z plane. Since the energy

must be conserved, then the basic throughput of the system is constant, i.e.

n’d AedQ = const,

(2.41)

where n is the index of refraction, d 4 is the area element, d Q is solid angle element.

Then we have

n, dx,dy, cos(8)d6dp = n;’dx.dy, cos(0')d6'dp" .

It follows that
d0 _ dxdy;, ndp' n; cos(8')
dé'  dx,dy, n,dp n, cos(6)
Since
dxdy; =m?
dx,dy,
and
ndpg' 1
ndf m’

then combining Egs. (2.43), (2.44) and (2.45), we obtain,

dae — cos(@')
deo n, cos(@)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)
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Substitute Eq. (2.46) into Eq. (2.40), we obtain

ey cos“(6')

r= n, cos’(0) @47
which is equivalent to

m =m® m. (2.48)
By the same token, we can also prove

Som S, (2.49)

n; n,

It should be noticed that when spherical aberrations are perfectly corrected and the Abbe
Sine condition is satisfied, Eqs. (2.40)-(2.49) are rigorously true.

An example is given below to show the relationships in (2.48) and (2.49) are
correct. Figure 2.7 shows an anastigmatic optical system whose 3" order spherical
aberration, coma, astigmatism and field curvature are all corrected. Its surface data are

listed in Table 2.1. This optical system has a magnification m = —2.25. For forward ray

tracing, ¢'/cos*(@') = 5'(6') = 149.334 when 6’ = 0. And for backward ray tracing,
t/cos?(0) = s(0) = 29.498 when 0 = 0. The ratio between the two constants is 5.0625,

and the square of the magnification is m? = 5.0625, so the relations in Eqs. (2.48) and

(2.49) are confirmed here.
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Figure 2.7. An anastigmatic optical system with magnification -2.25.

Table 2.1. Surface data for the anastigmatic system shown in Figure 2.7.

Surf Type Radius Thickness Glass Diameter Conic
OBJ STANDARD Infinity 113.3333 0 0
STO STANDARD  -113.3333 20 1.5 58.0 0
2 STANDARD -80 100 66.7 0
3 STANDARD 150 20 1.5 107.1 -2.25
4 STANDARD Infinity 50.68886 107.1 0
5 STANDARD Infinity 20 1.5 107.1 0
6 STANDARD -150 225.1072 107.1 -2.25
7 STANDARD 74.89276 20 1.5 25.6 0
8 STANDARD 32.93566 82.33915 18.5 0
IMA STANDARD Infinity 0 0

Then Eqs. (2.48) and (2.49) show that there is only a constant factor difference
between the forward and backward ray tracing properties involved in the Pupil
Astigmatism Criteria in (2.1)-(2.4), so the form of the criteria based on forward ray
tracing properties stays the same as that of the backward ray tracing version. We write
them below:

e The criterion for correcting all the quadratic field-dependent aberrations then is:

N A N
s'(6') 05 (@) constant. (2.50a)
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e The criterion for correcting all the quadratic field-dependent aberrations in the
tangential plane is:

tc(el)

————— =constant. (2.50b)
cos“(6')

e The criterion for correcting all the quadratic field-dependent aberrations of the form
of Ws9 where n is even is:

5'(6') =constant. (2.50c)

e The criterion for correcting all the quadratic field-dependent aberrations of the form

W2 where n is even is:

10(61)

s (2.50d)

5'6') =
2.3B THE INFINITE CONJUGATE SYSTEM

The forward ray tracing version of the Pupil Astigmatism Criteria for the infinite
conjugate system is identical to that of the finite conjugate system (Equations (2.50)),
but s and ¢ are obtained differently.

For an infinite conjugate system shown in Figure 2.8, select an arbitrary plane
which is perpendicular to the optical axis in object space and serves as the entrance pupil
of the system. Then trace a small cone of rays which originates from any point in the
plane and are centered on the ray which is parallel to the optical axis, again we have the

tangential image at T, and the sagittal image at §”. Define ' = /T " and s = IS". With
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these definitions, the conditions for correcting the quadratic field-dependent aberrations

for infinite conjugate systems are the same as Eqgs. (2.50).

Figure 2.8. Illustration of a system with object at infinity. A small cone of rays are
traced from a point 4 in a plane which is perpendicular to the optical axis. The tangential
image of the cone is T and the sagittal image of the cone is S.

In Figure 2.9, we have the following relation:

t=dh/dé, (2.51a)
t'=dx; cos(6')/d6". (2.51b)
It follows that
t'= tﬁﬁcose' . (2.52)
dh d6O'

Again using Eq. (2.41), we have
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n, dhdy, cos(9)d6dp = n’dx,dy, cos(0')d6'dp". (2.53)

where dff and df3’ are the angles that the cone of the rays spreads in the plane
perpendicular to the paper in the object and image space, and dy, and dy; are the y-axis

dimensions of the areas considered in the x¢-yo and x;-y; planes respectively.

2 R
i

Figure 2.9. The side view of an optical system with object at infinity. T is the tangential
image of the cone of rays originating from a point A in the object space.

Then the following equation is obtained:

d6 _dx, ndydp' n,

46~ dh ndy.dpn, ) (2.54)
The magnification of the system gives

dy; = fn,dp and dx; = fn,d6. (2.55)
And the Abbe Sine Condition gives

dy, = fn,dp' and dh = fn,cos@'d0'. (2.56)

It then follows that
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ndy,dB _ 2.57)
n,dy,dp
and
dx; n, do
L= . 2.58
dh n,cos@'do' (2.58)
Combining Egs. (2.51b) and (2.56), we obtain
dr, ___F (2.59)
dh fn,cos” &'
Substitute Egs. (2.58) and (2.59) into Eq. (2.52), we get
2 ]
t= f2 M , (2.60)
which is equivalent to
2 v
—t-=f2 n; cos' @) . (2.61)
n, t
By the same token, we can also prove
2ol (2.62)
n, s

One example to show Eqs. (2.61) and (2.62) are correct is the Luneburg lens. The

Luneburg lens is a sphere made of a gradient index material with the index profile

— [2_¢T\2
n(r)—‘/Z (R) ,

where R is the radius of the sphere. The Luneburg lens is aplanatic. Figure 2.10 shows
the Luneburg lens with radius R = 100 mm. The effective focal length of this lens is f=

100 mm, and the index of refraction in both the object and image space is unity. Table



2.2 shows the forward and backward ray-tracing results. Comparing Column 4 and

Column S, we can see Egs. (2.61) and (2.62) are verified.

Figure 2.10 The Luneburg Lens.

Table 2.2. The result of forward and backward ray tracing for the Luneburg lens.

ll: (.inhm'm)t:hRay{) . 0 (ti; °): Ray angle | 5(0) = t(h) =s(h) /s(0) =
eight in the object | in the image space 2 2
space t(8)/cos*(0) cos?(0)/t(0)
0 0 100 100 100
8.000756 4.589 99.681 100.3206 100.32
16.00018 9.207 98.728 101.2883 101.2884
2400078 13.887 97.16 102.9229 102.923
32.00012 18.663 95.004 105.2583 105.2587
39.99972 23.578 92.295 108.3484 108.3482
4799939 28.685 89.069 112.2728 112.2725
56.00029 34.056 85.36 117.1509 117.1509
64.00024 39.792 81.194 123.1627 123.1618
71.99942 46.054 76.568 130.602 130.6029
79.99989 53.13 71.429 139.9999 139.9992

59



With the backward ray-tracing version of the Pupil Astigmatism criteria in
Section 2.2.2A and the relations in Egs. (2.61) and (2.62), we conclude that the forward
ray-tracing version of the criteria for the infinite conjugate system is exactly the same as
that for the finite conjugate system listed in (2.50), although the definitions of s and ¢ are

different for the two types of systems.

2.4 ANOTHER METHOD TO DERIVE THE FORWARD RAY TRACING
VERSION OF THE CRITERIA

The forward ray tracing version of the Pupil Astigmatism Criteria can also be

derived directly without knowing the backward ray tracing version first. From Sections
2.2 and 2.3, we know the criteria are based on the value of p,’W, (p) + W,(p), which is
the coefficient of the field square term in the Taylor’s series expansion of the Hamilton’s
characteristic functions. We will derive the expression of the coefficient by forward ray
tracing method directly in this section. This derivation also gives us insight in how to

deal with plane symmetric optical systems.

2.4A FINITE CONJUGATES SYSTEM

Consider a field point A in the optical system shown in Figure 2.11(a). 4 is on
the x-axis and has an infinitesimal field height xo. Now trace a ray from Point O to Point
I, which has an angle 8 with the optical axis in the image space. Then trace a parallel ray

from A in the tangential plane. The two rays intersect with each other at T in the image
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space. Draw a perpendicular from I to the ray originating from 4, the foot is denoted as
B. Let TI =t (>0), then the optical path length from T to / is

[71]=n,, (2.63)

where n; is the index of refraction of the media in image space.

X1
Xo
]
3
) T
A ' .
Xo E /'/ |
0 ”,:‘ /
- X
. ; 9 B|
Yo i
]
(a)
X1

| X,

(b)

Figure 2.11. Illustration of how to get p,sz (p) + W,(p) in (a) the tangential plane,

and (b) the sagittal plane by tracing rays forward through an optical system with object a
finite distance away.



The mixed Hamilton’s characteristic function for O is then
w(0) =[or)+[11].
and the mixed Hamilton’s characteristic function for 4 is
W(4) = [AT]+[TB],
where
[47]=[0T]- x,p..
and
[7B] = [TI]cos(56)
= [11]-[11k56)* /2.
So combining Egs. (2.64) - (2.67), we get
W(A) =W (O)-x,p, —|TTk56)* /2,
where
00 = x, cos(0)/t
=x,M(p)cos(8)/t.

Then

W (A)=W(0)—xop, —X," (n,;M* (p)cos®(8) /(21)).

Compare this equation to Egs. (2.6), we get

n.M?*(p)cos’(6)

2 —_ -
P W, (p)+W,(p)= Y

in the tangential plane.
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(2.64)

(2.65)

(2.66)

2.67)

(2.68)

(2.69)

(2.70)

2.71)
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To find out what W;(p) is, we trace a ray from Point O to Point / in sagittal

plane, which has an angle 6 with the optical axis in the image space (see Figure 2.11(b)).

Then trace a parallel ray from A4 to the image space. The two rays intersect with each

other at S in the image space. Draw a perpendicular from / to the ray originating from 4,

the foot is denoted as B. Let ST =s (s>0), then the optical path length from Sto / is

[ST]=n.s.
The mixed Hamilton’s characteristic function for O is
w(0) =[os]+[s1],
and the mixed Hamilton’s characteristic function for 4 is
W)= [45]+[sB].
where
[45]=[0s],
and
[sB] = [SI]cos(50)
= [sr]-[srks6)* /2.
So combining Egs. (2.78), (2.79), (2.80) and (2.81), we get
W(A) =Ww(0)-[srks6)* /2,
where

50 = x,M(p) ]
S

Then

2.72)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)



W(A) =W(O)-x,’ (l"Mz—s(pl) : (2.84)

Compare this equation to Egs. (2.6) (note p; = 0 in the sagittal plane), we get

nM ? (p)

> (2.85)

W,(p) = -

in the sagittal plane.

Assume the Abbe Sine Condition is satisfied for an optical system, then M(p) =
constant. Also assume the image space is homogeneous, then combining equations
(2.71) and (2.85), we draw the following conclusions:

e When s = t/cos’(8) = constant, then Wi(p) = 0, Wi(p) = constant, which means all
the quadratic field-dependent aberrations of the system are corrected.

e When t/cos’(6) = constant, then p,sz (p) + W,(p) is constant in tangential plane,
which means all the quadratic field-dependent aberrations in the tangential plane are
corrected.

e When s = constant, then W,(p)is constant, which means all the quadratic field-
dependent aberrations of the form Waqo (n is even), which include field curvature and
oblique spherical aberrations, are corrected.

e When s = t/cos’(6), then Wi(p) = 0, all the quadratic field-dependent aberrations of

the form W»,; (n is even) are corrected.
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2.4B INFINITE CONJUGATES SYSTEM

For an optical system with the object at infinity, following the same procedure in

Section 2.4A, we can obtain the mathematical expression for plez (p)+W,(p).

Figure 2.12. llustration of how to get p, W, (p) + W,(p) in the tangential plane by
tracing rays forward through the optical system with object at infinity.

Figure 2.12 shows an optical system with the object at infinity, the angle characteristic
of an off-axis field is approximately
T(A) = T(O) + hp, +[TTk560)* /2, (2.86)
where
860 = x, cos(9)/t
= poS(p)cos(6)/1. (2.87)

Then



T(A) = T(O)+x,p, - p," (f*(p)cos’(0)/(21)), (2.88)
where t<0.

Compare (2.88) to (2.23), we obtain

n.f*(p)cos’ (0
P W, (p)+ W, (p) = 2L (P 2)z ©) (2.89)
in the tangential plane.
In the sagittal plane, it is easily to show that
2
n.
P W, (p)+W,(p) = —‘—fz—s@ : (2.90)

When the Abbe Sine Condition is satisfied, f{p) = constant. With Eq. (2.89) and (2.90),
the Pupil Astigmatism Criteria (2.50) for the infinite conjugates system are again

derived.

2.5 COMPARING THE PUPIL ASTIGMATISM CRITERIA WITH THE
CODDINGTON EQUATIONS

It is important to understand the distinction between the pupil astigmatism
relations derived here, and the Coddington equations, that are used for determining field
curves. The conventional application of the Coddington equations in optical design is to
find where the tangential and sagittal rays intersect for small bundles of rays that all go
through the center of the stop, and are different for each field point. These give
information of the aberrations for any field point, but only those with quadratic pupil
dependence. The pupil astigmatism analysis looks at bundles of rays that all go through

the object point. Each point in the pupil has its own ray bundle. This information is
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used to determine aberrations that have quadratic field dependence, for all points in the
pupil. So the conventional treatment is complete for wide field of view systems with
long focal ratios. The pupil astigmatism is complete for systems with high NA and

small fields.

2.6 CONCLUSION

In this chapter, we present the Pupil Astigmatism Conditions for both systems
with object a finite distance away and systems with object at infinity. Three different
ways are taken to derive the conditions. The backward ray-tracing version of the criteria
shows the entrance pupil astigmatism determines the image aberrations that have
quadratic field dependence. This method is mathematically straightforward even though
it is not so physically. Then using the principle of energy conservation, the relation
between the forward and backward ray tracing properties are obtained, the forward ray-
tracing version of the criteria then follow. This version of the criteria shows the exit
pupil astigmatism determines the quadratic field-dependent aberrations. Finally, the
criteria are derived again by a direct forward ray-tracing approach. This approach is

taken again to derive the equivalent criteria for plane symmetric systems in Chapter 7.



68

CHAPTER 3

VALIDATION OF THE PUPIL ASTIGMATISM CRITERIA
TO 38° ORDER

3.1 INTRODUCTION

It is well known that the first order properties of an axisymmetric imaging
system can be used to predict the 3rd order, or Seidel aberrations in the image. In
addition to this, it is possible to predict similar aberrations in the pupil (Shack, Welford
1986). The relationship between image and pupil aberrations has also been established to
third order. (Shack, Welford 1986). Here we show that these relationships to be
consistent with a third order approximation to the more general Pupil Astigmatism
Conditions.

The Pupil Astigmatism Conditions were derived by investigating the mapping
relationships between pupils. For normal applications, these pupils are defined as images
of the aperture stop. In Chapter 2, we use the ray vector in image space as the pupil
coordinate (see Eq. (2.5)) to define aberrations. Such definition of aberrations and the
small field of view we are concerned determines that the actual stop location is not
important. It is convenient to set the entrance pupil at infinity for systems with object a
finite distance away. For systems with object at infinity, the stop location can be

arbitrarily chosen.
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3.2 IMAGE AND PUPIL SEIDEL ABERRATIONS AND THEIR RELATIONS

Seidel aberrations are 3" order aberrations. There are formulas for calculating
Seidel aberrations of an optical system using only its first order properties. To better

understand the formulas, we first define 2 quantities. One is Petzval Sum:
1
P=) cA(-), 3.1
n

where c is the curvature of an optical surface, n is the index of refraction, A(.) is an
operator that calculates the difference between the quantity in the parenthesis after and
before the surface, sum is over all the surfaces in the system. The other quantity is

Lagrangian Invariant:

H =nuy-nuy, (3.2)
where u and y are the marginal ray angle and height, and uand y are the chief ray angle
and height at a surface (see Figure 3.1). Let i and i be the incidence angles of marginal
ray and chief ray at a surface, then define 4 and A as follows:

A=niand A=ni. (3.3)

With the quantities defined in (3.1) — (3.3), we can calculate the coefficients of

Seidel aberrations using the following equations:

S, ==Y AzyA(%), (3.42)

Sy ="Z AZYA(‘E), (3.4b)
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Sy = "Z A ZyA(%)a (3.4¢)

Sy = -Z H ICA(-'I;)a (3.4d)
Aa° u, A., 1

S, ==Y {—A— YA +—H cA(;)} : (3.4¢)

< |

Figure 3.1. [llustration of the ray angles and heights at a surface.

There are Seidel formulas for pupil aberrations as well. Since the chief ray of the
image is the marginal ray of the pupil and the marginal ray of the image is the chief ray
of the pupil, the image serves as the pupil when the pupil aberration is concerned. So the
Seidel formulas for pupil aberrations are similar to Egs. (3.4) but with the exchanged
role of barred and unbarred quantities, i.e. 4 and A are interchanged, so are « and # .

Then the Seidel formulas for pupil aberrations are:
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5,=-Y A7), 3.52)
S,=-) AZyA(%), (3.5b)
Su=-2 AziA(%), (3.5¢)
Sy ==, Hch(%), (3.5d)
5, ==Y {AT;?A(%H%HZCA(%)}. (3.5¢)

The wave aberration coefficients defined in (1.3) is related to the Seidel coefficients in

the following way (Shack):

Wyo =S
040 8 I
1
n,lll--z_sll’
W, =<8
222 2 i
Wopow =~
220P_4 w»
W,, =+s
311 2 4

Here we only care about the aberrations with quadratic field dependence, i.e.

astigmatism and field curvature, so we only calculate 3 and 4™ Seidel coefficients:

Su>Sy and '§mv §IV'



The relationships between the image Seidel aberrations and pupil Seidel

aberrations are (Shack, Welford 1986):

§lll = S”] + HA(u;)a
Sw= Sws
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(3.6)

where A(.) is the difference between the quantity in the parenthesis in image space and

object space. It follows that
Sw +Sw =(S,, +S,)+HA(uu),
Sw +28u =(S,, +28,,)+2HA(uu),
Sw +38Sm =(S,, +38,,)+3HA(uu).

The longitudinal pupil aberrations at maximum aperture are (Welford 1986):

1 - =
OZ 330, =_2_:'2"(SW +S,”),
nu

1 = _
&220". =_2 — Sw +2Sm)9
nu

1 = —
&zzo: = _F(SIV +3S,,,)
nu

and

S
— _Swm
&220: _&zzm = n_-; ’

S
)i 4
&220: _3&2203 = m72 ’

(3.7a)

(3.7b)

(3.7¢)

(3.8a)

(3.8b)

(3.8¢)

(3.8d)

(3.8¢)
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where n is index of refraction and # is the chief ray angle in image space, see Figure
3.2. Here we follow Roland V. Shack’s notations for 3™ order longitudinal aberrations

such as &z,,,, , etc.

