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Abstract

The alignment process of an optical system can be more complicated than its original

design. For example a misaligned multi-element system will suffer from imaging

aberrations that vary in a complex way over the field of view. Aberration fields for

this kind of system have been well described by perturbing the well known aberrations

for axisymmetric systems. These have been written in terms of polynomial expansions

in pupil and field space, which are useful for understanding the phenomena, but are

difficult to apply. This thesis will show how to express these relations in terms of

Zernike polynomials. It will be seen that they are convenient to decompose each

aberrations in terms of their field dependencies. And that they can be easily used to

perform a least squares fit on the data coming from a wavefront sensor or a raytracing

program to retrieve the perturbations present in a system. It is shown on two different

systems, that the relations are an efficient tool that give insight during the alignment

process. They allow to minimize the noise and to get faster to the solution.
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Chapter 1

Introduction

The computation of aberrations in a misaligned optical system has been well

described in the past. These aberrations can be used to analyze the effects of tilt and

decenter in terms of aberration fields in aligned systems and to perform a tolerancing

analysis [1, 2, 3, 4, 5].

Also, some specific publications on astronomical optics [6, 7, 8, 9, 10, 11, 12, 13, 14]

describe for two-mirror telescopes the effects of misalignments on the image quality

and present a way to align such a telescope by relating aberration coefficients (Zernike

coefficients for some of them) and the tilts and decenters in the system.

The publications [1, 2, 3, 4, 5] can be generally used in all systems to evaluate

the image degradation due to misalignments but are not easy to use to align an

optical system by relating aberration coefficients and perturbations. On the other

hand the publications such as [9, 10, 12] on telescope alignment have useful relations

between Zernike coefficients and field dependencies which can be used to retrieve

the misalignments in a two-mirror telescope. But these publications are only valid

for this type of system and to align a given optical system with several degrees of

freedom, general relations valid for any system and developed at least for fifth order

aberrations are needed.

The purpose of this thesis is to give general equations which are valid for any

type of system and which relate Zernike coefficients (they can be easily computed

with any optical software) with their field dependencies. And to use these relations

for two different systems that are modelled with optical software so as to find the

relationships between the Zernike coefficients and the tilts and decenters of each

element in the system. Then by measuring the Zernike coefficients at different field
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 Simulation on a raytracing program
  Real system


Expression of the reconstructor


Perturb model


Calculate Zernike coefficients C(x,y)


at different field positions


Fit data to field


 dependent functions


Values of the misalignments


Measure Zernike coefficients C(x,y)


at different field positions


Least squares fit data by


using the 
reconstructor


Figure 1.1. Block diagram of the general procedure

positions it will be possible to retrieve the misalignments present in the system. The

general procedure that will be followed in this thesis to find the perturbations in a

system is represented by a block diagram in figure 1.1.

This thesis will be based on the theory of misaligned system developed at the

university of Arizona. The development of aberrations for third order was first devel-

oped by R.A. Buchroeder in his PhD dissertation by using the vector formulation of

the wavefront expansion introduced by R.V. Shack. Then his work was carried on by

K.P. Thompson who extended the theory of R.A. Buchroeder to the fifth order. After

that, several people including J.R. Rogers used this theory to design unobstructed

telescopes.

In chapter 2, the theory of aberrations in misaligned systems through fifth order

developed at the University of Arizona will be introduced. The important results

needed for the thesis will be underlined.

In chapter 3, the relations shown in chapter 2 will be transformed so as to get ex-

pressions of the Zernike coefficients in misaligned systems which are more convenient

to use with raytracing programs and wavefront sensors.
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In chapter 4, the expressions in terms of Zernike coefficients and field dependencies

will be used on a two element telescope so as to find the relations between the Zernike

coefficients and the perturbations of the system.