A 4+ 4
s’
t
Entrance “
Pupil at © 5 —= L
73 4
y
R
Object Exit [ > Image
Plane Pupil Plane

Figure 3.2. Illustrates a system with entrance pupil at infinity, s’ and t” denote the
sagittal and tangential pupil curves respectively.

In Figure 3.2, according to the sign convention, u«, u and y are all negative, Let R

be positive, then

ey
It
2 |

3.9)
H=-nuy.

So,

HA(uu) = —nRu’@?. (3.10)
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3.3 VALIDATION OF THE PUPIL ASTIGMATISM CRITERIA TO 3*° ORDER
The Pupil Astigmatism Conditions derived in Chapter 2 relate the field curves
for the pupil aberrations to the aberrations in the image that have quadratic field
dependence. In general these pupil field curves are not simply quadratic and can have
any dependence on the pupil parameter. Since we can use the Seidel equations to
directly calculate the third order pupil aberrations and the third order image aberrations,
we can show the existing pupil — image relationships to be the special cases of the more
general Pupil Astigmatism Conditions. Refer to Figure 3.2 for all the parameters used in

the calculations in this section.

(a) If condition (2.50b) holds, then

r'(u)

cos’ (u) N

and the longitudinal pupil aberration in tangential plane is:

&, = R —t'cos(u) = R(1 - cos®(u)) . 3.11)
To the 3™ order,
2
OZ 530, = ”% . (3.12)

Substitute Eq. (3.12) into Eq. (3.8c), we obtain
S, +3S8, =-3Ru’u?
= 3HA(uu). (3-13)

Then according to Eq. (3.7¢c),
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Sy +38, =0, (3.19)

which indicates the image’s tangential field is flat.
(b) If condition (2.50c) holds, then
s'(w)=R,
and the longitudinal pupil aberration in sagittal plane is:
6z, = R(1 —cos(u)) . (3.15)

To the 3™ order,
& pos =5 - (3.16)

Then, substitute Eq. (3.16) into Eq. (3.8a), we obtain
S, +8, =-nRu’’
= HA(uu). (3.17)

Then according to (3.7a),

Sy +S8, =0, (3.18)

which indicates the image’s sagittal field is flat.

(¢) If condition (2.50a) holds, then

o P _
S(u)_cosz(u) R,

therefore both Eq. (3.14) and Eq. (3.18) are true, so we can solve the equations and get

S, =0and S, =0, (3.19)



which indicates both the image’s astigmatism and field curvature are 0.

(d) If condition (2.50d) holds, then

r'(u)

cos?(u)

s'(u)= = R(u),

and the longitudinal pupil aberrations in the tangential plane is
&, = R - R(u)cos’ (1)
(3.20a)

and the longitudinal pupil aberrations in the sagittal plane is

&%, = R - R(u)cos(u) .
(3.20b)
Then,
&, -8, = R(u)cos(u)(1 —cos® (u)) .
The 3™ order approximation gives
oy — O ng, = RU* .
Combine Eq. (3.22) with Eq. (3.8d), we obtain
S, =-nRu*u?.
It then follows that
Sy =0,

which indicates the image’s astigmatism is 0.
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3.21)

(3.22)

(3.23)

(3.24)
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3.4 CONCLUSION

The forward ray tracing version of the Pupil Astigmatism Criteria for correcting
the quadratic field-dependent aberrations implies the connection of the criteria with the
relationships between image and pupil aberrations. The formulas that give the relations
of 3™ order image and pupil aberrations were revisited in this chapter. By using these
relationships we were able to validate the criteria to 3" order, i.e., when one of the
criteria is satisfied, the corresponding 3™ order quadratic field-dependent aberrations --

astigmatism and/or field curvature -- are indeed corrected.
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CHAPTER 4

USING THE PUPIL ASTIGMATISM CRITERIA TO
ANALYZE THE KNOWN DESIGN EXAMPLES

4.1 INTRODUCTION

Aberration theories can help people design well-corrected systems. The Seidel
aberration coefficient formulas, the Petzval theorem, the Constant Optical Path Length
Condition and the Abbe Sine Condition have been known to people for more than a
hundred years, and many elegant optical systems were designed under the guide of the
above mentioned aberration theories. Since the Pupil Astigmatism Criteria presented and
derived in Chapter 2 are new to optical designers, we can use them to analyze the known
designs. The reason for doing this is two-fold: one is to verify the criteria to some extent,
the other is to extract new information from the old designs.

In this chapter, several systems are analyzed, which include the aplanatic
conjugate pairs of a refractive sphere, the well-known Offner relay and Dyson system.
An idea inspired by the Offner and Dyson system leads to the design of a system with
superior performance: the modified Bouwers system. Lunberg lens is also presented to
show the effectiveness of the Pupil Astigmatism Criterion (2.50d) for systems with

object at infinity.
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4.2 THE APLANATIC CONJUGATE PAIR OF A REFRACTIVE SPHERE
A sphere with radius of curvature R and refractive index » has a pair of conjugate
points where perfect imagery is formed, therefore all orders of spherical aberration are

corrected. In the Figure 4.1, the index of refraction in the image space is 1, the distance

from the object to the vertex of the sphere surface is (1 + l)R , and the distance from the
n

image to the vertex of the sphere is (1+n)R . For this pair of conjugate points, the Sine

e - . . . smU . _,
condition is strictly satisfied, i.e. =sinU’, then we know all orders of coma are

n

corrected as well. In paraxial approximation X — ', from Seidel formulas (3.4a) —
n

(3.4c), we know all 3rd order spherical aberration, coma and astigmatism are absent.

Figure 4.1. The aplanatic conjugate pair of a refractive sphere.
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As far as spherical aberration and coma are concerned, the Constant OPL
Condition and the Abbe Sine Condition tells us more information than the Seidel
formulas because the Seidel formulas are approximated to 3" order and the Constant
OPL and Sine Conditions are exact. Do the Pupil Astigmatism Criteria in (2.50) provide
more information than Seidel formula too? The answer is yes. The proof is given below.
Seidel formulas say that the 3rd order astigmatism is absent while the Petzval curvature
is present, this fact indicates criterion (2.50d) may be true in this case. We will check

criterion (2.50d) to see whether it is strictly satisfied. To do that we need to calculate s

os” 0 and 1 . The Coddington equations are used to calculate s
s

and t and then compare <

and t. See Chapter 6 for the application of Coddington equations.

-

P4

Figure 4.2. [llustration of calculating s and ¢ for the aplanatic conjugate pair of a
refractive sphere.



81

120

100 -1
_!LQ)/cosze
s(8)
[eJelb}
1(0) 80 -1
-+

Figure 4.3 Plots of s, ¢ and t/cos’ @ as functions of @ for the aplanatic system shown in
Figure 4.1.

Figure 4.2. Illustrates how to trace the tangential rays to get ¢. In this figure,
t =TI and is a function of the ray angle #in image space. Similarly, sagittal rays can be
traced to get s. Assume the thin bundle of the sagittal rays focus on point S, then
s =8I, also a function of 8. Figure 4.3 plots s, ¢ and #/cos’ @ as functions of 6. The s curve
and t/cos’@ curve coincide exactly, which means criterion (2.50d) is perfectly satisfied,
therefore all orders of astigmatism of quadratic field dependence are corrected. The 3"

order prediction of the Seidel formula is consistent with this result.
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4.3 THE LUNEBURG LENS
The Luneburg lens, an infinite conjugate system, is presented below to show the
application of the Pupil Astigmatism Criterion in (2.50d). The Luneburg lens is a unit

sphere with the index of refraction

n(ry=v2-r*.
This lens images the object at infinity perfectly on its surface. Figure 4.4 (a) shows the

layout of the Luneburg Lens. Figure 4.4 (b) shows the index of refraction profile of the

lens.

N : o
\ ]

- ) . .
=1 0 1

@) (b)
Figure 4.4. (a) The Luneburg lens. Object at infinity is perfectly imaged onto a spherical
surface. (b) The index of refraction profile of the Luneburg Lens.
If we trace a thin bundle of parallel rays backward from the image point I, then
the tangential and sagittal foci coincide on the front surface of the lens. According to the
Pupil Astigmatism Criterion (2.22d), all the quadratic field dependent aberrations of the

form W3, are predicted to be absent. Direct analysis of the system shows that no
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astigmatism of any order exists in this imaging system, which conforms to the prediction
of the criterion. Because t(h)=s(h)=constant, the Pupil Astigmatism Condition predicts
the presence of aberrations of the form W3, , indeed there is significant field curvature

W20 in this system, so the validity of the criterion is again verified here.

Figure 4.5 Trace a thin bundle of rays from the image point I backward through the
Luneburg Lens. The tangential and sagittal foci coincide on the front surface of the lens.
We used the backward ray tracing version of the Pupil Astigmatism Criterion
above to show all orders of astigmatism are absent in the Luneburg lens. Below we also
show that the forward ray tracing version of the criterion predicts the correct result as
well. We use the optical analysis code ZEMAX to trace rays from any point in a plane
that is perpendicular to the optical axis in object space. ZEMAX determines the
locations of tangential and sagittal images, and s and ¢ are then calculated from this
information. Table 4.1 shows the calculated s and #/cos®8. The equality of the two
quantities indicates that astigmatism of any order is absolutely corrected according to the
Pupil Astigmatism Criterion (2.50d). Again this agrees with the well-known behavior of

this imaging system.



Figure 4.6. Trace a small cone of rays from any point in the plane in the object
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space through the Luneburg lens. s and ¢ are then calculated from the ray tracing

information.

Table 4.1. Forward ray tracing result of the Luneburg Lens. It is shown that

t/cos’0 =s.

Ray Angle 0 (in degree) t/cos’ s

0.000 -100.000 -100.000
4.589 -99.681 -99.681
9.207 -98.728 -98.728
13.887 -97.160 -97.160
18.663 -95.004 -95.004
23.578 -92.295 -92.295
28.685 -89.069 -89.068
34.056 -85.360 -85.360
39.792 -81.194 -81.194
46.054 -76.568 -76.568
53.130 -71.429 -71.429
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4.4 THE RETROREFLECTIVE CONCENTRIC SYSTEMS

A special case is when both 7 and s are equal to infinity and independent of the
ray angles, then the Pupil Astigmatism Condition (2.50a) is satisfied which predicts all
the quadratic field-dependent aberrations are corrected. For a concentric and
retroreflective system, if the object is put in the plane that contains the common center
of curvature, then ¢ and s are both equal to infinity and independent of the ray angle 6.
The system should be free of all the quadratic field-dependent aberrations including the
3" order astigmatism and field curvature. The Dyson and Offner systems fall into this
category, see Figure 4.7 and 4.8. We analyzed the two systems in ZEMAX, where all the
Seidel aberrations are shown to be zero. Also the residual aberrations are proportional to
the 4™ power of the field, which means the aberrations of quadratic field dependence are
corrected. So the Pupil Astigmatism Criterion does predict the correct result in this case.

Because of the symmetry, we traced only one bundle of rays, and we know that
3™ order astigmatism and field curvature are absent according to the criterion. If we use
the Coddington equations, we have to trace rays for a good number of field points. Next
we generate the field curve plot like those shown in Figure 4.7(c) and 4.8(c); we could
then see that no 3™ order astigmatism and field curvature are present. The Pupil
Astigmatism Criteria are certainly advantageous over the Coddington equations in this

case.
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Entrance + Exi Object
<——— Entrance xit
pupils at o
Image
(@)

() ©

Figure 4.7. (a) Dyson system. (b) Shows Dyson system is retroreflective, which means t
= § = 0. (c) Astigmatism is shown to be proportional to the 4™ power of the field height.
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Object

Entrance + Exit
pupils at

Image

(a)

(b) (©)

Figure 4.8. (a) The Offner relay. (b) Shows Offner relay is retroreflective, which means
t =s = . (¢) Astigmatism is shown to be proportional to the 4™ power of the field

height.



Object

Entrance + Exit
pupils at

Image

(a)

(b) (c)

Figure 4.9. (a) The modified Bouwers system. (b) Shows Bouwers system is

retroreflective, which means t = s = . (c) Astigmatism is shown to be proportional to
the 4™ power of the field height for a moderate field of view.

88
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Another example is modified from a Bouwers system, see Figure 4.9. The system
is designed so that the plane wave is focused on the convex surface of the meniscus lens.
This surface has a reflective coating taht makes the system retroreflective. If an object is
put in the plane that contains the common center of curvature, then the image will be in
the same plane. The system should be free of all quadratic field-dependent aberrations
including 3™ order astigmatism and field curvature just like the Offner relay and the
Dyson system are, and we verified this with a ZEMAX simulation. Compared to the
Offner relay, the residual higher-order astigmatism is greatly reduced for a moderate

field.

4.5 CONCLUSION

Several well-known optical systems are examined with the Pupil Astigmatism
Criteria in this chapter. These optical systems were designed under the guidance of the
known aberration theories, so certain aberrations are corrected as intended. What is not
known before is that some other aberrations are also corrected. After analyzing these
designs with the Pupil Astigmatism Criteria, we gain new information. The usefulness of
the criteria is demonstrated here. In the following chapters, more applications of the

criteria will be shown.



CHAPTERS

PREDICTING THE QUADRATIC FIELD-DEPENDENT
ABERRATIONS

5.1 INTRODUCTION

The Pupil Astigmatism Conditions tell us when certain or all types of quadratic
field-dependent aberrations are absent. When these conditions are not satisfied exactly,
we now have a method to predict what types of aberrations with quadratic field
dependence are present and what the amount of each type is. In this chapter, we will
give the formulas to calculate the quadratic field-dependent aberrations. Several

examples are given to support our argument.

5.2 FORMULAS FOR CALCULATING THE QUADRATIC FIELD-
DEPENDENT ABERRATIONS

From the equations in (2.6), we know that P’ W,(p) + W,(p)is the coefficient of

the x? (field square) term in the Taylor’s series expansion of the mixed characteristic
function W{()p) and its derivatives with regard to p, and g, are the coefficients of the x?
term of the transverse ray aberration. When an optical system is strictly aplanatic, i.e. no
spherical aberration and coma of any order is present, then the primary aberrations are

quadratic field-dependent, namely,
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Ax=-x,’ a%(p,zwz (0)+W,(0)), 5.1a)

1

8y =3} == (p"W,(0) + W, (). (5.1b)

1

In the derivation of the Pupil Astigmatism Conditions in Chapter 2, we obtained the
expressions for calculating p,’W,(p) + W,(p) in both tangential and sagittal plane. For

systems with object a finite distance away, we have

n,M?(p)cos®(0)
2t

P W, (p)+W,(p)=— . (5.2a)

2
wy(p)=-222 10, (5.2b)

where #; is the index of refraction of the medium in image space and M(p) is the

magnification for a specific pupil point p. For systems with object at infinity, we have

p W () +W,(p) =L (P ;f"sz(a) , (5.3a)
W;(p)=-"—"f2sﬂ, (5.3b)

where again #; is the index of refraction of the medium in image space and f{p) is the
effective focal length for a specific pupil point p.

When a system is strictly aplanatic, M(p) = constant for finite conjugate systems
and f{jp) = constant for infinite conjugate systems. From Egs. (5.2) and (5.3), the Pupil
Astigmatism Criteria (2.50) follow. Even when the criteria are not satisfied, we can still

get the information of the quadratic field-dependent aberrations from 7 and s.
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Assume the Taylor’s series expansion of W, and W; are:
W, (p)=Wyy +W,up0° + W, p* +......, (5.4)
W,(p) =Wy + Wyop* +Woiop* + Wogo p° + ... , (5.5)
where p* = p,* +4,> =n,” sin> 6, then substitute W, (p) and W,(p)into Egs. (5.1a) and

(5.1b), we obtain

Ax = —xoz Z n(W,, +W,0)p"", (5.6a)
Ay =-x," ) nW,,.p"" . (5.6b)
cos?(6) 1. ) . 2 . .
So we expand ; and — in the power series of sin” @, which is proportional to /2,
s

we can get the coefficients W,,, , W, Wi, s W, » €t and Wiy, W, 40, Wos, W, » €1C, then

detailed information of the quadratic field-dependent aberrations is known.
For a system with object a finite distance away, assume the Taylor series

expansion of 1/s turns out to be

=a,+b sin’@+c;sin*@+d,sin® 6 +....., 5.7)
s(0)
: : os’d 1
and the Taylor series expansion of ——— turns out to be
t(@) s@0)
2
05’0 __1__p sin?0+c,sin'O+d,sin® O+..  (5.8)
1(@) s6)
Then
2
w,, =M, (5.9a)
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nM? b

Wie =— '2 ;‘7 (5.9b)
nM? c
nM? d

sz = — ‘2 ;—16—, (S.Qd)

and

W =-”"1;4’ "1’22, (5.10a)
nM? c,

Wy =—— z-, (5.10b)
2 i
nM? d,

Wy =— ‘2 =. (5.10c)
n

i

Below we examine some examples where the criteria are not exactly satisfied.
We expand 1/s and cos20/t-1/s and calculate the coefficient of W, and W5, (n is even).
We compare the aberrations calculated this way with the ray tracing result in ZEMAX.
All the systems examined are strictly aplanatic, i.e. no spherical aberration of any order

and no coma of any order exists.

5.3 SPHERICAL MIRROR
The simplest aplanatic system is a spherical mirror with the object at the plane

that contains the center of curvature, see Figure 5.1 (a). Since the marginal ray hits the
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mirror normally, then the quantity 4 in the Seidel formulas (3.4a) and (3.4b) is equal to

0. Therefore the 3™ order spherical aberration and coma are all absent.

@)

Figure 5.1. (a) A spherical mirror. The object is at the plane that contains the center of
curvature of the spherical mirror. (b) Shows the sagittal image of the system is flat. The
tangential image is on the circle of radius of curvature R/4 and the medial image is on

the circle of radius of curvature R/2 where R is radius of curvature of the mirror.

As for the astigmatism and field curvature, the Seidel formulas (3.4c) and (3.44d)

give the following result:

2 9 )
S, =—h"u",
/74 R
and
2 5
S", = —-k-hzu’

It follows that (Welford 1986)

(5.11)

(5.12)



1
szo = ;IT;{(SIII + SIV)

=0,
and

1
Wy = 3 I(ZSIII+SIV)
h'u

2

=2

Eq. (5.13) indicates the sagittal image is flat. Further analysis shows the tangential
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(5.13)

(5.14)

image is on the circle with radius of curvature R/4 and the medial image is on the circle

with radius of curvature R/2. Figure 5.1 (b) shows this result.

Figure 5.2. Illustrates the ray tracing method to get ¢ and s for the system shown in

Figure 5.1 (a). #(0) = s(6) = R/2, where R is the radius of curvature of the spherical

mirror.
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Besides the 3™ order spherical aberration and coma, the constant OPL condition
and the Abbe Sine condition tells us that all orders of spherical aberration and linear
coma are zero for this system. These two conditions give us more information about the
system than the Seidel formulas do. We would like to know whether the Pupil
Astigmatism Criteria (2.50) give us more information than Seidel formulas too.

Figure 5.2 shows the ray tracing method to get ¢ and s. If the radius of curvature
of the spherical mirror is R (>0), then it is easily seen that t =s = -R/2. And t and s are
independent of the ray angle 8. Since s = -R/2 = constant, the Pupil Astigmatism
Criterion (2.50c) is strictly satisfied, so the sagittal image is free of any quadratic field-
dependent aberrations. According to Eqs. (5.7) and (5.9)s, all the aberrations of the form
Wm0, where n is even, are zero. And the fact that 1 = -R/2 = constant indicates that the
quadratic field-dependent aberrations are present in the tangential plane. Further analysis

shows that

cos’d 1 2sin’é@

—— . 5. 1 5
t s R ( )
Combine Eqgs. (5.15), (5.8) and (5.10)s, we then conclude
2
W.. =< 5.16
m =g (5.16)

and all higher order quadratic field-dependent astigmatism are zero.

So the Pupil Astigmatism Criteria predict the same result as the Seidel formulas
do to 3" order, but the criteria provide the information on higher order aberrations too.
This simple example demonstrates the power of the Pupil Astigmatism Conditions and

the result presented in the previous sections that comes with the criteria.
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5.4 A 4-ELEMENT SYMMETRIC SYSTEM

Figure 5.3(a) shows a symmetric system with unit magnification -1. Half of the
system is made up of a plano-hyberbolic lens and a concentric meniscus lens. The
hyperbolic surface has a conic constant e = —n?, where n is the index of refraction of the
glass. Thus, the lens focuses the plane wave sharply, i.e. no spherical aberration of any
order is present. The concentric meniscus lens makes the Petzval sum go to zero without
disturbing the converging wavefront after the plano-hyperbolic lens. The symmetry of
the system ensures that the Sine Condition is satisfied. The surface data of the system

are displayed in Table 5.1.

(a)
"ullill'ﬂ L\"thz‘;——q
(b)

Figure 5.3. (a) The layout of a symmetric anastigmatic system. (b) The ray fans of the
system.
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Table 5.1. Surface data of the optical system shown in Figure 5.3 (a).

Surf Radius Thickness Glass Conic
OBJ Infinity 30 0
1 -30 7.5 1.50 0
2 -37.5 262.5 0
3 150 10 1.50 -2.25
4 Infinity 76.67 0
STO Infinity 76.67 0
6 Infinity 10 1.50 0
7 -150 262.5 -2.25
8 37.5 7.5 1.50 0
9 30 30 0
IMA Infinity 0

Analyzing the system in ZEMAX shows that all 3" order aberrations are absent.
We also calculate 7 and s accurately by using the Coddington equations. Table 5.2
displays the result of the calculations. The calculations show that Pupil Astigmatism
Criterion (2.50a) is not exactly satisfied which indicates some quadratic field-dependent
aberrations are present. The ray fans in Figure 5.3 (b) suggest that the oblique spherical
aberration and the 5™ order astigmatism are present. The analysis below shows this
matches the prediction of the theory.

Expanding p,> W»(p) and W;(p) in Taylor series, we obtain
P W,(p) =35.99x107sin* @, (5.17a)
W,(p) =—-4.63+5.51sin" 6. (5.17b)

Then according to Egs. (5.4) and (5.5), we have

Wi =5.51 m™ and Was2 = 35.99x10° m™,
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and other aberrations coefficients are zero. Figure 5.4 plots the calculated discrete values
of W,(p)and p,sz (p) + W, (p) versus p (= sin(0)) and also the continuous 4™ order

fitted curves.

Using Egs. (5.17)s and (5.6)s, we plot the theoretical ray aberrations in both
tangential and sagittal plane for a field (x =0.5mm, y = 0) as solid lines in Figure 5.5. In
the same figure, the discrete dots are the ray tracing values obtained with ZEMAX. The
theoretical predictions and the ray tracing results agree to each other quite well. This
example verifies our argument in Section 5.2.

Table 5.2. The calculated s, t/cos’(6) and the aberration coefficients for the system
shown in Fi 5.3 (a).

) s tcos’(6) | Wi(p) = -1/(2s) P/*Wa(p) = 1/(2s)-cos’(8)/(21)
(degree) | (mm) | (mm) | (m™) (m™)

0 108 108 | -4.63 | Wy0= -4.63 0 [ Wx=0.00

0.9 108 108 | -4.63 vwvzz; 2:2‘1) 0 ‘xzz; (3).5689

138 108 | 108.001 | -4.63 | Wae= 0.00 [ 0.042867

2.7 | 108.001 108.005 -4.63 0.171458

3.6 | 108.002 108.016 -4.63 0.600037

45 | 108.005 108.039 | -4.629 1.456882

54| 108.01 | 108.079 | -4.629 2.955383

6.3 | 108.018 108.145 | -4.629 5.435896

72| 108.031 | 108.245| -4.628 9.150136

8.1 108.05 108.388 | -4.627 14.43048

9.0 | 108.077 | 108.583 | -4.626 21.55884




Figure 5.4. The plots of -1/(2s) and -cos’6/(2t) as functions of sind for the symmetric
systems shown in Figure 5.3(a). The continuous curves are the fitted 4" power curves.

theoretical x
s Zemax x

theoretical y
;. #emaxy

ray aberration

Figure 5.5. Plot of the tangential and sagittal ray aberrations vs. sin(0). The discrete

100

values are the ZEMAX ray tracing result. The solid lines are the theoretical predictions.
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5.5 A SYSTEM WITH FLAT TANGENTIAL IMAGE

We will examine another aplantic system which has a flat tangential field. Figure
5.6 shows the system. The surface data of the system is shown in Table 5.3. The
magnification of the syestem is m = 5.333418. The system is strictly aplanatic. We can
obtain the values of 7 and s by tracing a pair of closely spaced parallel rays in ZEMAX.
The calculated t/cos?(0) and s(0) for the system are listed in Table 5.4. It is shown that
t/cos?(0) is quite close to constant here. The spot diagram in Figure 5.7 (b) shows that

the tangential field is nearly perfect as is consistent with the theory.

Figure 5.6. An aplanatic system with flattened tangential field.

Table 5.3. Surface data of the optical system shown in Figure 5.6.

Surf Radius Thickness Glass Conic
OBJ Infinity 0 0

1 Infinity 50 2.67 0

2 -50 100 2.00 0
STO -100 100 0

4 Infinity -400 0

IMA Infinity 0
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Figure 5.7. (a) The field curve, and (b) the spot diagram of the system shown in Figure

5.6. The maximum field is 10 mm.

Table 5.4. The calculated s, t/cos*(0) and the aberration coefficients for the system
shown in Figure 5.6.

IIIIIIIIIlIIIIIlIIIIIlIIlIIlIlIIIIIlllIllIlIIIllIllIIIIIIIlIIIIIIIlllIII!IIIIIIIIIIIIIIIIIIIIIIII!

) t/cos’(@) | s Wi(p) = -m?/(2s) -m°cos*(8)/(2t)
(degree) | (mm) | (mm) | (m’) (m™)
0| -319.997 | -319.997 | 44.44627 | Wypo= 44.446 | 44.44627 | Wayy=-35.52

1.264 | -319.997 | -319.872 | 44.46364 ng; 22:33_3 44.44627 xz:z; '3:333

2.478 | -319.996 | -319.517 | 44.51304 | Wys= 0.00 44.44641

3.601 | -319.99 | -318.983 | 44.58756 44.44724

4606 | -319.979 | -318.336 | 44.67818 44.44877

5.485| -319.96| -317.638 | 44.77636 44.45141

6.238 | -319.934 | -316.94 | 44.87497 44.45502

6.875 | -319.903 | -316.277 | 44.96904 44.45933

7.412 | -319.869 | -315.668 | 45.0558 44.46405

7.862 | -319.835 | -315.12 | 45.13415 44.46878

8.239 -319.8 | 314.634 | 45.20387 44.47365
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Figure 5.8. Plots of W,(p) and p,ZW2 (p) +W,(p) vs. p for the system shown in Figure

5.6. The dots are the data calculated from the values of s and ¢, and the solid lines are the
polynomial fits (5.18).

With the values of t and s obtained by tracing rays in ZEMAX, we can calculate

W,(p)and p,zW2 (p) + W,(p) using Egs. (5.2). Then fit the calculated data, we get
W,(p) = 44.44627 +35.52p* +66.423p*, (5.18a)

PW,(p)+W,(p) =44.44627 + 64.77p". (5.18b)

Applying Egs. (5.4) and (5.5), we then obtain
Wago=44.44627 m',

szo = 35.52 m",
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Wi =66.423 m",
Wy =-35.52m",
Wiz =-1.653m™.
For a field point at (x = 0.5mm, y = 0), pupil coordinate sin® = 0.1866577, using
Egs. (5.1) and the above coefficients, we calculate its ray aberration: (Ax = 3.747 pm, Ay
=0.421 um). Compared to the ZEMAX ray tracing result: (Ax = 3.7771 pm, Ay = 0.441

pm), this is a very good prediction.

5.6 THE APLANAIC CONJUGATE PAIR OF A REFRACTIVE SPHERE

Finally we look at the aplanatic conjugate pair of a refractive sphere. Such a
system is free of quadratic field dependent astigmatism of all orders (see Chapter 4.2),
but significant field curvature is present. The system layout is shown in Figure 5.9(a)
and the ray fans of this system are plotted in Figure 5.10. Since the index of refraction of
the sphere is n = 2, the magnification of this system is m = 4. For a specific field point,
the identical tangential and sagittal ray fans indicate the absence of astigmatism. The
curved ray fans for non-zero fields show the presence of the oblique spherical
aberrations besides the 3™ order field curvature. Below we will determine the amount of

each type of aberrations.
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Figure 5.9. (a) The aplanatic conjugate pair of a sphere. The lens material has an index
of refraction 2.0, the radius of curvature of the spherical surface is 100 mm. (b) The field
curve of the system. The maximum field is 1 mm.
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Figure 5.10. The ray fans of the system shown in Figure 5.9(a).
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Table 5.5. The calculated s, /cos*(0) and the aberration coefficients for the system
shown in Figure 5.9.

) s tcos*(0) | Wi(p) = -m%/(2s) P2Wi(p)
(degree) | (mm) (mm) (m™) = m¥/(2s)-m’cos?(8)/(2t)
0 -400 -400 20 | W= 20 0| Wx=0.00
W= 18.4 Was= 0.00

3.415| -398.577 | -398.577 | 20.07 Was= 63.3

6.701 | -394.497 | -394.497 | 20.28 | Ws= 0.00

9.751 | -388.266 | -388.266 | 20.6
12.496 | -380.553 | -380.553 | 21.02
14.907 | -372.025 | -372.025 | 215
16.987 | -363.237 | -363.237 | 22.02
18.759 | -354.595 | -354.595 | 22.56
20.259 | -346.355 | -346.355 | 23.1
21.523 | -338.660 | -338.659 | 23.62
22.589 | -331.568 | -331.568 | 24.13

W262= 0.00

O] ©Of ©Of ©] ©f ©] O] ©o] ©] ©

Again ¢ and s can be obtained by tracing a pair of closely spaced parallel rays in
ZEMAX, we can then calculate W, (p) and p,’W,(p) + W,(p) using Egs. (5.2). The

results of ray tracing and calculation are listed in Table 5.5. With the values of tand s

obtained by ray tracing in ZEMAX, we can then fit the caiculated data and get

W,(p) =20+18.4p° +63.3p°, (5.19a)

P’ W,(p)=0. (5.19b)
Applying Egs. (5.4) and (5.5), we then obtain
Wzoo =20 m",

Wiyo=18.4m",
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W20=633m",
W32 =0 (n is even).
For a field point at (x =0.5mm, y = 0), and pupil coordinate sin6 = 0.3535233,
using Egs. (5.1a) and (5.1b) we calculate its ray aberration: Ax = Ay = 6.05 pm.
Compared to the ZEMAX ray tracing result: AX =Ay = 6.22 um, this is a very good

agreement.

/s

e W3 —Polynomial fit

Figure 5.11. Plot of W,(p) vs. sin@ where 0 is the ray angle in image space. The dots

are the real ray trace data listed in Table 5.5 and the solid line is the polynomial fit
(5.19a).
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5.7 CONCLUSION

For general cases where the Pupil Astigmatism Criteria in (2.50) are not
satisfied, the quadratic field-dependent aberrations can be calculated from the values of ¢
and s obtained by Coddington equations or ray tracing. The formulas for doing this are
given first in this chapter. They can be used for determining the true quadratic field-
dependent aberrations in the same way that Offense against Sine Condition (OSC) is

used for predicting coma. This analysis was confirmed using several examples.
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CHAPTER6

IMPLEMENTING THE PUPIL ASTIGMATISM CRITERIA
FOR DESIGN OF OPTICAL SYSTEM

6.1 INTRODUCTION

The pupil astigmatism criteria were derived in Chapter 2. In Chapter 3, we
showed them to be consistent with and more general than the relationships between
image and pupil Seidel aberrations. Chapter 4 demonstrated that fully corrected systems
obey the pupil astigmatism conditions and Chapter 5 shows how offense against the
pupil astigmatism conditions can be used to calculate field aberrations. All of this is
interesting and adds insight to the behavior of optical systems, but is not directly
applicable for making new systems. We now apply the Pupil Astigmatism Conditions to
define a class of imaging systems that is fully corrected for quadratic field aberrations,
for all points in the pupil. For correcting the quadratic field-dependent aberrations to
make sense, the spherical aberration and linear coma must be corrected first, then the

Constant OPL Condition and the Abbe Sine Condition must be satisfied.

6.2 THE CONSTANT OPL CONDITION AND THE SINE CONDITION
The Pupil Astigmatism Criteria in (2.50) can be used by an optical designer to

correct the quadratic field-dependent aberrations. For such correction to make sense, the
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field-independent aberrations (spherical) and linear field-dependent aberrations (coma)
must be corrected first. Described in Table 1.1, the condition for correcting all the
spherical aberrations are the Constant Optical Path Length (OPL) Condition and the
condition for correcting all coma is the Abbe Sine condition. Figure 6.1 shows a finite

conjugate system. The Constant OPL condition and the Sine condition for such systems

are:
OPL[OI]] = constant (independent of 0). 6.1)
s%n(a) = constant (independent of 0). 6.2)
sin(@)
a (]
o) I

Figure 6.1. An optical system with object a finite distance away.

Figure 6.2 shows an infinite conjugate system, the Constant OPL condition and the Sine

condition take different forms for such systems:

OPL[AI] = constant (independent of 0). (6.3)

=constant (independent of 6). (6.4)

sin(#)
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7
T\ I

Figure 6.2. An optical system with object at infinity.

It has long been known that we can satisfy the Constant OPL Condition and the
Abbe Sine Condition simultaneously to design the optical systems free of all orders of
spherical aberrations and coma (Luneburg 1966). Such systems are said to be strictly
aplanatic. Only two degrees of freedom are needed to design such systems. Each degree
of freedom will result in a general aspheric surface. These systems can be normal
incidence or grazing incidence systems since the Constant OPL Condition and the Sine
Condition is universal, unlike the Seidel formulas which are not. Mertz (1996) proposed
a novel method for designing such systems. Figure 6.3 and 6.4 show two examples
designed using Mertz’s method. Notice that the RMS spot size is proportional to the
square of the field angle. Cublic splines are used to simulate each general aspheric
surface generated by numerical method. For the grazing incidence system shown in

Figure 6.4, the surface function is expressed as » = f(z) instead of z = f(r) to make it

single-valued.
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Figure 6.3. (a) A normal incidence 3-mirror aplanatic telescope. The primary mirror is
spherical, and the secondary and tertiary are general aspheres. (b) The spot diagrams of
the aplanatic telescope. Notice the residual aberration is primarily quadratic field-

dependent.
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Figure 6.4. (a) A grazing incidence 3-mirror aplanatic telescope. The primary mirror is
spherical, and the secondary and tertiary are general aspheres. (b) The spot diagrams of
the aplanatic telescope. Note the residual aberration is primarily quadratic field-
dependent.
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6.3 THE PUPIL ASIGMATISM CRITERIA FOR CORRECTING THE
QUADRATIC FIELD-DEPENDENT ABERRATIONS
Since the Pupil Astigmatism Criteria (2.50) involve only the on-axis ray

properties, in this regard it is just like the Constant OPL Condition and the Abbe Sine
Condition. So we can implement them the same way as we implement Constant OPL
Condition and Sine condition in the design of the perfectly aplanatic systems and design
system free of certain or all types of quadratic field-dependent aberrations. Below we

rewrite the criteria (2.50):

n__ O _
s@)= c0s?(9) constant, (6.5a)
t(20) = constant, (6.5b)
cos (9)
5(@) =constant, (6.5¢)
__u9
s(@)= 05’ (@) (6.5d)

where ¢, s and 6 are quantities in image space.

When conditions (6.1) and (6.2) (or (6.3) and (6.4) for infinite conjugate system)
are combined with condition (6.5a), then all the aberrations of quadratic field
dependence are corrected besides all spherical aberrations and coma. When one of the
conditions of (6.5b)-(6.5¢) are satisfied instead of (6.5a), then specific quadratic field-

dependent aberrations are corrected.
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Since thin bundle of rays are traced to obtain ¢ and s, the Coddington equations

are the proper tools to use to implement the Pupil Astigmatism Conditions (6.5a)-(6.5d).

6.4 THE CODDINGTON EQUATIONS

When a narrow beam of light is obliquely incident on a refracting surface,
astigmatism is introduced. That is to say, the tangential rays and sagittal rays focus on
different locations. The Coddington Equations can calculate the locations of the

tangential and sagittal images (Kingslake 1978).

Principle ray

Figure 6.5. Illustration of the tangential rays of an oblique bundle of rays refracted by a
surface.

In Figure 6.5, a thin bundle of rays originating from a point B are incident on a
refractive surface. The principle ray hit the surface at P. The incidence angle of this ray
is I and the refraction angle is /". At Point P, the tangential radius of curvature of the
surface is R, and the sagittal radius of curvature of the surface is R;. The index of

refraction of the medium is n before the surface and n’ after the surface. The physical
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distance from point B to P is —¢ (¢<0), and the distance from the tangential image point B,
to Point P is ¢’ (>0). Then the Coddington equation to determine ¢’ from the given

parameters is:

n'cos’ I’ ncos’l n'cosl’'—ncos/

6.6a
t t R ( )

(4

Similarly, the Coddington equation below determines the location of the sagittal image:

n_n_n cos/ —ncosl, (6.6b)

s’ s R

where s is the distance from Point P to the sagittal image (denoted as B;), and -s is the

distance from B to P (therefore s =¢).

6.5 DETERMINE R, AND R, FOR GENERAL ASPHERIC SURFACES

For a general aspheric surface, R, and R; are not equal. In our discussion, we are
concerned with the rotationally symmetric surface only. Figure 6.6 shows a typical
rotational symmetric surface. P is a point on the surface with coordinate (r, z), and the
first and second derivatives of the curve at P is z’ and z”. Line PA is the tangent and
Line PC; is the normal at P. Because of the rotational symmetry, the sagittal radius of

curvature at P is then

V1+2z"?

R, =|PC||=r——F1 , 6.7)

where C; is the intersection of the surface normal at P and the optical axis.

And the tangential radius of curvature is
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Vi+2z? 6.8)

» 9

4

R, =|PC,

where C; is the center of curvature of the surface segment around P.

Figure 6.6. Illustrating how to obtain the tangential and sagittal radii of curvature of a
general aspheric surface with rotational symmetry. C; is the sagittal center of curvature
of the segment of the surface at P and C; is the tangential center of curvature of the same
segment.