In chapter 5, the same procedure that was applied in chapter 4 will used. But a

more complicated telescope (the LSST) will be considered which has a lot of degrees

of freedom.
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Chapter 2

Background

The analysis of the perturbations in this thesis is based on the vector formulation

of the wavefront expansion developed by R.V. Shack in the 1970’s. It will be seen that

this is a convenient way to express the aberrations and to account for perturbations.

And it can be applied to any type of system. It does not depend on the number or

on the type of surfaces.

In a first section, the vector formulation of the wavefront expansion will be in-

troduced for an aligned system. A second section, will show how to account for the

perturbations in the expression of the wavefront expansion. Finally a third section

will analyze the effects of perturbations such as decenter and tilt on the expressions

of the aberrations.

2.1 Development of the wavefront expansion

2.1.1 Conventions

Before starting to express the wavefront expansion, the conventions which will be

used need to be defined. The conventions used to express the wavefront expansion

will be the same as the ones used in the dissertation of K.P. Thompson [3] and are

represented in figure 2.1.

~H represents the field position in the image plane with x and y its components

along ~x and ~y respectively as shown in figure 2.1. ~ρ represents the pupil position with

ρ sin φ and ρ cos φ its components along ~x and ~y as shown on figure 2.1. Therefore

they are expressed by:

~H = H eiθ and ~ρ = ρ eiφ
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Figure 2.1. Conventions

Where the left-handed convention is used whereas most optical software use a

right handed convention. Thus the equations that will be developed in section 3 with

optical softwares will have to be used with some precautions.

2.1.2 Scalar formulation of the wavefront expansion

A common way to describe aberrations in a centered, rotationally symmetric op-

tical system is to use the wave aberration expansion shown in equation 2.1.

W =
∑

j

∞∑
p

∞∑
n

∞∑
m

(Wklm)j Hkρl cosm φ , where

{
k = 2p + m

l = 2n + m
(2.1)

The total wave aberration at the image plane of a rotational symmetric optical system

is simply the sum of the surfaces contributions:

W =
∑

j

Wj

The development through fifth order excluding the first order terms of equation 2.1

is:
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W =
∑

j

W040jρ
4 +

∑
j

W131jHρ3 cos φ +
∑

j

W220jH
2ρ2 +

∑
j

W222jH
2ρ2 cos2 φ

+
∑

j

W311jH
3ρ cos φ +

∑
j

W060jρ
6 +

∑
j

W151jHρ5 cos φ +
∑

j

W420jH
4ρ2

+
∑

j

W422jH
4ρ2 cos2 φ +

∑
j

W511jH
5ρ cos φ +

∑
j

W240jH
2ρ4

+
∑

j

W242jH
2ρ4 cos2 φ +

∑
j

W331jH
3ρ3 cos φ +

∑
j

W333jH
3ρ3 cos3 φ

(2.2)

Since piston represents a constant phase change that does not degrade the image,

it has been left over in equation 2.2.

2.1.3 Vector formulation of the wavefront expansion

When it is necessary to consider tilts and decenters in a system it is more conve-

nient to express the wavefront expansion with a vector formulation rather than the

scalar one. The vector formulation of equation 2.1 is:

W = W [( ~H · ~H), ( ~H · ~ρ), (~ρ · ~ρ)]

=
∑

j

∞∑
p

∞∑
n

∞∑
m

(Wklm)j

(
~H · ~H

)p (
~ρ · ~ρ )n (

~H · ~ρ )m (2.3)

Equation 2.3 can be developed as:

W =
∑

j

∞∑
p

∞∑
n

∞∑
m

(Wklm)j H2p ρ2n Hmρm cos (θ − φ) (2.4)

Thus for a rotational symmetric system equation 2.4 is the same as equation 2.1

by taking θ = 0.
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The development through fifth order for equation 2.3, excluding first order terms,

becomes:

W =
∑

j

W040j(~ρ · ~ρ )2 +
∑

j

W131j( ~H · ~ρ )(~ρ · ~ρ ) +
∑

j

W220Mj
( ~H · ~H)(~ρ · ~ρ )