6.6 DETERMINE THE SURFACE SLOPE WHEN THE RAY DIRECTIONS
BEFORE AND AFTER A SURFACE ARE KNOWN

When the indices of refraction and the ray directions before and after an optical

surface are known, the surface normal (therefore the slope) can be calculated by the
Snell’s Law. In Figure 6.7, a ray with ray vector n,.;l is incident on an optical surface,
and the refracted ray has a ray vector n_B. The Snell’s Law says

nAxn=nBxn, (6.9)

where 7 is the unit vector along the surface normal.

That is equivalent to
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Byxn=0. (6.10)
This equation indicates that the surface normal 7 at where the ray hits is parallel to the
vector n,.;i —n,B . Once the normal is known, it is trivial to obtain the surface slope. In

the numerical method to design systems free of certain or all types of quadratic field-
dependent aberrations, the slope of each surface is calculated this way when the ray

directions are known first.

B §
=]
b
\

\
’
’

Surface normal Refracted ray

I

e N\

Incident ray

Figure 6.7. Illustration of the Snell’s law.

6.7 NUMBER OF DEGREES OF FREEDOM

The Constant OPL Condition and the Sine Condition need two degrees of
freedom to implement, and the Condition (6.5a) needs two additional degrees of
freedom to be implemented, so a total of four degrees of freedom are needed to design a
system with no spherical aberrations, no linear and quadratic field-dependent
aberrations. Then a 4-surface system can be designed to correct all three types of

aberrations. To maintain only one of the Pupil Astigmatism Conditions (6.5b)-(6.5d), a
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three-surface system has enough degrees to correct all spherical aberrations, all linear

field-dependent aberrations and some specific quadratic field-dependent aberrations.

6.8 DESCRIPTION OF THE ALGORITHM

The three- and four-surface solutions are made numerically by defining each
surface directly, point by point. Since the relations used, the Constant OPL Condition,
the Sine Condition, and the Pupil Astigmatism Conditions are defined using on-axis ray
tracing, the surfaces are unique and easily defined. To simulate the performance of the
designed systems in ZEMAX, cubic splines are used to represent each surface.

The Constant OPL Condition involves only physical distance, so it determines
the coordinates of a point on each surface. While the Sine Condition involves the ray
directions in object and image space, it is appropriate to say it determines the slope of a
point on each surface. And the Pupil Astigmatism Conditions in (6.5) involve the
paraxial image locations of a point on a marginal ray, so they determine the local power,
therefore the second derivatives of a point on each surface. Each surface will be
generated following the above analysis. Below I will describe the algorithm used to
generate the surfaces in three- and four-surface systems.
6.8A 3-SURFACE SYSTEMS

If we first assume all the spacings, all the indices of refraction and the
magnification of a 3-surface optical system, then we can generate each surface
unambiguously. Figure 6.8 shows such a 3-surface system. O is the on-axis object point

and / is its image. At the vertices of each surface, 4y, By, Cy, the slope of the surface is 0.
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The vertices are the starting points of the surface generation. Assume the optical path
length from O to / is L, then we have
L =[04,]+[4,B,]+[B.C.)+[C.1]- (6.11)

Any the optical path length along any other ray from O to / must also be equal to L.

Co I
Figure 6.8. Illustration of the design procedure of the 3-surface system that is corrected

for all spherical aberration, coma and some specific quadratic field-dependent
aberrations.

Assume the i point of each surface has been generated, i.e. its coordinate and
slope are known. Then the (i+1 )® point of each surface should be on the tangent at the i’
point. We start with a ray from Point O. The ray has an angle o+ with the optical axis in
object space. This ray will go through Point / in image space and has an angle Bi+1 with
the optical axis. Since the Sine condition needs to be satisfied as well, then P+ is

known,

_nysina,,, (6.12)

n,sin B, , = Iml »

where m is the magnification of the system. Then the coordinates of 4;., and C;+, can be

calculated because they are the ray intersections with the first and third surface. The last
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step is to figure out the location of B;+, and the surface slope at 4;+;, Bi+; and C;+;. To
ensure that the Constant OPL Condition is satisfied, optical path length [4:+,C;+/] must
be a fixed number, i.e.
[4..C..]1=L-[o4..]-[C..1]. (6.13)

Then we know B;.; must be on the Cartesian oval that images Point 4;.+; on Point C;+,
perfectly. If the second surface is reflective, then B;+; must be on an elliptical surface.
The dashed curve around B;., in Figure 6.8 is the Cartesian oval. When we move B4,
along the Cartesian oval, the slopes at 4;+;, Bi+; and C;+, change as the ray direction
change and can be calculated using the method described in Section 6.6. Then the
second derivative at A+, Bi+;, Ci+; can be calculated since the coordinates of and the
slopes at 4;, B;, C; are already known. Then we can use the Coddington Equations (6.6a)
or (6.6b) to determine the image location of the point at infinity on the ray (see Figure
6.5). We can make the tangential or sagittal image or both at the desired location so that
one of the Pupil Astigmatism Criteria (6.5b)-(6.5d) is satisfied. Then the coordinate of
B+ is uniquely determined and the surface slope at each point can be calculated. The
same procedure is then followed to determine A;+2, Bi+2 and C;+. In this way the entire
system is generated.
6.8B 4-SURFACE SYSTEMS

For a 4-surface system, there are 4 conditions to be satisfied. Figure 6.9 shows
such a 4-surface system. If the coordinates of 4;, B;, C;and D; and slopes of each surface
at these points are known already, we can generate the next points A;+/, Bi+;, Ci+1and

Di+;. Just like in the design of 3-surface system, 4;+; and D;., are easily determined
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using the Abbe Sine condition. Once C;+; is chosen, following the same procedure
described in 6.8A, we can determine B;.; while satisfying the Constant OPL condition
plus one condition in (6.5a). For the other condition in (6.5a) to be satisfied, we can
move C;+; along the tangent at C;. The same procedure is then followed to determine

A+, Bi+2, Civ2and D;+;. In this way the entire system is generated.

o Ao Bo Co Do I
Figure 6.9. Illustration of the design procedure of the 4-surface system that is corrected

for all spherical aberration, coma and quadratic field-dependent aberrations.

6.9 EXAMPLE DESIGNS

By using the algorithm described in Section 6.8, three 3-surface systems and
three 4-surface systems are designed. The prescription data of these systems are
summarized in Table 6.1 and Table 6.2. Figure (6.10)-(6.12) show the 3-surface
systems. Figure (6.13) shows a 4-surface refractive system with object a finite distance
away. The system in Figure (6.14) is a refractive 4-surface system with object at infinity.
The system in Figure (6.15) is a 4-mirror system with object at infinity. The ray fans of

this system is shown in Figure 6.16. The spot diagrams of the 3-surface systems show
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that the aberrations we intended to correct are indeed corrected, and the spot diagrams of

the 4-surface systems show that the residual aberrations are third order in field.

Table 6.1. The prescription data of the 3-surface systems.

Optical System 3-surface systems (shown in Figure 6.10-6.12.)
Magnification m -15

Surface Thickness (mm) Index of refraction
Object Plane — 1*' surface | 1 1

1% — 2™ surface 5 1.5

2" — 3" surface 5 1.8

3" surface — image plane | 100 1

Table 6.2. The prescription data of the 4-surface systems.

Optical System 4-surface system (shown in | 4-surface system (shown in | 4-mirror system (shown in
Figure 6.13) Figure 6.14) Figure 6.15)

Magnificationm | m=-15 f=18.16539 mm f=1779 mm

or Focal Length f

Surface Thickness Index of Thickness Index of Thickness Index of
(mm) refraction (mm) refraction (mm) refraction

Object Plane - 1* | 1 1 infinity 1 infinity 1

surface

1% — 2* surface S 1.5 S 1.5 -50 -1

2 _3%surface | S 1 5 1 60 1

37 _4% surface S 1.5 5 1.5 -20 -1

4™ surface — 100 1 23.233582 1 32.296034 1
image plane
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Figure 6.10. (a) A 3-surface system with zero quadratic field-dependent aberrations in

tangential plane. All three surfaces are general aspheres. (b) The spot diagrams of the

system.
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Figure 6.11. (a) A 3-surface system with zero quadratic field-dependent astigmatism.
All three surfaces are general aspheres. (b) The spot diagrams of the system.
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Figure 6.12. (a) A 3-surface system with zero sagittal quadratic field-dependent
aberrations. All three surfaces are general aspheres. (b) The spot diagrams of the system.
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Figure 6.13. (a) A 4-surface system with no quadratic field-dependent aberrations. All
four surfaces are general aspheres. (b) The spot diagrams of the system.
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Figure 6.14. (a) A 4-surface system with no quadratic field-dependent aberrations. The
object is at the infinity. All four surfaces are general aspheres. (b) The spot diagrams of

the system.
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Figure 6.15. (a) A 4-mirror system with no quadratic field-dependent aberrations. The
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object is at infinity. All four surfaces are general aspheres. (b) The spot diagrams of the

system.
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Figure 6.16. The ray fans of the 4-mirror system shown in Figure 6.15.

In designing the above systems, one problem often encountered was the
numerical generation could not go on because the solution to one of the pupil
astigmatism conditions could not be found. We believe the algorithm described in
Section 6.8 is correct, the problem may lie in its numerical realization in the computer
program. We were unable to debug the program. Nevertheless, the designs we present
here do show the usefulness of the Pupil Astigmatism Conditions in optical design.

Finding out what causes the failure of the program will continue to be my task.

6.10 CONCLUSION
The fact that the Pupil Astigmatism Conditions presented in Chapter 2 involve

only the properties of the rays originating from the on-axis object point makes it very

130
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convenient to implement them precisely in designing an optical system just like the
Constant OPL Condition and the Abbe Sine Condition. In this chapter, the necessary
tools in implementing the conditions are introduced, the algorithm used to implement the
conditions is described and some examples designed are presented. The actual computer
programs for designing these systems are listed in Appendix A. The programs for
simulating the surface made up of the generated discrete points in ZEMAX are listed in

Appendix B.
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CHAPTER 7

THE PUPIL ASTIGMATISM CONDITIONS FOR PLANE-
SYMMETRIC SYSTEMS

7.1 INTRODUCTION

The derivation of the pupil astigmatism conditions is general, and does not rely
on symmetry of the optical systems. The implementation of the conditions has so far
been limited to axisymmetric systems, as they are most common and the symmetry can
be exploited to make the analysis easy. We now develop the equivalent criteria for
plane symmetric systems. It is the application to these systems that the Pupil

Astigmatism Condition may have the most value for guiding system design.

7.2 THE PLANE SYMMETRIC SYSTEM

There is a plane of symmetry in a plane symmetric system, which means one half
of the system is the mirror image of the other. Axially symmetric system is a special
type of the more general plane symmetric systems. Both unobstructed reflective
telescopes and Extreme Ultra-Violet Lithography systems are plane symmetric. As more
and more plane symmetric systems need to be designed while no well-accepted method

exists to assist such design, knowing basic theories on how to correct aberrations for
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such systems are more and more important in modern optical design. Figure 7.1 is one

example of plane symmetric system.

M

o
N/

Figure 7.1. Unobstructed telescope: an example of plane-symmetric system.

In an axially symmetric system, the optical axis is always chosen as an axis of
the coordinate system. The object plane and image plane is perpendicular to the optical
axis. In a plane symmetric system, there is no obvious choice of axes. In literature, a
special ray, which originates from the field center and goes through the center of the
stop, is chosen as the optical axis ray (OAR). The OAR plays the same role as the
optical axis in the rotationally symmetric system: it becomes an axis of the coordinate
system referencing the variables describing the system. In this approach to extend the
Hamiltonian treatment to the plane-symmetric system, I did not choose the OAR as an
axis of the coordinate system. Instead, the intersection line of the plane of symmetry and
the object plane is chosen to be yop-axis of the coordinate system XoYozo in the object

plane, the xo-axis is perpendicular to the plane of symmetry and the zp-axis is in the
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plane of symmetry. The coordinate system x,y;z, in the image space is defined
similarly: y;-axis is along the intersection line of the plane of symmetry and the object
plane, the x;-axis is perpendicular to the plane of symmetry and the z,-axis is in the
plane of symmetry. The direction cosines in the object space and image space are
relative to the corresponding coordinate systems. Figure 7.2 shows the definition of the

coordinate systems for a plane symmetric optical system.

Entrance Pupil Exit Pupil
\ I Image Plane
M
Object Plane
I
I X) OAR

Figure 7.2. [llustration of the definition of coordinate systems for a plane-symmetric
system. The ray that originates from the center of the field and goes through the center
of pupil is called Optical Axis Ray (OAR). The object plane is Xo-Yyo, and the image
plane is x,-y;.

7.3 THE HAMILTON’S CHARACTERISTIC FUNCTIONS FOR PLANE
SYMMETRIC SYSTEMS
In dealing with the plane symmetric systems, I still use the Hamilton’s
Characteristic functions: mixed characteristic for finite conjugate systems and angle

characteristic for infinite conjugate systems. The terms in the Taylor series expansion of
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the characteristic functions are now different than those for the axially symmetric

systems.

For a system with object a finite distance away, we denote a field point in the
object plane as # , and the ray vector in the image space as 5. Now we define a unit
vector i , which is in the plane of symmetry. Then we make following definitions:

T 2 2
h-h=h"+h, ",

where A, and h, are the xo and yo components of h ,and p, and p,  arethex, andy;
components of p . Since the mixed characteristic function is a scalar, and it must be
invariant when the system is reversed about the plane of symmetry, it must depend
solely on the dot products of the three vectors: h, p and i . Now a term in the Taylor
series expansion of the mixed characteristic function takes the following form:

W okonspamrssanpa = -B) (B-P)"(h-p)"( -h)* (i - ). (7.1)

Now we expand the mixed characteristic in Taylor series:
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W(h,p)= W,(p- p.i - P)
+(h-PW,,(p-p.p-1)+(h-DIW,(p-5,p-T)
+(h-hYW,, (- P, p-T)
+(i1.'/3)2W21,(l-5'ﬁsl3';) (7.2)
+(h-0) Wy (B-pp-T)
+(h-TYh - P,y (PP, p-T)

The first term in Eq. (7.2), Wp, does not depend on h . If it is a constant, the center field
point is imaged stigmatically. If it is not a constant, there must be aberrations that are
independent of field size. The second and third terms determine the magnification and
linear field-dependent aberrations. The 4™.7" terms determines the aberrations that are

quadratic in field.

For a system with object at infinity, we use the Hamilton’s angle characteristic
function instead. Replace the field vector 4 in Eq. (7.2) with the ray vector 5, in object

space, we then obtain the angle characteristic.

7.4 THE PUPIL ASTIGMATISM CONDITION FOR PLANE SYMMETRIC
SYSTEMS

By using Eq. (1.10a), we can calculate the ray vector in object space for h =0
from Eq. (7.2):
Po ==V ;W(h,p)
=—pW,,(P-p.p-1)—i W, (PP, p-1). (7.3)

If the system is corrected for field-independent aberrations, then
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W,(5 - p.i - p)= constant,
and the ray intercept at the image plane is

-

hl = -VﬁW(i‘.aﬁ)

=—hW, (5P, p-1)—(h-PW W,u(P- P, p-T)=(h - DIV ;W (B- B, B-T). (14)
For the system to form a perfect image of the infinitesimal area around the center of
field, W, and W, must be constant, i.e.

w,

= —m= constant, and W, = —a = constant, (7.5)
where m is the system magnification.
Then Eq. (7.3) becomes

P, =mp +ai . (7.6)
And it is equivalent to

P, =mp, and p, =mp  +a, (7.7
where p, and p, are the xo and yo components of g, . This is the general Sine Condition

for plane symmetric systems. As the axially symmetric system is a special type of plane
symmetric system, the Sine condition of the axially symmetric system (2.11) is a special
form of Eq. (7.7) when a=0.

We derived the general Sine condition for the plane symmetric system above.

Once this condition is fulfilled, then there is no linear field-dependent aberrations
present in the system which include anamorphism: (7 - k)7 - ), linear

astigmatism: (7 - p)(h - p), etc.
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We now proceed to correct the quadratic field-dependent aberrations using the
powerful Hamiltonian characteristic functions. It is pointed out before that he last four
terms of Eq. (7.2) represent the aberrations that are quadratic in field. For the aberrations
to be corrected, each term must be independent of p, then the following statement must
be true:

W1, = constant ¢,

W= Wu=0,

W= constant c.
To find out what the physical meaning of the coefficients W, W25, W2c and W4, We will
follow the same procedure as the derivation of the Pupil Astigmatism Criteria (2.50) in

Chapter 2.

-~ Yo

)

Xo O

(a) ®)

Figure 7.3. Trace a thin parallel bundle of rays centered at a ray from the field center
with ray vector 5, in object space. (a) 3-D illustration of the bundle of rays, and (b)

looking down the z, axis.
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Assume the center of field is imaged perfectly, then consider a ray from the field
center with the ray vector 5 in image space and g5, in object space, and trace a thin
bundle of parallel rays centered on this ray through the system. This is equivalent to

looking at the image of an entrance pupil at infinity. Figure 7.3 illustrates the bundle of
rays being traced. The ray that originates from a field point h = (h,,,0,0) with ray

vector p, intersects the image plane at 171 = (h,,,0,0) . We now call this ray the sagittal
ray of the parallel bundle. Similarly, the ray that originates from h=(0,h ,,»0) with the
ray vector p, is called the tangential ray of the bundle. If the generalized Sine Condition
(7.7) is satisfied, then h, =mh, forany p,when h__ is infinitesimal. If this ray
intersects the center ray of the bundle with ray vector § in image space at the point T,

then let IT,= ¢, and the angle between the two rays be AO. Figure 7.4. shows the center
and sagittal rays in image space. In analogy to the derivation of criteria (2.50) in Chapter
2, the mixed characteristic W for the sagittal ray is:

”,: (hxo ’ ﬁ) = W(O’ ﬁ) - hxo p-"o -mi, +nt, COS(Aa)

2
= W(Ovﬁ)'—hxopxo -t (Ag) ’ (7'8)

where n; is the refractive index of the medium in image space, and p, is the xo

component of ray vector pJ,.
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“ ¥

Hi(4..,0,0)

rA

Figure 7.4. 3-D illustration of the sagittal ray of the paraliel bundle in image space. The
ray intersects the image plane at (4, ,0,0). The angle between the sagittal ray and the

center ray of the bundle is AO.

Figure 7.5. Blow out of the triangle TsIH, in Figure 7.4.

A0 in Eq. (7.8) can be determined by the following equation (refer to Figure 7.5):

|7
AG =—
.|
=mhx° rE$A (7.9)
t n, '

Substitute (7.9) in (7.8), we obtain
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mzlﬁxillz R

7.10
2n,t, (7.10)

"’(hx.,’ij)E W(O’ﬁ)_hxopl’o -

Xq *
For the system to be free of the quadratic field-dependent aberrations, the coefficient of
the A fo term in the Taylor’s series expansion of the mixed characteristic must be a
constant, i.e.

m?|px %’

= constant 4. (7.11)
2n,t,

Similarly, for the tangential ray, we have the following condition for an optical system

to be free of quadratic field-dependent aberration (see Figure 7.6 for the definition of #):

m|px3,
2n,t,

2
I = constant B. (7.12)

S A

Xy

Hl (09 hv. ’O)

Z)

Figure 7.6. 3-D illustration of the tangential ray of the parallel bundle in image space.
The ray intersects the image plane at (0,4, ,0) . The angle between the tangential ray and

the center ray of the bundle is AG.
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In Eqgs. (7.11) and (7.12), £, and , are the unit vectors along x; and y, axis
respectively. For lack of the rotational symmetry, 4 and B are not necessarily equal.
When the general Sine condition is satisfied, m is a constant. Also for the most desirable
system, the image space is homogeneous and isotropic, so n; is also a constant. Then the

simplified form of the condition becomes

= constant, (7.13a)

— 2
Ii’it!i— =constant. (7.13b)

Egs. (7.13) are the Pupil Astigmatism Conditions for plane symmetric systems.
Again the axially symmetric system is a special type of plane symmetric system, so the
Pupil Astigmatism Criteria (2.50) should be a special example of (7.13). For
axisymmetric systems, we need to consider only the rays in y-z plane because of the
symmetry. It is easily shown that criteria (2.50) are the special form of (7.13).

Knowing the general Sine Condition (7.7) and the general Pupil Astigmatism
Conditions (7.13) for the plane symmetric system enables us to design new types of
systems that are corrected for aberrations up to the second order of field dependence and
all orders of pupil dependence. Like in the design of axisymmetric systems, Coddington
equations will play an important role in designing these new systems. Tools for
implementing the criteria to design such systems and tools for evaluating the
performance of the designed systems in an optical design code are yet to be developed.

This will be an interesting area of future work.
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7.5 CONCLUSION

Plane symmetric systems are studied in this chapter. The Hamilton’s
characteristic functions for the plane symmetric system are constructed and used to
derive the general Sine Condition and Pupil Astigmatism Criteria. The general Sine
Condition and Pupil Astigmatism Criteria contain their counterparts for the axially
symmetric systems as special cases. Again these criteria can be used in the numerical
design of the plane symmetric systems that are free of the field-independent, linear and
quadratic field-dependent aberrations. This work definitely adds a useful tool in the

design of plane symmetric systems.
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CHAPTER 8

CONCLUSION

We derived a set of conditions, which we call Pupil Astigmatism Conditions, for
correcting quadratic field-dependent aberrations. Hamilton’s characteristic functions
were used in the derivation. Just like the Constant OPL Condition is used for correcting
all orders of spherical aberrations and the Abbe Sine Condition is used for correcting all
orders of linear coma, the Pupil Astigmatism Conditions can be used to correct all orders
of aberrations that have quadratic field dependence. In this dissertation, we show that
these conditions are valuable new tools for analyzing and designing imaging systems.

The Pupil Astigmatism Conditions give the relations between the quadratic field-
dependent image aberrations and the astigmatism and field curvature of the pupil. It is
shown that the relations between image and pupil Seidel aberrations are the 3" order
approximation of these more general relations.

Examples of numerous systems were analyzed to demonstrate the power of the
Pupil Astigmatism Conditions. Compared to Seidel formulas, these conditions provide
more information about the aberrations that have quadratic field dependence.

The pupil astigmatism relations can be used not only to assess perfect systems,

but to quantify the aberrations with quadratic field dependence without going off axis.
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The Pupil Astigmatism Conditions were used to explicitly design 4-surface
systems that are fully corrected for all orders of aberrations with quadratic field
dependence. Some 3-surface systems were also designed to correct certain types of
quadratic field-dependent aberrations. In this dissertation, the methods for making these
designs is established, but not fully exercised. One area for future work may be in the
application of this powerful design tool to develop a new class of systems.

Finally, a more general model of the pupil astigmatism conditions was developed
for plane symmetric systems. The work presented here only shows that such conditions
exist. There has been no attempt to use these conditions to design plane symmetric
optical systems. It remains an important area of future work to follow this up and
develop software and analysis tools that can exploit the pupil astigmatism conditions to

design new types of plane symmetric imaging system efficiently.
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APPENDIX A

SOURCE FILES FOR DESIGNING OPTICAL SYSTEMS
NUMERICALLY

Numeric method is used to design optical systems free of all orders of spherical
aberrations, all the linear and quadratic field-dependent aberrations. “Ana.cpp” is the
source file for generating the surfaces of an infinite conjugate optical system. “Def.h” is
the header file which defines all the data structures and general variables used in
“Ana.cpp”.

Ana.cpp

/###*####******t#*#t##t**t#**#t#*t*tt**#t###*#t####********ttt**#*tt**#

This program designs 4-surface systems that correct all spherical aberrations and all
linear and quadratic field-dependent aberrations. The object is at infinity.
by Chunyu Zhao 10-21-2001

I I T YT TITIIT I T I LIRS 2 A2 23R R 22 2L 2 A 2 S 222 22 a2 22l Rt s idd L))

#include <iostream.h>
#include <math.h>
#include <fstream.h>
#include <iomanip.h>
#include "def.h"

double Codd1(double,double,double,double,double,double,double,double, double);
double Codd2(double,double,double,double,double,double,double,double,double

* double *,double *,double *);

double Codd_st(double, codd *);

double Cal_t(pnts *, slope *, double *, double *, double*, double *);

double Cal_s(pnts *, double *, double *, double*, double *);

void main()

{

//system parameter
n0=1;
nl =1.5;
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nz =5

n3=1.5;

nd=1;

t0=1; //for infinite conjugate case,the distance from a plane to 1st surf
tl =5;

2=35;

t3=S5;

t4 =23.233582;

m=-15; //for infinite conjugate case, should be focal length
f=18.16539; //focal length

t0=10;

to0 = t0/n0;

tol =tl/nl;

to2 = t2/n2;

to3 =t3/n3;

to4 = t4/n4;

double p1, p2, p3, p4, rl, 12,13, r4;
cout<<"Press any key to continue:\n";
char yn;

rl =-4.006932;
r2 =-4.233832;
r3 =-9.259410;
r4 = -8.239058;

pl =(nl - n0)/rl;
p2 =(n2 - nl)/r2;
p3 =(n3 - n2)/r3;
p4 = (n4 - n3)/r4;

/" dfi = Codd1(pl, p2, p3, p4, t1, t2, 13, t4);
dfi = Codd1(pl, p2, p3, p4, t0, t1, t2, t3, t4),
cout<<"\ndfi = "<<dfi<<"\n";
cout<<"Press any key to continue:\n";
cin>>yn;

//define the output data streams
char* Filename="C:\\Zemax\\Data Files\\InfSurfaceData0.dat";
char* FileSurfl = "C:\\Zemax\\Data Files\\InfSurf1.dat";
char* FileSurf2 = "C:\\Zemax\\Data Files\\InfSurf2.dat";
char* FileSurf3 = "C:\\Zemax\\Data Files\\InfSurf3.dat";
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char* FileSurf4 = "C:\\Zemax\\Data Files\\InfSurf4.dat";
char* FileBoundary = "C:\\Zemax\\Data Files\\InfBdata.dat";

fstream SurfaceData(Filename, ios::out);

fstream Surfl(FileSurfl, ios::out|ios::binary);
fstream Surf2(FileSurf2, ios::out|ios::binary);
fstream Surf3(FileSurf3, ios::outjios::binary);
fstream Surf4(FileSurf4, ios::outlios::binary);
fstream Bdata(FileBoundary, ios::outlios::binary);

//Set the vertex values of the 4 surfaces

xSurfl[0]=0;

zSurf1[0]=0;

slopeSurf1{0]=0;

xSurf2[0]=0;

zSurf2[0]=0;

slopeSurf2[0]=0;

xSurf3{0]=0;

zSurf3[0]=0;

slopeSurf3[0]=0;

xSurf4[0]}=0;

zSurf4[0]=0;

slopeSurf4{0]=0;
opd[0]=n0*t0 + n1*t]1 + n2*t2 + n3*t3 + n4*t4; //infinte conjugate case

prevd0 = t0;//new
preved.pl =pl;
preved.p2 = p2;
prevced.p3 =p3;
prevcd.p4 = p4;
preved.dl =tl;
preved.d2 = t2;
prevcd.d3 =t3;
prevced.d4 = t4;
preved.csl = 1;
preved.cslp =1;
prevcd.cs2 = 1;
preved.cs2p = 1;
prevcd.cs3 = 1;
preved.cs3p = 1;
prevcd.cs4 = 1;
prevcd.csdp = 1;
dfti = dfi;
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//out put the coordinates, slope of points at each surface to the file
SurfaceData<<setw(12)<<setprecision(8)<<xSurfl[0]<<" “;
SurfaceData<<setw(12)<<setprecision(8)<<zSurfl [0]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<slopeSurfl [0]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<xSurf2[0]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<zSurf2[0]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<slopeSurf2[0]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<xSurf3[0]<<" ";
SurfaceData<<setw( 12)<<setprecision(8)<<zSurf3[0]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<slopeSurf3[0]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<xSurf4{0]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<zSurf4[0]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<slopeSurf4{0]<<" ";
SurfaceData<<setw( 12)<<setprecision(12)<<opd[0];
SurfaceData<<"\n";

//define variables
int i, j, k, kl1;
int k2;
int NMax = nps;
double maxSin = 0.30; //NA; /Max height for inf case
double H = 2.5; //max height
double dh, hO; //height increment, specific height
double dSin;
double x1, z1, x4, z4;
double x2, z2, x20, 220, x2p, z2p;
double x3, 23, x30, 230, x3p, z3p, x3pp, z3pp;
double slpl, slp2, slp3, slp4;
double maxCt, dCt, ct0, Sct0, Tct0, Sct4, C2ct4, Tct4;
double dsl, ds2, ds3, df;
double dtl, dt2, dt3;
double theta, alpha, alpha0, betap, slp;
double curvl, curv2, curv3, curv4;
double opl;
double bl, cl, b2, c2;
double g0, dg;
double rtl, rt2, dz3, ddz3, 13, Cphi3, Sphi3;
double 12, Cphi2, Sphi2;
double root;
double dr, dx, dz, dfx, dfz, dt3x, dt3z, ang;
pnts pnts_4;
slope slopel;

curvl = 1/r];



curv2 = 1/12;
curv3 = 1/13;
curv4 = 1/14;

/" maxCt = asin(maxSin);
// dCt = maxCt/nps/nis;
/ dSin = maxSin/nps/nis; //delta sine between adjacent iteration
dh = H/nps/nis;
slopel.x1 =0;
slopel.x2 =0;
slopel.x3 =0;
slopel.x4 =0;
slopel.sipl =0;
slopel.slp2 = 0;
slopel.slp3 = 0;
slopel.slp4 = 0;
//Calculate surface data
//total number of data points at each surface is nps+1.
for(j=0; j<nps; j++){
//set the starting values of new iteration
xSurfl 1{0]=xSurfl1{j];
zSurfl 1[0]=zSurfl1{j];
slopeSurfl 1[0]=slopeSurfl1[j];
xSurf21[0]=xSurf2(j];
zSurf21[0]=zSurf2[j];
slopeSurf21[0}=slopeSurf2[j];
xSurf31{0]=xSurf3(j];
zSurf31[0]}=zSurf3(j];
slopeSurf3 1[0]=slopeSurf3[j];
xSurf41[0]=xSurf4[j];
zSurf41{0]=zSurf4(j];
slopeSurf41[0]=slopeSurf4(j];
//iterates "nis" number of times to get values at the (j+1)th point
for(i=0; i<nis;i++)
{
/* ct0 = (double)(i + 1 +j*nis)*dCt;
Sct0 = sin(ct0);
Sct4 = n0*Sct0/n4/m; //the sign conventions for ct0 and ct4 are
same

Tct0 = Sct0/sqrt(1-Sct0*Sct0);
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*/

surface

Tct4*slopeSurf41[i]);

slp*slopeSurf31[i]);
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C2ct4 = 1 - Sct4*Sct4;
Tctd = Sctd/sqrt(C2ctd);

hO = (double)(i + 1 +j*nis)*dh;
Sct0 =0;

Sct4 = -h0/f;

Tct0 = Sct0/sqrt(1-Sct0*Sct0);
C2ct4 = 1 - Sct4*Sct4;

Tctd = Sctd/sqrt(C2ct4);

dftip = dfti;
dfti = dfi*C2ct4;

//find out x4, z4: trace rays from image point back to the 4th

x4 = xSurf41[i] + (Tctd*(zSurfd1[i]-t4) - xSurf41[i])/(1-

z4 = zSurf41[i] + slopeSurf41[i]*(x4-xSurf41[i]);

theta = asin(Sct4);

alpha = atan(slopeSurf41[i] + curv4*(x4-xSurf41{i]));

betap = asin(n4*sin(theta + alpha)/n3);

slp = tan(betap - alpha);

//find out (x3, z3): trace rays from 4th surface to 3rd surface
x3p = xSurf31[i] + (slp*(zSurf31[i]-t3-z4) - (xSurf31[i]-x4))/(1-
z3p = zSurf31[i] + slopeSurf31[i]*(x3-xSurf31[i]);

x3 =x3p;
z3 = 23p;

//find out x1, z1
x1 = hO0; //infinite conjugate case

z1 = zSurfl11[i] + slopeSurfl 1[i]*(x1-xSurfl 1{i]);

theta = asin(Sct0); //incidence ray angle with z axis
alpha = atan(slopeSurfl 1[i] + curv1*(x1-xSurfl1[i])); //surface

slope angle with x axis



Z-axis

slp*slopeSurf21[i});
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betap = asin(nO*sin(theta + alpha)/nl); //refractive ray angle with
slp = tan(betap - alpha);

//assign values to data structure pnts_4

pnts_4.x1 =x1;

pnts_4.z1 =zl,;

pnts_4.x4 = x4,
pnts_4.z4 = z4;

//find out (x2, z2): trace rays from 1st surface to 2nd surface
x2 = xSurf21[i] + (slp*(zSurf21[i]+t1-z1) - (xSurf21[i]-x1))/(1-
z2 = zSurf21[i] + slopeSurf21[i]*(x2-xSurf2 1[i]);

x20 = x2;
220 =22;

theta = betap - alpha; //incidence ray angle with z axis
alpha = atan(slopeSurf21[i] + curv2*(x2-xSurf21[i])); //surface

slope angle with x axis

Z-axis

/!

betap = asin(nl *sin(theta + alpha)/n2); //refractive ray angle with

slp = tan(betap - alpha);//refracted ray direction?
alpha0 = alpha;

dx = 0.01*(x2 - xSurf21[i]);
dz = 0.01*(z2 - zSurf21[i]);

; //an indicator

if(kl = 2){

12 = 0.05*sqrt(pow(x2 - xSurf21[i], 2) + pow(z2 - zSurf2{i], 2));
Cphi2 = cos(alpha0);

Sphi2 = sin(alpha0);



x20)*(x2-x20);
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x2 =12*Cphi2 + x2;

z2 =12*Sphi2 + z2;

theta = atan((x2-x1)/(t1+z22-z1));

alpha = atan(slopeSurf21[i] + curv2*(x2-xSurf21[i]));
betap = asin(nl *sin(theta + alpha)/n2);

slp = tan(betap - alpha);

}
iflk1>2){
x2 = x2 - dt1*df;
z2 = 220 + tan(alpha0)*(x2-x20) + 0.5*curv2*(x2-
//z2 accurate to quadratic term
theta = atan((x2-x1)/(t1+z2-z1));
alpha = atan(slopeSurf21[i] + curv2*(x2-xSurf21[i]));
betap = asin(nl*sin(theta + alpha)/n2);
slp = tan(betap - alpha);
}
//assign values to data structure pnts_4
pnts_4.x2 =x2;
pnts_4.z2 = z2;

//make sure total opd is constant
opl = opd[0] - fabs(n0)*(z1+t0) - fabs(n1)*sqrt((x2-x1)*(x2-x1) +

(22+t1-z1)*(z2+t1-z1))

is equal to opl.

>(x4,24+t3).

to (x4,z4)

startin.g poust

- fabs(n4)*sqrt(x4*x4 + (t4-z4)*(14-z4));
//Cartesian oval: function of (x3,z3), opd from (x2, z2) to (x4, z4)

/M (x3, 23) local coordinates: (x2,z2)->(x2,z2-t2), (x4,z4)-

bl =-2%(z2 - t2);

cl =(22 - 12)*(z2 - 2) + (x3 - x2)*(x3 - x2);
b2 = -2%(z4 + t3);

c2 =(z4 + t3)*(z4 + t3) + (x3 - x4)*(x3 - x4);

//given x3, find z3. (x3, z3) is on the cartesian oval from (x2,22)
//Newton's method is used, previously calculated (x3,z3) is the

do{
rtl = sqrt(z3*z3 + b1*z3 +cl);
rt2 = sqrt(z3*z3 + b2*z3 + c2);
g0 = n2*rtl + n3*rt2 - opl;
dg = n2*(z3 + b1/2)/rtl + n3%(z3 + b2/2)/12;



n3*(z3-z4-t3)*rt1);
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23 =23 - g0/dg;
}while(fabs(g0)>1e-8);

//assign values to data structure pnts_4
pnts_4.x3 =x3;
pnts_4.z3 = z3;

dsl = Cal_s(&pnts_4, &slpl, &slp2, &slp3, &slp4) - dfi;

rtl =sqrt(z3*z3 + b1*z3 + cl);
rt2 = sqrt(z3*z3 + b2*z3 + c2);
dz3 = -(n2*(x3-x2)*rt2 + n3*(x3-x4)*rt1)/(n2%(z3-z2+t2)*rt2 +

Cphi3 = cos(atan(dz3));
Sphi3 = sin(atan(dz3));

//calculate the 2nd derivative at (x3, z3) along the cartesian oval
13 = 0.05*sqrt(pow(x3 - xSurf31[i], 2) + pow(z3 - zSurf31[i], 2));
x3pp =13*Cphi3 + x3;

z3pp =13*Sphi3 + z3;

x30 = x3; //the parabola segment of the 3rd surface is centered
z30 =z3; //at (x30, z30) which is a fixed point

ddz3 = 1/(n2*(z3-z2+t2)/rt1 + n3*(z3-24-t3)/rt2)*(-

(n2/rt1+n3/rt2)*(1+dz3*dz3)

+n2/pow(rtl,3)*pow((x3-x2)+(z3-z2+t2)*dz3,2) +

n3/pow(rt2,3)*pow((x3-x4)+(z3-z4-13)*dz3,2));

sagittal

//assign values to data structure pnts_4
pnts_4.x3 = x3pp;
pnts_4.z3 = z3pp;

ds3 = Cal_s(&pnts_4, &slpl, &slp2, &slp3, &slp4) - dfi;

df = (ds3 - ds1)/(x3pp - x3);
//Newton's method to find out the (x3, z3) that satisfies the perfect

//field condition
k=0;
dof
x3 =x3 - dsl/df;
23 = 230 + dz3*(x3-x30) + 0.5*ddz3*(x3-x30)*(x3-x30);

//accurate to quadratic term

cl = (22 - 12)*(22 - 12) + (x3 - x2)*(x3 - x2);



155

c2 = (z4 + 13)*(z4 +t3) + (x3 - x4)*(x3 - x4);

/* do{
rtl =sqrt(z3*z3 + bl1*z3 +cl);
n2 = sqrt(z3*z3 + b2*z3 + c2);
g0 =n2*rtl + n3*nt2 - opl;
dg = n2*(z3 + b1/2)/rtl + n3*(z3 + b2/2)/rt2;
z3 =23 - g0/dg;
}while(fabs(g0)>1e-8);*/