+
1

2

∑
j

W222j( ~H2 · ~ρ 2) +
∑

j

W311j( ~H · ~H)( ~H · ~ρ ) +
∑

j

W060j(~ρ · ~ρ )3

+
∑

j

W151j( ~H · ~ρ )(~ρ · ~ρ )2 +
∑

j

W420Mj
( ~H · ~H)2(~ρ · ~ρ )

+
1

2

∑
j

W422j( ~H · ~H)( ~H2 · ~ρ 2) +
∑

j

W511j( ~H · ~H)2( ~H · ~ρ )

+
∑

j

W240Mj
( ~H · ~H)(~ρ · ~ρ )2 +

1

2

∑
j

W242j( ~H2 · ~ρ 2)(~ρ · ~ρ )

+
∑

j

W331Mj
( ~H · ~H)( ~H · ~ρ )(~ρ · ~ρ ) +

1

4

∑
j

W333j( ~H3 · ~ρ 3)

(2.5)

Note that the astigmatism is defined relative to the medial focus and not to the

sagittal focus as it is usually done. Therefore, there is a factor 1
2

for the astigmatism

and to show that the field curvature is defined for the medial plane, the subscript

”M” is used. The details of the calculations which lead to these results can be found

in Appendix A.

For W331 the subscript M is used to account for the conversion of cos3(θ − φ)

to cos
(
3(θ − φ)

)
for the elliptical coma, W333. This is done by using W331M

=

W331 + 3
4
W333 and the trigonometric identity cos3θ = 1

4
cos 3θ + 3

4
cos θ.

Some quick comments will be done on these aberrations to have a better un-

derstanding later on the effects of misalignments. But the aberrations will not be
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explained in detail because it is beyond the scope of this thesis. For more complete

discussion on aberration theory see [17, 18, 19, 20]. Only the useful comments for

later will be underlined.

2.1.4 Comments on third order aberrations

The third order aberrations represent the main contribution to an aberrated image

for an optical system. They are a good approximation for systems which contain a

limited number of elements. Note that third order aberrations refer to third order in

transverse ray aberration which corresponds to fourth order in wavefront aberration.

• Spherical aberration

W040 represents spherical aberration. As it can be seen in figure 2.2 it is in-

dependent of the field H. Thus, it will be constant over the field at the image

plane.

• Coma

W131 represents coma. It has a comatic shape which increases linearly in the

field. This can be seen in figure 2.3 where a 2D view of the image plane is

shown.

• Field curvature

W220 represents field curvature. It has a quadratic dependence with the field

representing the shape of the Petzval curvature. See figure 2.4 for its represen-

tation.

• Astigmatism

W222 represents astigmatism. It has a quadratic dependence with the field as

shown in figure 2.5 where a 2D view is represented.

• Distortion

W311 represents distortion. It has a cubic dependence with the field.
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Figure 2.2. Representation of the third order spherical aberration

Figure 2.3. Representation of the third order coma
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Figure 2.4. Representation of the third order field curvature

Figure 2.5. Representation of the third order astigmatism
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2.1.5 Comments on fifth order aberrations

When the number of elements in a system increases, the third order aberrations

are not always enough to represent a system correctly. Then, the development of the

wavefront expansion is to be carried out through the fifth order.

• Fifth order spherical aberration

W060 represents fifth order spherical aberration. Like W040 it is independent of

the field and will be constant over the field as shown in figure 2.6.

• Coma

W151 represents fifth order coma. It has the same field dependence as third

order coma. The linear dependence can be seen in figure 2.7.

• Field curvature for fifth order astigmatism

W420 represents field curvature for fifth order astigmatism. It behaves as third

order field curvature except that it has a quartic dependence instead of a

quadratic one as shown in figure 2.8.

• Fifth order astigmatism

W422 represents fifth order astigmatism. It behaves as third order astigmatism

except that its dependence is quartic instead of quadratic as shown in figure

2.9.