//assign values to data structure pnts_4
pnts_4.x3 =x3;
pnts_4.z3 = z3;

ds2 = Cal_s(&pnts_4, &slpl, &slp2, &slp3, &slp4) - dfi;

df = (ds2 - ds3)/(x3 - x3pp);

ds3 =ds2;

dsl =ds2;

x3pp =x3;

k++;
}while((fabs(ds2)>1e-4)&&(k<10));

ifltkl = 1){
x2p =x2;
22p =22

prevcd.pl = (slpl - (slopel.slpl))/(x1 -
(slopel.x1))/pow(sqrt(1 + slopel.slpl*slopel.sipl), 3)*(nl*prevcd.cslp -
n0*prevcd.csl);

prevcd.p2 = (slp2 - (slopel.slp2))/(x2 -
(slopel.x2))/pow(sqrt(1l + slopel.slp2*slopel.slp2), 3)*(n2*prevcd.cs2p -
nl*prevcd.cs2);

preved.p3 = (slp3 - (slopel.slp3))/(x3 -
(slopel.x3))/pow(sqrt(l + slopel.slp3*slopel.slp3), 3)*(n3*prevcd.cs3p -
n2*prevcd.cs3);

prevcd.p4 = (slp4 - (slopel.slp4))/(x4 -
(slopel.x4))/pow(sqrt(1 + slopel.slp4*slopel .sip4), 3)*(n4*prevcd.csdp -
n3*prevcd.cs4);

dt3 = Codd_st(prevd0, &prevcd) - dftip;
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else iftkl = 2){

preved.pl = (slp1 - (slopel.sip1))/(x1 -
(slopel.x1))/pow(sqrt(1 + slopel.slpl*slopel.sipl), 3)*(nl1*prevcd.cslp -
n0*prevcd.csl);

preved.p2 = (slp2 - (slopel.slp2))/(x2 -
(slopel.x2))/pow(sqrt(1 + slopel.slp2*slopel .slp2), 3)*(n2*prevcd.cs2p -
nl*prevcd.cs2);

preved.p3 = (slp3 - (slopel .slp3))/(x3 -
(slopel.x3))/pow(sqrt(l + slopel.slp3*slopel.slp3), 3)*(n3*preved.cs3p -
n2*prevcd.cs3);

prevcd.p4 = (slp4 - (slopel.slp4))/(x4 -
(slopel.x4))/pow(sqrt(1l + slopel.slp4*slopel.sip4), 3)*(nd*preved.csdp -
n3*prevcd.cs4);

dtl = Codd_st(prevd0, &prevcd) - dftip;
df = (x2p - x2)/(dt3 - dtl);
H

else{

preved.pl = (slpl - (slopel slp1))/(x1 -
(slopel.x1))/pow(sqrt(1 + slopel.slpl*slopel.slpl), 3)*(nl*prevcd.cslp -
n0*prevcd.csl);

prevcd.p2 = (slp2 - (slopel .sip2))/(x2 -
(slopel.x2))/pow(sqrt(l + slopel.slp2*slopel .slp2), 3)*(n2*prevcd.cs2p -
nl*prevcd.cs2);

preved.p3 = (slp3 - (slopel.slp3))/(x3 -
(slopel.x3))/pow(sqrt(1 + slopel.slp3*slopel.sip3), 3)*(n3*preved.cs3p -
n2*prevcd.cs3);

prevcd.p4 = (slp4 - (slopel .slp4))/(x4 -
(slopel.x4))/pow(sqrt(1 + slopel.sip4*slopel.sip4), 3)*(nd*prevcd.csdp -
n3*prevcd.cs4);

dt2 = Codd_st(prevdO, &prevcd) - dftip;
df = (x2 - x2p)/(dt2 - dt3);
dt3 =dt2;
dtl =dt2;
Xx2p =x2;
}

k1++;

}while((fabs(dt3)>1e-6)& &(k1<20));
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prevcd.dl = prevedl.dl;
preved.d2 = prevedl.d2;
prevcd.d3 = preved1.d3;
prevcd.d4 = preved1.d4;
prevcd.csl = prevedl.csl;
preved.cslp = prevedl.cslp;
prevcd.cs2 = prevedl.cs2;
prevcd.cs2p = prevedl.cs2p;
prevcd.cs3 = prevedl.cs3;
prevcd.cs3p = prevedl.cs3p;
prevcd.cs4 = prevedl.cs4;
prevcd.csdp = prevedl.csdp;
prevd0 =t0 + z1;//new

iftkl = 20) {
cout<<"\nNecessary precision could not be obtained!!!\n";
NMax = j+1;

//debugging

intil;

for(i1=0; il<=i;i1++){
Bdata<<setw(12)<<setprecision(8)<<xSurf21{il]<<" ";
Bdata<<setw(12)<<setprecision(8)<<zSurf21[il]<<" ";
Bdata<<"\n";

}

break;
}

//assign values to data structure slope
slopel.x1 =x1;

slopel.x2 = x2;

slopel.x3 = x3;

slopel.x4 = x4;

slopel.sipl = slpl;

slopel.sip2 = slp2;

slopel.slp3 = slp3;

slopel .slp4 = slp4;

xSurfl1{i+1] =x1;
zSurfl 1[i+1] = z1;
slopeSurfl1[i+1] =slpl;



|l<<dt3 <<"

/1
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curvl = (slpl-slopeSurfl 1[i])/(x1-xSurfl 1[1]);
xSurf21{i+1] = x2;

zSurf21[i+1] = z2;

slopeSurf21{i+1] = slp2;

curv2 = (slp2-slopeSurf2 1{i])/(x2-xSurf21[i]);
xSurf31[i+1] = x3;

zSurf31[i+1] = z3;

slopeSurf31[i+1] =slp3;

curv3 = (slp3-slopeSurf31[i])/(x3-xSurf31[i]);
xSurf41[i+1] = x4;

zSurf4l[i+1] = z4;

slopeSurf41[i+1] = slp4;

curv4 = (slp4-slopeSurf41[i])/(x4-xSurf41(i]);

Vi

cout<<j+l<<" o< "kl k<" "<<dsI<<"

"<<Ol\n" ;

cin>>yn;
if(NMax = j+1) break;

//set the values of a new iteration the end values of a previous iteration
xSurfl[j+1]=xSurfl 1{nis];
zSurfl1[j+1]=zSurfl 1[nis];
slopeSurfl[j+1]=slopeSurfl 1[nis];
xSurf2[j+1]=xSurf21[nis];
zSurf2[j+1]=zSurf21[nis];
slopeSurf2[j+1]=slopeSurf21[nis};
xSurf3[j+1]=xSurf31[nis];
zSurf3(j+1}=zSurf31[nis};
slopeSurf3[j+1]=slopeSurf31[nis];
xSurf4[j+1]=xSurf41[nis];
zSurf4[j+1]=zSurf41[nis];
slopeSurf4[j+1]=slopeSurf41[nis];

opd[j+1]=fabs(n0)*(t0 + zSurfl1[j+1])
+ fabs(nl)*sqrt(pow(xSurf2[j+1] - xSurfl[j+1], 2) +

pow(tl + zSurf2[j+1] - zSurfl{j+1], 2))

+ fabs(n2)*sqrt(pow(xSurf3[j+1] - xSurf2[j+1], 2) +

pow(t2 + zSurf3[j+1] - zSurf2[j+1], 2))
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+ fabs(n3)*sqrt(pow(xSurfd[j+1] - xSurf3[j+1], 2) +
pow(t3 + zSurf4d[j+1] - zSurf3(j+1], 2))

+ fabs(nd)*sqrt(pow(xSurf4[j+1], 2) + pow(t4 -
zSurf4[j+1], 2));

/write the data to the file
SurfaceData<<setw(12)<<setprecision(8)<<xSurfl [j+1]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<zSurfl[j+1]}<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<slopeSurfl[j+1]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<xSurf2[j+1]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<zSurf2[j+1]<<" ";
SurfaceData<<setw( 12)<<setprecision(8)<<slopeSurf2[j+1]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<xSurf3[j+1]<<" ";
SurfaceData<<setw( 12)<<setprecision(8)<<zSurf3[j+1]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<slopeSurf3[j+1]<<" ";
SurfaceData<<setw(12)<<setprecision(8)<<xSurf4[j+1]}<<" ";
SurfaceData<<setw(1 2)<<setprecision(8)<<zsurf4[i+ 1j<<"";
SurfaceData<<setw(12)<<setprecision(8)<<slopeSurfd[j+1]<<" ";
SurfaceData<<setw(12)<<setprecision(12)<<opd[j+1]<<" ";
SurfaceData<<"\n";

1y

//Out put the data of each surface to a file. The data structure is as follows
// Number of data points

/! An unused number

// Slope at the starting point

// Slope at the end point

// Pairs of radial and sag corrdinates

//output the data of 1st surface to a file

Surfl<<setw(25)<<setprecision(15)<<NMax<<" ";

Surfl<<setw(25)<<setprecision(15)<<0<<" ",

Surfl <<setw(25)<<setprecision(15)<<0<<" ";

Surfl <<setw(25)<<setprecision(15)<<slopeSurfl[NMax-1]<<" *";

Surﬂ <<"\n";

for(i = 0; i<NMax; i++){
Surfl<<setw(25)<<setprecision(15)<<xSurfl[ij<<" ";
Surfl<<setw(25)<<setprecision(15)<<zSurfl[i]<<" ";
Surfl <<n\nn;

H

//output the data of 2nd surface to a file
Surf2<<setw(25)<<setprecision(15)<<NMax<<" ";



160

Surf2<<setw(25)<<setprecision(15)<<0<<" ";

Surf2<<setw(25)<<setprecision(15)<<0<<" ";

Surf2<<setw(25)<<setprecision(15)<<slopeSurf2[NMax-1]<<" ";

Surf2<<"\n";

for(i = 0; i<NMax; i++){
Surf2<<setw(25)<<setprecision(15)<<xSurf2[i]<<" ",
Surf2<<setw(25)<<setprecision(15)<<zSurf2[ij<<" ",
Surf2<<"\n";

}

//output the data of 3rd surface to a file

Surf3<<setw(25)<<setprecision(15)<<NMax<<" ",

Surf3<<setw(25)<<setprecision(15)<<0<<" ";

Surf3<<setw(25)<<setprecision(15)<<0<<" ";

Surf3<<setw(25)<<setprecision(15)<<slopeSurf3[NMax-1]<<" ";

SUI'B<<"\H";

for(i = 0; i<NMax; i++){
Surf3<<setw(25)<<setprecision(15)<<xSurf3[i]<<" ",
Surf3<<setw(25)<<setprecision(15)<<zSurf3[i}<<" ";
SurB<<n\nu;

H

//output the data of 4th surface to a file
Surf4<<setw(25)<<setprecision(15)<<NMax<<" ";
Surf4<<setw(25)<<setprecision(15)<<0<<" ";
Surf4<<setw(25)<<setprecision(15)<<0<<" ";
Surfd<<setw(25)<<setprecision(15)<<slopeSurf4[NMax-1]<<" *";
Surf4<<"\n";
for(i = 0; i<NMax; i++){
Surfd<<setw(25)<<setprecision(15)<<xSurfd4[i]<<" ",
Surfd<<setw(25)<<setprecision(15)<<zSurf4[i]<<" ",
Surf4<<"\n";

}

//calculating the distance from focus to image plane, negative

/Ivalue is expected, the first 4 arguments are powers of each element

//the 5th is the ditance from a plane to the 1st surface

//the last 4 arguments are spacings

//also used are the system parameters such as indics of refraction.

// The formula is Coddington equation. sl is finite.

double Codd1(double p1,double p2,double p3, double p4, double d0, double d1, double
d2, double d3, double d4)
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double sl, slp, s2, s2p, s3, s3p, s4, s4p;
double s;

sl =-d0; //distance from the selected plane to 1st surface

if(s1=0) slp=0;
else if(fabs(p1+n0/s1)<(1le-20)) slp =nl1*1e30;
else slp =nl/(p1+n0/sl);

s2=slp-dl;

if{s2=0) s2p = 0;

else if{fabs(p2+n1/s2)<(1e-20)) s2p = n2*1e30;
else s2p = n2/(p2+n1/s2);

s3 =s2p -d2;

if{s3 =—0) s3p =0;

else if(fabs(p3+n2/s3)<(1e-20)) s3p =n3*1e30;
else s3p = n3/(p3+n2/s3);,

s4 =s3p - d3;

if{(s4 = 0) s4p = 0;

else if{fabs(p4+n3/s4)<(1e-20)) s4p = n4*1e30;
else s4p = n4/(p4+n3/s4);

s =sdp - d4;
return s;
}

//calculating the distance from focus to image plane, negative
//value is expected, the first 8 arguments are coordinates of ray intersection
//at each element. The last 4 argumants hold the slopes.Also used are the
//system parameters such as indics of refraction and spacings. The formula
//is Coddington equation.
double Codd2(double x1,double z1,double x2,double z2,double x3, double 23,
double x4, double z4, double * slpl, double * sip2, double * slp3,
double * slp4)

{

double csl, cslp, cs2, cs2p, cs3, cs3p, cs4, cs4p; //cosines of incident and
refractive angle

double p1, p2, p3, p4; //oblic power at each surface

double d0, d1, d2, d3, d4; //equivalent spacings between elements

double rl, r2, r3, r4; //sagittal radius of curvature

double Cct0, Sct0, Cctl, Sctl, Cct2, Sct2, Cct3, Sct3, Cct4, Sct4; //ray angles



/!
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double N1z, N1x, N2z, N2x, N3z, N3x, N4z, N4x; /normal at each surface
double N11, N21, N31, N4l; //length of the normal at each surface
double slope3;

dO = sqrt(x1*x1 + (t0+z1)*(t0+z1)); //finite case

dO = t0+z1; //infinite case

dl = sqrt((x2-x1)*(x2-x1) + (t1+z2-z1)*(t1+22-z1));
d2 = sqrt((x3-x2)*(x3-x2) + (12+23-22)*(12+23-22));
d3 = sqrt((x4-x3)*(x4-x3) + (t13+z4-23)*(13+24-23));
d4 = sqrt(x4*x4 + (14-z4)*(t4-z4));

Cct0 = (t0+z1)/d0; //finite case
Sct0 =x1/d0;

CctO=1; /finfinite case
Sct0=0;

Cctl =(t1+22-z1)/d1;

Sctl = (x2-x1)/d1;

Cet2 = (12+23-22)/d2;

Sct2 = (x3-x2)/d2;

Cct3 =(t3+2z4-z3)/d3;

Sct3 = (x4-x3)/d3;

Cct4 = (t4-z4)/d4;

Sct4 = -x4/d4;

N1z =nl1*Cctl - n0*Cct0;
N1x =nl1*Sctl - n0*SctO;
N1l =sqrt(N1z*N1z + N1x*Nlx);

N2z =n2*Cct2 - n1*Cctl;
N2x =n2*Sct2 - n1*Sctl;
N2I = sqrt(N2z*N2z + N2x*N2x);

N3z =n3*Cct3 - n2*Cct2;
N3x =n3*Sct3 - n2*Sct2;
N31 = sqrt(N3z*N3z + N3x*N3x);

N4z =n4*Cct4 - n3*Cct3;
N4x = n4*Sct4 - n3*Sct3;
N4l = sqrt(N4z*N4z + N4x*N4x);

(*slpl) = -atan2(N1x, N1z);
(*slp2) = -atan2(N2x, N2z);
(*slp3) = -atan(N3x/N3z);
slope3 = -atan(N3x/N3z);
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(*slpl) = -tan(atan2(N1x, N1z));
(*slp2) = -tan(atan2(N2x, N2z));
(*slp3) = -tan(atan2(N3x, N3z));
*/
(*slpl) =-N1x/Nlz;
(*slp2) = -N2x/N2z;
(*slp3) = -N3x/N3z;
(*slp4) = -N4x/N4z;

/#
rl = ((*slp1)==0)? 0 : x1/sin(atan((*slp1)));
r2 = ((*slp2)==0)? 0 : x2/sin(atan((*slp2)));
r3 = ((*slp3)==0)? 0 : x3/sin(atan((*slp3)));

*/
rl = (fabs((*slp1))<= fabs((1e-10)*x1))? 0 : x1*sqrt(1+pow((*slp1),2))/(*slpl);
r2 = (fabs((*slp2))<= fabs((1e-10)*x2))? 0 : x2*sqrt(1+pow((*slp2),2))/(*slp2);
r3 = (fabs((*slp3))<= fabs((1e-10)*x3))? 0 : x3*sqrt(1+pow((*slp3),2))/(*slp3);
r4 = (fabs((*slp4))<= fabs((1e-10)*x4))? 0 : x4*sqrt(1+pow((*slp4),2))/(*slp4);

csl = fabs((N1z*Cct0 + N1x*Sct0)/N11);
cslp = fabs((N1z*Cctl + N1x*Sct1)/N1l);

cs2 = fabs((N2z*Cctl + N2x*Sct1)/N2I);
cs2p = fabs((N2z*Cct2 + N2x*Sct2)/N21);

cs3 = fabs((N3z*Cct2 + N3x*Sct2)/N31);
cs3p = fabs((N3z*Cct3 + N3x*Sct3)/N3l);

cs4 = fabs((N4z*Cct3 + N4x*Sct3)/N4l);
cs4p = fabs((N4z*Cct4 + N4x*Sct4)/N4l);

pl =(rl1 ==0)? 0 : (n1*cslp - n0*csl)/rl;
p2 = (2 =0)? 0 : (n2%cs2p - nl*cs2)/r2;
p3 = (3 =0)? 0 : (n3*cs3p - n2*cs3)/13;
p4 = (rd == 0)? 0 : (n4*cs4p - n3*csd)/r4;

return Codd1(pl, p2, p3, p4, d0, d1, d2, d3, d4);

}

//General Coddington equation: both tangential and sagittal versions are embedded.
//return: the distance from finite image location to the focus.
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double Codd_st(double dO, codd * cd)

{
double sl, slp, s2, s2p, s3, s3p, s4, s4p;
double s;

s1 =-d0; //distance from the selected plane to 1st surface
//object at finite distance away, ray trace along a certain ray

//at the 1st surface
/! slp = (cd->p1==0)? n1*1e30 : n1*pow(cd->cslp,2)/(cd->pl);
/! s2 =slp - (cd->d1);
if(s1==0) slp = 0; //right at the 1st surface
else if{fabs((cd->p1)+n0*pow(cd->cs1,2)/s1)<(le-20)) slp = n1*1e30; //right at
the local front focus
else s1p = n1*pow(cd->cslp,2)/((cd->p1)+n0*pow(cd->cs1,2)/sl); //general case
s2 =slp - (cd->d1);

//at the 2nd surface

if(s2==0) s2p = 0; //right at the 2nd surface

else if{fabs((cd->p2)+nl*pow(cd->cs2,2)/s2)<(1e-20)) s2p = n2*1e30; //right at
the local front focus

else s2p = n2*pow(cd->cs2p,2)/((cd->p2)+nl*pow(cd->cs2,2)/s2); //general case

s3 =s2p - (cd->d2);

//at the 3rd surface

if(s3 = 0) s3p = 0;

else if{fabs((cd->p3)+n2*pow(cd->cs3,2)/s3)<(le-20)) s3p = n3*1e30;
else s3p = n3*pow(cd->cs3p,2)/((cd->p3)+n2*pow(cd->cs3,2)/s3);

s4 = s3p - (cd->d3);

//at the 4th surface

if(s4 = 0) s4p = 0;

else if(fabs((cd->p4)+n3*pow(cd->cs4,2)/s4)<(1e-20)) s4p = nd*1e30;
else s4p = n4*pow(cd->csdp,2)/((cd->p4)+n3*pow(cd->cs4,2)/s4);

s = sdp - (cd->d4);

//return the distance between the local focus to the system on-axis image point
return s;

}

/*#****##*#tt#t*‘##****t**t**#*t*.**#*#***t*##*##******#*****#*****##**

Cal_t: apply Coddington equations to tangential rays.
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input: the ray intersection at each surface and the previous sections' slopes
return: the distance between tangential focus and the image point and
the slopes at each surface

ERREERERERREEEERERRERERERERERREREEREEEEEERERRRE SRR RAEREREEERE kR ERR KKK/

double Cal_t(pnts * pnt_4, slope * slp, double *slp01, double *slp02, double *sip03,
double *slp04)

{

codd cdl;

double csl, cslp, cs2, cs2p, cs3, cs3p, cs4, csdp; //cosines of incident and

refractive angle

/!

double d0, d1, d2, d3, d4; //equivalent spacings between elements

double rl, r2, r3, r4; //sagittal radius of curvature

double Cct0, Sct0, Cctl, Sctl, Cct2, Sct2, Cct3, Sct3, Cct4, Sct4; //ray angles
double N1z, N1x, N2z, N2x, N3z, N3x, N4z, N4x; //normal at each surface
double N 11, N2|, N3], N4l;//length of the normal at each surface

double slpl, slp2, sip3, slp4; //slopes at each surface

dO = sqrt(pnt_4->x1*pnt_4->x1 + (tO+pnt_4->z1)*(t0+pnt_4->z1));
dO = pnt_4->z1 +t0; // the ray is parallel to the optical axis
d1 = sqrt((pnt_4->x2-pnt_4->x1)*(pnt_4->x2-pnt_4->x1) + (t1+pnt_4->z2-

pnt_4->z1)*(tl1+pnt_4->z2-pnt_4->zl));

d2 = sqrt((pnt_4->x3-pnt_4->x2)*(pnt_4->x3-pnt_4->x2) + (t2+pnt_4->23-

pnt_4->22)*(t2+pnt_4->z3-pnt_4->22));

d3 = sqrt((pnt_4->x4-pnt_4->x3)*(pnt_4->x4-pnt_4->x3) + (t3+pnt_4->z4-

pnt_4->z3)*(t3+pnt_4->z4-pnt_4->23));

/
"

d4 = sqrt(pnt_4->x4*pnt_4->x4 + (t4-pnt_4->z4)*(t4-pnt_4->z4));

Cct0 = (t10+pnt_4->z1)/d0;

Sct0 = pnt_4->x1/d0;

CctO=1;

Sct0=0;

Cctl = (t1+pnt_4->z2-pnt_4->z1)/d1;
Sctl = (pnt_4->x2-pnt_4->x1)/d1;
Cct2 = (t2+pnt_4->z3-pnt_4->22)/d2;
Sct2 = (pnt_4->x3-pnt_4->x2)/d2;
Cct3 = (t3+pnt_4->z4-pnt_4->23)/d3;
Sct3 = (pnt_4->x4-pnt_4->x3)/d3;
Cct4 = (t4-pnt_4->z4)/d4;

Sct4 = -pnt_4->x4/d4;

N1z =nl1*Cctl - n0*CctO;
N1x =nl1*Sctl - n0*Sct0;
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N11=sqrt(N1z*N1z + N1x*Nlx);

N2z = n2*Cct2 - n1*Cctl;
N2x =n2*Sct2 - n1*Sctl;
N2I = sqrt(N2z*N2z + N2x*N2x);

N3z =n3*Cct3 - n2*Cct2;
N3x = n3*Sct3 - n2*Sct2;
N3I1 = sqrt(N3z*N3z + N3x*N3x),

N4z = n4*Cct4 - n3*Cct3;
N4x = n4*Sct4 - n3*Sct3;
N4l = sqrt(N4z*N4z + N4x*Ndx);

slpl = -tan(atan2(N1x, N1z));
slp2 = -tan(atan2(N2x, N2z));
slp3 = -tan(atan2(N3x, N3z)),
slp4 = -tan(atan2(N4x, N4z));

rl = (fabs(slp1)<= fabs((1e-10)*pnt_4->x1))? 0 : pnt_4-
>x 1*sqrt(1+pow(slp1,2))/slpl;

r2 = (fabs(slp2)<= fabs((le-10)*pnt_4->x2))? O : pnt_4-
>x2*sqrt(1+pow(slp2,2))/slp2;

r3 = (fabs(slp3)<= fabs((1e-10)*pnt_4->x3))? O : pnt_4-
>x3*sqrt(1+pow(slp3,2))/slp3;

r4 = (fabs(slp4)<= fabs((1e-10)*pnt_4->x4))? O : pnt_4-
>x4*sqrt(1+pow(sip4,2))/slp4;

cs1 = fabs((N1z*Cct0 + N1x*Sct0)/N11);
cslp = fabs((N1z*Cctl + N1x*Sctl)/N1l);

cs2 = fabs((N2z*Cctl + N2x*Sct1)/N2l);
cs2p = fabs((N2z*Cct2 + N2x*Sct2)/N2l);

cs3 = fabs((N3z*Cct2 + N3x*Sct2)/N3l);
cs3p = fabs((N3z*Cct3 + N3x*Sct3)/N3l);

cs4 = fabs((N4z*Cct3 + N4x*Sct3)/N4l);
csdp = fabs((N4z*Cct4 + N4x*Sct4)/N4l);

//trace tangential rays

cdl.pl = (nl*cslp - n0*cs1)*(slpl - (slp->slp1))/(pnt_4->x1 - (slp-
>x1))/pow(sqrt(1l + slp1*slpl), 3);
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cd1.p2 = (n2*cs2p - n1*cs2)*(slp2 - (slp->slp2))/(pnt_4->x2 - (sip-
>x2))/pow(sqrt(1l + slp2*sip2), 3);

cd1.p3 = (n3*cs3p - n2*cs3)*(slp3 - (slp->sip3))/(pnt_4->x3 - (slp-
>x3))/pow(sqrt(l + sip3*sip3), 3);

cd1.p4 = (n4*csdp - n3*cs4)*(slp4 - (slp->sip4))/(pnt_4->x4 - (slp-
>x4))/pow(sqrt(1 + slp4*sip4), 3);

cdl.csl =csl;
cdl.cslp =cslp;
cdl.cs2 =cs2;
cdl.cs2p = cs2p;
cdl.cs3 =cs3;
cdl.cs3p = cs3p;
cdl.cs4 = cs4;
cdl.csdp = csdp;

cdl.dl =d1;
cdl.d2 =d2;
cdl.d3 =d3;
cdl.d4 = d4;

(*slp01) =slpl;
(*slp02) = slp2;
(*slp03) = slp3;
(*slp04) = slp4;

return Codd_st(d0,&cd1);
}

/**##****#*t*#*##*#t#***##*******************#***#***#*t**t#**##‘***###

Cal_s: apply Coddington equations to sagittal rays.
input: the ray intersection at each surface
return: the distance between sagital focus and the image point and

the slopes at each surface.
**#*##‘t**#t##t*#*##t#tt#*##**t***##***##t*t**#*#*#**#*****tt*####**#/

double Cal_s(pnts * pnt_4, double *slpl, double *slp2, double *slp3, double *sip4)

{
codd cdl;

double csl, cslp, cs2, cs2p, cs3, cs3p, cs4, csdp; //cosines of incident and
refractive angle
/! double pl1, p2, p3, p4; //oblic power at each surface

double d0, d1, d2, d3, d4; //equivalent spacings between elements
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double rl, r2, r3, r4; //sagittal radius of curvature

double Cct0, Sct0, Cctl, Sctl, Cet2, Sct2, Cct3, Sct3, Cct4, Sct4; //ray angles
double N1z, N1x, N2z, N2x, N3z, N3x, N4z, N4x; //normal at each surface
double N11, N21, N31, N4l;//length of the normal at each surface

" dO = sqrt(pnt_4->x1*pnt_4->x1 + (t0+pnt_4->z1)*(t0+pnt_4->z1));

dO = pnt_4->z1 + t0; //infinte case

d1 =sqrt((pnt_4->x2-pnt_4->x1)*(pnt_4->x2-pnt_4->x1) + (t1+pnt_4->22-
pnt_4->z1)*(t1+pnt_4->z2-pnt_4->21));

d2 = sqrt((pnt_4->x3-pnt_4->x2)*(pnt_4->x3-pnt_4->x2) + (12+pnt_4->z3-
pnt_4->z2)*(t2+pnt_4->z3-pnt_4->22));

d3 = sqrt((pnt_4->x4-pnt_4->x3)*(pnt_4->x4-pnt_4->x3) + (t3+pnt_4->z4-
pnt_4->z3)*(3+pnt_4->z4-pnt_4->23));

d4 = sqrt(pnt_4->x4*pnt_4->x4 + (t4-pnt_4->z4)*(t4-pnt_4->z4));

/leach segment's ray direction

/I Cct0 = (t0+pnt_4->z1)/d0;

/! Sct0 = pnt_4->x1/d0;
CctO=1;
Sct0 = 0;
Cctl = (t1+pnt_4->z2-pnt_4->z1)/d1;
Sctl = (pnt_4->x2-pnt_4->x1)/d1;
Cct2 = (12+pnt_4->z3-pnt_4->22)/d2;
Sct2 = (pnt_4->x3-pnt_4->x2)/d2;
Cct3 = (t3+pnt_4->z4-pnt_4->23)/d3;
Sct3 = (pnt_4->x4-pnt_4->x3)/d3;
Cct4 = (t4-pnt_4->z4)/d4;
Sct4 = -pnt_4->x4/d4;

//surface normal at each surface
N1z =nl1*Cctl - n0*Cct0;

Nl1x =nl1*Sctl - n0*SctO0;

N1l =sqrt(N1z*N1iz + N1x*N1x);

N2z =n2*Cct2 - n1*Cctl;
N2x =n2*Sct2 - n1*Sctl;
N2| = sqrt(N2z*N2z + N2x*N2x);

N3z = n3*Cct3 - n2*Cct2;
N3x = n3*Sct3 - n2*Sct2;
N3I = sqrt(N3z*N3z + N3x*N3x);

N4z = n4*Cct4 - n3*Cct3;
N4x = n4*Sct4 - n3*Sct3;
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N4l = sqrt(N4z*N4z + N4x*N4x);

//slope at each surface

(*slpl) = -tan(atan2(N1x, N12));
(*slp2) = -tan(atan2(N2x, N2z));
(*slp3) = -tan(atan2(N3x, N3z));
(*slp4) = -tan(atan2(N4x, N4z));

rl = (fabs((*slp1))<= fabs((le-10)*pnt_4->x1))? O : pnt_4-
>x 1 *sqrt(1+pow((*slp1),2))/(*slpl);

r2 = (fabs((*slp2))<= fabs((le-10)*pnt_4->x2))? 0 : pnt_4-
>x2*sqrt(1+pow((*slp2),2))/(*slp2);

3 = (fabs((*slp3))<= fabs((le-10)*pnt_4->x3))? O : pnt_4-
>x3*sqrt(1+pow((*slp3),2))/(*slp3);

r4 = (fabs((*slp4))<= fabs((le-10)*pnt_4->x4))? O : pnt_4-
>x4*sqrt(1+pow((*slp4),2))/(*slp4);

//cosines of incident angle and refractive angle
csl = fabs((N1z*Cct0 + N1x*Sct0)/N11);
cslp = fabs((N1z*Cctl + N1x*Sct1)/N1l);

cs2 = fabs((N2z*Cctl + N2x*Sctl1)/N2l);
cs2p = fabs((N2z*Cct2 + N2x*Sct2)/N21);

cs3 = fabs((N3z*Cct2 + N3x*Sct2)/N31);
cs3p = fabs((N3z*Cct3 + N3x*Sct3)/N3l);

cs4 = fabs((N4z*Cct3 + N4x*Sct3)/N4l);
csdp = fabs((N4z*Cct4 + N4x*Sct4)/N4l);

//trace sagittal rays

cdl.pl =(rl =0)? 0: (n1*cslp - n0*csl)/rl;
cdl.p2 = (r2 =20)? 0 : (n2*%cs2p - nl*cs2)/r2;
cdl.p3 = (3 =0)? 0 : (n3*cs3p - n2*cs3)/r3;
cdl.p4 = (r4 == 0)? 0 : (n4*csdp - n3*cs4)/r4;

cdl.csl =1;
cdl.cslp=1;
cdl.cs2=1;
cdl.cs2p=1;
cdl.cs3 =1,
cdl.cs3p=1,
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cdl.csd=1;
cdl.csdp = 1;

cdl.dl =dl;
cdl.d2 =d2;
cdl.d3 =d3;
cdl.d4 =d4;

prevcdl.dl =d1;
prevedl.d2 =d2;
prevedl.d3 =d3;
prevcdl.d4 = d4;
prevedl.csl =csl;
prevedl.cslp =cslp;
prevedl.cs2 =cs2;
prevedl.cs2p = cs2p;
prevcdl.cs3 = cs3;
prevedl.cs3p = cs3p;
prevcdl.cs4 = cs4;
prevedl.cs4p = csdp;

return Codd_st(d0, &cdl);
}

Def.h

/*##****t#**t*##t****#*****#***##********#*****#***#*#*************t*#t

This file defines data structures and general variables.
”#***#*#*###*t###t*tt**#*#***#*****###**********#***#*********t#t***#/

#define nps 500 // output values at 1000 off axis points
#define nis 1000 // iterate 10000 times to get values at (j+1)th point
// from those at jth point

//data structure that hold the coordinates of 4 points at 4 surfaces
typedef struct{

double x1;

double z1;

double x2;

double z2;

double x3;

double z3;

double x4;

double z4;



}pnts;

//data structure that hold the quantities used in Coddington equations
typedef struct {

}codd;

//power

double pl;
double p2;
double p3;
double p4;

//cosines of incident and refractive angles at each surface
double csl;

double cslp;

double cs2;

double cs2p;

double cs3;

double cs3p;

double cs4;

double cs4p;

//spacings between two adjacent surfaces along a ray
double dl1;
double d2;
double d3;
double d4;

//data structure that holds the slopes at certain points of ach surface
//it will be used to calculate the second derivative at a point
typedef struct{

}slope;

//x-coordinate at the previous iteration
double x1;

double x2;

double x3;

double x4;

//slopes at the previous iteration
double slp1l;

double slp2;

double slp3;

double sip4;

/Mefine the arrays to hold the coordinates and slopes of the
//1st, 2nd, 3rd and 4th surfaces at output points and intermediate iterate points
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double xSurfl [nps+1], xSurfl 1[nis+1];

double zSurfl [nps+1], zSurfl 1 [nis+1];

double slopeSurfl[nps+1], slopeSurfl 1[nis+1];
double xSurf2[nps+1], xSurf21[nis+1];

double zSurf2[nps+1], zZSurf21[nis+1];

double slopeSurf2[nps+1], slopeSurf21[nis+1];
double xSurf3[nps+1], xSurf31[nis+1];

double zSurf3{nps+1], zZSurf31[nis+1];

double slopeSurf3[nps+1], slopeSurf31[nis+1];
double xSurf4[nps+1], xSurf41[nis+1];

double zSurf4[nps+1], zZSurf41[nis+1];

double slopeSurf4[nps+1], slopeSurf41[nis+1];
double opd[nps+1];

//system parameters

double n0, nl, n2, n3, n4; //index of refraction

double t0, t1, t2, t3, t4; //spacing

double to0, tol, to2, to3, to4;

double m, f; /focal length for infinite conjugate case
double dfi; //on-axis diatance from focus to image plane

double dfti; //distance between tangential focus and image plane
double dftip; //distance between sagital focus and image plane
codd prevcd;

codd prevcdl;

double prevdO;//new
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APPENDIX B

SOURCE FILES FOR THE ZEMAX USER DEFINED
SURFACE

Since all the designs presented in Chapter 6 are generated point by point, i.e.
each surface is made up of discrete points, [ have to use the user defined surface feature
provided by ZEMAX to simulate the system performance. I wrote a program which take
the coordinates of the data points and fit them with the cubic spines. “CubSpln.cpp” is
the c++ source file for the user defined surface. “CubSpln.rc” is the resource file.
“Dialogdef.h” and “resource.h” are the header files. These four files combined with the
“Usersurf.h” and “usersurf.def” provided by ZEMAX make the project that realizes this
type of user defined surface in ZEMAX.

CubSpin.cpp

//This is the ZEMAX user defined surface source file. The program takes the coordinates
// of surface data points (up to 1000) generated by other programs and approximate the
//surface using the cublic spilines.

#include <math.h>
#include <string.h>
#include "usersurf.h"
#include "resource.h"
#include <windows.h>
#include <fstream.h>
#include <iomanip.h>

char filepath{100];

HINSTANCE hgloballnst;

BOOL bData;

int NumPoints;

double CubCoeff[1000][4];

double r[1000], z[1000], p[9];

double normal, derv0, derv97, dervN_1;
double * pCubCoefi] 1000];
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int __ declspec(dllexport) APIENTRY UserDefinedSurface(USER_DATA *UD,
FIXED_DATA *FD);

LRESULT CALLBACK DlgProc (HWND hDlg, UINT message, WPARAM wParam,
LPARAM [Param);

/* a generic Snells law refraction routine */

int Refract(double thisn, double nextn, double *1, double *m, double *n, double In,
double mn, double nn);

void CalCoeff{double **, double *, double *, int, double, double, double);

int Locate(double *, int, double);

double Sag(double, int);

double dSag(double, int);

double PolyTerms(double);

double dPolyTerms(double);

BOOL WINAPI DIIMain (HANDLE hinst, ULONG ul_reason_for_call, LPVOID
IpReserved)
{
hgloballnst = hinst;
return TRUE;

}
/* this DLL models a standard ZEMAX surface type, either plane, sphere, or conic */

int __declspec(dllexport) APIENTRY UserDefinedSurface(USER_DATA *UD,
FIXED_DATA *FD)
{ - -
int i;
int beginIndex, middleIndex, endIndex, bindex, mIndex, elndex;
int N = 1024,
char coef[4];
double radial, a, b, rl, r2, x, slp;
double 10, t1, t, f, df, alpha, phi;
double rt, zt, dr;
double 11, ml1, nl, Inl, mnli, nnl, power;
switch(FD->type)
{
case 0:
/* ZEMAX is requesting general information about the surface */
switch(FD->numb)
{
case 0:
/* ZEMAX wants to know the name of the surface */
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/* do not exceed 12 characters */
strcpy(UD->string,"CubSpln");
break;
case 1:
/* ZEMAX wants to know if this surface is rotationally symmetric */
/* it is, so return any character in the string; otherwise, return a null string */
strcpy(UD->string, "1");
break;
case 2:
/* ZEMAX wants to know if this surface is a gradient index media */
/* it is not, so return a null string */
UD->string[0] = "\0';
break;
}
break;
case 1:
/* ZEMAX is requesting the names of the parameter columns */
/* the value FD->numb will indicate which value ZEMAX wants. */
/* they are all "Unused" for this surface type */
/* returning a null string indicates that the parameter is unused. */
switch(FD->numb)

{
default:
strcpy(UD->string, "a");
strcat(UD->string, _itoa(2*(FD->numb-1), coef, 10));
break;
}
break;
case 2:

/* ZEMAX is requesting the names of the extra data columns */
/* the value FD->numb will indicate which vailue ZEMAX wants. */
/* they are all "Unused" for this surface type */
/* returning a null string indicates that the extradata value is unused. */
switch(FD->numb)
{
case 1:
strcpy(UD->string, "N Points");
break;
case 2:
strcpy(UD->string, "Normal?");
break;
case 3:
strcpy(UD->string, "Derivative@r0");
break;



case 4:
strcpy(UD->string, "Derivative@rN_1");
break;
default:
if(FD->numb%2) {
strcpy(UD->string, "r");
strcat(UD->string, _itoa(FD->numb/2-2, coef,
10));
}
else{
strcpy(UD->string, "z");
strcat(UD->string, _itoa(FD->numb/2-3, coef,
10));
}
break;
}
break;
case 3:

/* ZEMAX wants to know the sag of the surface */
/* if there is an alternate sag, return it as well */
/* otherwise, set the alternate sag identical to the sag */
/* The sag is sagl, altemate is sag2. */

for(i = 1; i<9; i++) p[i] = FD->param[i];
radial = sqrt(UD->x*UD->x + UD->y*UD->y);

i = Locate(r, NumPoints, radial);
ifli=-1) {
//if radial is just greater than the maximum r, still draw it
if((radial>r[NumPoints-1])&&(radial<l.1*r[NumPoints-1] -
0.1*r{NumPoints-2]))
{
i = NumPoints - 2;
UD->sagl = CubCoefi[i][0]*pow(r{i+1] - radial, 3)
+ CubCoefi[i][1]*pow(radial - r{i], 3)
+ CubCoefi[i}[2]*(radial - r[i])
+ CubCoefi[i][3]*(r[i+1] - radial)
+ PolyTerms(radial);

else return (-1);

else{
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/*

*/

UD->sagl = CubCoefi[i][0]*pow(r{i+1] - radial, 3)
+ CubCoefi[i][1]*pow(radial - r{i], 3)
+ CubCoefi[i][2]*(radial - r{i])
+ CubCoefi[i][3]*(r[i+1] - radial)
+ PolyTerms(radial);
}
UD->sag2 =0.0;

break;
case 4:
/* ZEMAX wants a paraxial ray trace to this surface */
/* x, y, z, and the optical path are unaffected, at least for this surface type */
/* for paraxial ray tracing, the return z coordinate should always be zero. */
/* paraxial surfaces are always planes with the following normals */

alpha=atan(dSag(r{0], 0));
Inl =0;

mnl = -sin(alpha);

nnl = cos(alpha);

Refract(1, 2, &I1, &ml, &nl, Inl, mnl, nnl);
power = (FD->n2 - FD->n1)*2/(-r[0]*nl/ml);

UD->In = 0.0;
UD->mn = 0.0;
UD->nn =-1.0;

dz = dSag(r{0], 0);
dz2 = 6*CubCoeff[0][0]*(r[1] - r[0]);

power = (FD->n2 - FD->nl)*dz2/pow(1 + dz*dz, 1.5);

if (UD->n) !=0.0)
{
(UD->1) = (UD->1)/(UD->n);
(UD->m) = (UD->m)/(UD->n);

(UD->1) = (FD->n1*(UD->1) - (UD->x)*power)/(FD->n2);
(UD->m) = (FD->n1*(UD->m) - (UD->y)*power)/(FD->n2);

/* normalize */
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(UD->n) = sqrt(1/(1 + (UD->1)*(UD->1) + (UD->m)*(UD->m) ) );
/* de-paraxialize */
(UD->1) = (UD->1)*(UD->n);
(UD->m) = (UD->m)*(UD->n);
}
break;

case 5:
/* ZEMAX wants a real ray trace to this surface */

for(i = 1; i<9; i++) p[i] = FD->param([i];
beginindex = 0;

endIndex = NumPoints - 1;

if{(UD->n) == 0) return(FD->surf);

r1 = (UD->1)/(UD->n);

r2 = (UD->m)/(UD->n);

//Find out between which neighboring pair of sample points
//the ray hits the mirror

a = pow((UD->x) + (z[endIndex]+PolyTerms(r{endIndex]))*rl, 2)

+ pow((UD->y) +
(z[endIndex]+PolyTerms(r{endIndex]))*r2, 2);

b = r{endIndex] * r{endIndex];

if(a>b) returm(FD->surf); //ray misses the surface

a = pow(UD->x + PolyTerms(r[beginindex])*rl, 2)
+ pow(UD->y + PolyTerms(r[beginlndex])*r2, 2);

b = r{beginIndex] * r{beginindex];

if(a<b) return(FD->surf); //ray misses the surface

else do {
middleIndex = (beginIndex + endIndex)/2;
a = pow((UD->x) +
(z[middleIndex]+PolyTerms(r[middleIndex]))*rl, 2)
+ pow((UD->y) +
(z[middleIndex]+PolyTerms(r{middleIndex]))*r2, 2);
b = rimiddleIndex] * r{middleIndex];
if{a < b) endIndex = middleindex;
else beginindex = middielndex;
}while(endIndex > beginindex + 1);

//Bisection method to find out optical path t approximately
bIndex = 0;

elndex =N;

dr = (r[beginIndex+1] - r[beginIndex])/(double)N;

do{
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miIndex = (bIndex + elndex)/2;
rt = (double)mindex * dr + r[beginlndex];
zt = Sag(rt, beginindex) + PolyTerms(rt);
a = pow((UD->x) + zt*rl, 2)
+ pow((UD->y) + zt*r2, 2);
b=rt*rt;
if(a < b) eIndex = mIndex;
else bIndex = mindex;
}while(eIndex > bIndex + 1);

//Newtonian method to find out optical path t more accurately
t0 = zt/UD->n;

do{
x = sqrt(pow(UD->x + UD->1*t0, 2) + pow(UD->y + UD->m*t0,
2));
f = (Sag(x, beginlndex)+PolyTerms(x)) - UD->z - UD->n*t0;
df = (dSag(x, beginIndex)+dPolyTerms(x))/x*((UD->x + UD-
>[*t0)*UD->I +
(UD->y + UD->m*t0)*UD->m) - UD->n;
tl =t0 - f/df;
t0 =tl;
}while(f>1e-10);

//calculate surface slope
t = t0;
(UD->x) += t*(UD->1);
(UD->y) += t*(UD->m);
(UD->z) += t*(UD->n),
radial = sqrt(pow(UD->x, 2) + pow(UD->y, 2));
slp = dSag(radial, beginIndex) + dPolyTerms(radial);
alpha=atan(slp);
phi=atan2((UD->y), (UD->x));
(UD->In) = sin(alpha)*cos(phi);
(UD->mn) = sin(alpha)*sin(phi);
(UD->nn) = -cos(alpha);

UD->path = t;

if (Refract(FD->nl, FD->n2, &UD->1, &UD->m, &UD->n, UD->In, UD->mn,
UD->nn)) return(-FD->surf);
break;
case 6:
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/* ZEMAX wants the index, dn/dx, dn/dy, and dn/dz at the given x, y, z. */

/* This is only required for gradient index surfaces, so return dummy values */
UD->index = FD->n2;
UD->dndx = 0.0;
UD->dndy = 0.0;
UD->dndz = 0.0;
break;
case 7:
/* ZEMAX wants the "safe" data. */
/* this is used by ZEMAX to set the initial values for all parameters and extra data
*/
/* when the user first changes to this surface type. */
/* this is the only time the DLL should modify the data in the FIXED_DATA FD
structure */
DialogBox(hgloballnst, MAKEINTRESOURCE(IDD_DIALOGI1), NULL,
(DLGPROC)DIgProc);
if(bData) {
fstream infile(filepath, ios::in|ios::binary);
infile>>NumPoints;
infile>>normal;
infile>>derv0;
infile>>dervN_1;
for(i = 0; i<NumPoints; i++){
infile>>1{i];
infile>>z[i];
H

if(r{0]<0){
dervQ *=-1;
dervN_1 *=-1;

}

for(i = 0; i<NumPoints; i++){
i} = (r[i]<0)? -r[i] : rfi];
}

FD->xdata[ 1] = (double)NumPoints;
FD->xdata[2] = normal;
FD->xdata[3] = derv0;
FD->xdata[4] =dervN_1;

for (i =5; i <=200; i++) {
if{i%2) FD->xdata[i] = r[(i/2-2)*(NumPoints-1)/97};
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else FD->xdata[i] = z[(i/2-3)*(NumPoints-1)/97];
}

for(i = 0; i<NumPoints; i++) pCubCoefi[i] = &CubCoefi[i]{0};
CalCoeff{(pCubCoefT, r, z, NumPoints, normal, derv0, dervN_1);

fstream outfile("E:\\Zemax\\Data Files\\cub.dat", ios::out);
for(i = 0; i<NumPoints-1; i++){
outfile<<i<<" ",
outfile<<setw(11)<<setprecision(8)<<CubCoefi[i][0]<<"
outfile<<setw(1 1)<<setprecision(8)<<CubCoefI[i][ 1]<<"
outfile<<setw(1 1)<<setprecision(8)<<CubCoefi[i][2]<<"
outfile<<setw(1 1)<<setprecision(8)<<CubCoeff[i}{3]<<"
outfile<<"\n";
H

}

else for (i = 1; i <= 200; i++) FD->xdata[i] = 0.0;
for (i = 1; i <= 8; i++) FD->param(i] = 0.0;

break;

}
return O;

}

int Refract(double thisn, double nextn, double *1, double *m, double *n, double In,
double mn, double nn)

{
double nr, cosi, cosi2, rad, cosr, gamma;
if (thisn != nextn)
{
nr = thisn / nextn;
cosi = fabs((*1) * In + (*m) * mn + (*n) * nn);
cosi2 = cosi * cosi;
if (cosi2 > 1) cosi2 = I;
rad=1 - ((1 - cosi2) * (nr * nr));
if (rad < 0) return(-1);
cosr = sqrt(rad);
gamma = nr * cosi - COsT;
(*1) = (nr * (*1)) + (gamma * In);
(*m) = (nr * (*m)) + (gamma * mn);
(*n) = (nr * (*n)) + (gamma * nn);
}
return O;
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}

//Dialogbox invoked when cubic splines surface type is selected
//Ask whether data points are provided for the purpose of sag optimization
//Data points should be stored in a file in the directory "E:\zemax\data files\..."
//Up to 1000 data points can be specified.
LRESULT CALLBACK DlgProc (HWND hDlg, UINT message, WPARAM wParam,
LPARAM |Param)
{

WORD wiID;

wiID = LOWORD(wParam);
switch(message)

{
case WM_INITDIALOG:

SetWindowText(hDlg, "Specify data file path");
strepy(filepath, "E:\\Zemax\\Data Files\\Surfl.dat");

SetDigltemText(hDlg, IDC_EDITI, filepath);

return TRUE;
case WM_COMMAND:
switch(wID)
{
case [DOK:
GetDigltemText(hDlg, IDC_EDIT], filepath,
sizeof{filepath)-1);
EndDialog(hDlg, wParam);
bData = TRUE;
return TRUE;
case [DCANCEL:
bData = FALSE;
EndDialog(hDlg, wParam);
return TRUE;

}
return FALSE;
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void CalCoeff(double ** Coeff, double * r1, double * z1, int Num, double norm, double
d0, double dN_1)

{

fstream outfile("E:\\Zemax\\Data Files\\cubl.dat", ios::out);

int i;

double h[1000], df[1000];

double a[1000], b[1000], c[1000], u[1000], rr{1000], gam{1000];
double bet;

for(i = 0; i <Num-1; i++) df[i] = z1{i+1] - z1[i];
for(i = 0; i <Num-1; i++) h[i] =rl[i+1] - r1[i];
//set matrix lower diagonal matrix elements;
a[Num-1] = h[Num-2];

for(i = 1; i<Num-1; i++) a[i] = h[i-1];

//set matrix diagonal elements;

b[0] = 2*h[0];

b[Num-1] = 2*h[Num-2]};

for(i = 1; i<Num-1; i++) b[i] = 2*(h{i] + h[i-1]);

//set matrix upper diagonal matrix elements;
c[0] = h[0];
for(i = 1; i<Num-1; i++) c[i] = h[i];

//set the right hand side elements of the equations

rr[0] =6*(df[0}/h([0] - dO);

rr{Num-1] =6*(dN_1 - dffNum-2]/h[Num-2]);

for(i = 1; i<Num-1; i++) rr{i] = 6*(df[i]/h[i] - dffi-1]/h[i-1]);

for(i = 0; i<Num-1; i++){

outfile<<i<<" ";
outfile<<setw(11)<<setprecision(8)<<h[ij<<" *";
outfi le<<setw( 11 )<<setprecision(8)<<df[i]<<n "
0utﬁle<Qetw(1 1 )<<setprecision(8)<<a[i]<<n u;
outfile<<setw(11)<<setprecision(8)<<b[ij<<" ";
outfile<<setw(11)<<setprecision(8)<<c[i]<<" ";
outfile<<setw(l 1 )<<setprecision(8)<<rr{i]<<" ";

outfile<<"\n";
}
//solve the tridiagonal equations: algorithm copied from Numerical recipes
bet = b[0];

u[0] = rr[0]/bet;
for(i = 1; i<Num; i++){



gam([i] = c[i-1])/bet;
bet = b[i] - afi]*gam([i];
ufi] = (r{i] - a[i]*u[i-1])/bet;

}

for(i = Num-2; i >= 0; i--) u[i] = u[i] - gam[i+1]*u[i+1];

//calculating cubic spline fitting coefficients
for(i = 0; i<Num-1; i++){
Coefi[i]{0] = u[i}/h[i}/6;
Coeff[i][ 1] = u[i+1])/h[i}/6;
Coeff[i][2] = z1[i+1])/h[i] - u[i+1]*h[i)/6;
Coeftli][3] = z1[i}/h[i] - u[i]*h[i}/6;

}

// A double array xx[N], given a value x, find j where x is between xx[j]
/! and xx[j+1], return j; if x is out of range, return -1.
int Locate(double *xx, int N, double x)
{
int begin, middle, end;
begin = 0;
end=N-1;

//out of range, return -1;
if{ (xx[N-1]>xx[0])&&((x>xx[N-1])|[(x<xx[0]))) return -1;
if{(xx[N-1]<xx[0])&&((x<xx[N-1])||(x>xx[0]))) return -1;

do{
middle = (begin + end)/2;
if((xx[N-1]>xx[0]) = (x>xx[middle])) begin = middle;
else end = middle;

}while((end - begin)>1);

return begin;
H

//calculate sag given a coordinate x and the range index i: x[i]<=x<=x[i+1]
double Sag(double x, int i)
{

double f;

f = CubCoeff[i}[0]*pow(r[i+1] - x, 3)

+ CubCoefi[i][1]*pow(x - r[i], 3)
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+ CubCoefi[i][2]*(x - r{i])
+ CubCoeff[i][3]*(r[i+1] - X) ;

return f;
}

//calculate derivative given coordinate x and the range index i
double dSag(double x, int i)

{
double g;
g = -3*CubCoeff[i][0]*pow(r{i+1] - x, 2)
+ 3*CubCoefi[i][1]*pow(x - r{i], 2)
+ CubCoefi[i][2]
- CubCoeff[i](3];
return g;
}
//calculate the added sag
double PolyTerms(double radial)
{
int1;
double asag;
asag = p[1];
for(i = 2; i<=8; i++){
asag += p[i]*pow(radial/r[NumPoints-1], (double)(i-1)*2);
H
return asag;
}
//calculate the added slope
double dPolyTerms(double radial)
{
int i;
double dasag;
dasag = 0;

for(i = 2; i<=8; i++){
dasag += 2*(double)(i-1)*p[i]*pow(radial/r[fNumPoints-1], (double)(i-
1)*2 - 1)/f[]NumPoints-1];
H

return dasag;
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CubSpin.rc

//Microsoft Developer Studio generated resource script.
74
#include "resource.h”

#define APSTUDIO_READONLY_SYMBOLS
Ypigniiinnininiinan
//

// Generated from the TEXTINCLUDE 2 resource.

1/

#include "afxres.h"

i
#undef APSTUDIO_READONLY_SYMBOLS

i
// English (U.S.) resources

#if 'defined(AFX_RESOURCE_DLL) || defined(AFX_TARG_ENU)
#ifdef WIN32

LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
#pragma code_page(1252)

#endif //_WIN32

i
7

// Dialog

7

IDD_DIALOGI1 DIALOG DISCARDABLE 0, 0, 187, 78
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Dialog"
FONT 8, "MS Sans Senif"
BEGIN
DEFPUSHBUTTON "OK",IDOK,130,7,50,14
PUSHBUTTON  "Cancel",IDCANCEL,130,24,50,14
LTEXT "Specify the data file path:",IDC_STATIC,14,20,109,8
EDITTEXT IDC_EDIT1,15,46,156,14,ES_AUTOHSCROLL
END

i
/!



// DESIGNINFO
I

#ifdef APSTUDIO_INVOKED
GUIDELINES DESIGNINFO DISCARDABLE
BEGIN
IDD_DIALOGI, DIALOG
BEGIN
LEFTMARGIN, 7
RIGHTMARGIN, 180
TOPMARGIN, 7
BOTTOMMARGIN, 71
END
END
#endif // APSTUDIO_INVOKED

#ifdef APSTUDIO_INVOKED
i
/

/I TEXTINCLUDE

I

1 TEXTINCLUDE DISCARDABLE
BEGIN

"resource.h\0"”
END

2 TEXTINCLUDE DISCARDABLE
BEGIN

"#include ""afxres.h""\r\n"

"\0"
END

3 TEXTINCLUDE DISCARDABLE
BEGIN

"\r\n"

l|\0"
END

#endif // APSTUDIO_INVOKED

#endif // English (U.S.) resources
i
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#ifndef APSTUDIO_INVOKED
Y
//

// Generated from the TEXTINCLUDE 3 resource.

//

o
#endif // not APSTUDIO_INVOKED

Dialogdef.h
#include <afxwin.h>

class CDatafileDialog : public CDialog

{

public:
CDatafileDialog(UINT id, CWnd *pWnd) : CDialog::CDialog(id, pWnd){};
void DoDataExchange(CDataExchange * pDX);
DECLARE_MESSAGE_MAP()

|
Resource.h

/1 {{NO_DEPENDENCIES}}
// Microsoft Developer Studio generated include file.

// Used by CunSpln.rc

/! _

#define IDD_DIALOGI 101
#define IDC_EDIT1 1000
#define IDC_STATIC -1

// Next default values for new objects

/

#ifdef APSTUDIO_INVOKED

#ifndef APSTUDIO_READONLY_SYMBOLS

#define _ APS_NEXT RESOURCE_VALUE 102
#define  APS_NEXT_COMMAND_VALUE 40001
#define _APS_NEXT_CONTROL_VALUE 1001
#define _APS_NEXT SYMED_VALUE 101
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#endif
#endif
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