• Distortion

W511 represents distortion. It is like third order distortion except that it grows

as a power of five with the field.

• Field curvature for oblique spherical aberration

W240 represents the field curvature for oblique spherical aberration. Like for

third order field curvature it has a quadratic field dependence as shown in

figure 2.10.
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• Oblique spherical aberration

W242 represents oblique spherical aberration. It is a combination of spherical

aberration and astigmatism. The field dependence is also quadratic as shown

in figure 2.11.

• Field cubed coma

W331 represents field cubed coma. It behaves as third order coma except that

the field dependence is cubic. Its spot diagram representation in the field is

shown in figure 2.12.

• Elliptical coma (Trefoil)

W333 represents elliptical coma. It can be compared to third order coma except

that the field dependence is cubic and that the end of the comatic shape is

elliptic instead of round. It is represented in figure 2.13.

Figure 2.6. Representation of the fifth order spherical aberration
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Figure 2.7. Representation of fifth order coma

Figure 2.8. Representation of the field curvature for fifth order astigmatism
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Figure 2.9. Representation of the fifth order astigmatism

Figure 2.10. Representation of the field curvature for oblique spherical aberration
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Figure 2.11. Representation of the oblique spherical aberration

Figure 2.12. Representation of the field cubed coma
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Figure 2.13. Representation of trefoil
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2.2 Wavefront expansion in a misaligned system

The behavior of the aberration field in a misaligned system is based on two prop-

erties. First, the aberration field at the image plane is still the sum of individual

surface contributions. Secondly, the aberration field contribution of a surface is cen-

tered along the line connecting the centers of the pupils for the surface and the center

of curvature of the surface. When a system is perturbed, no new aberration will be

created but the behavior of the aberration field at the image plane will be modified.

The aberrations expected will still be the same (spherical aberration, coma,. . . ) but

they will have different field dependencies compared to a centered system.

The vector formulation is convenient to express this situation. It allows the treat-

ment of nonmeridional and noncoplanar tilts and decenters by introducing a vector

~σj which represents the decentration of the center of the aberration field Wj with

respect to the unperturbed field center (center of the Gaussian image plane which

is located by the optical axis ray (OAR)1). Thus, a new vector is to be defined to

represent a position in the field. This is done by introducing the effective height ~HAj

which is defined in figure 2.14 as:

~HAj = ~H − ~σj (2.6)

Therefore, the expression of the wavefront expansion in a perturbed system is

defined by replacing ~H by ~HAj in equation 2.3:

W =
∑

j

∞∑
p

∞∑
n

∞∑
m

(Wklm)j

(
~HAj · ~HAj

)p (
~ρ · ~ρ )n (

~HAj · ~ρ
)m

=
∑

j

∞∑
p

∞∑
n

∞∑
m

(Wklm)j

(
( ~H − ~σj) · ( ~H − ~σj)

)p (
~ρ · ~ρ )n (

( ~H − ~σj) · ~ρ
)m

(2.7)

1The OAR is the ray connecting the centers of the pupils with the object and the images created
by all the surfaces.
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Figure 2.14. Representation of the effective field height

The use of the vector formulation for the wavefront expansion for a misaligned

system was made possible by the multiplication of vectors. It is different from a dot

or a cross product as will be shown in chapter 3. This formulation accounts for tilts

and decenters.

2.3 Expressions of the third and fifth order aberrations in a
perturbed system

The following sections will give the expressions of the wavefront expansion in a

perturbed system for the third and the fifth order aberrations. The expressions come

from the derivation of equation 2.7 for each aberration. The full derivations from

equation 2.7 to the equations presented in this section will not be done since it is

not the purpose of this thesis and they can be found in the dissertation of Kevin P.

Thompson [3].

The equations which will be presented in this section use vectors and scalars that

have been introduced in the dissertation of K.P. Thompson and can be found in table

2.1 at the end of this section.



30

2.3.1 Third order aberrations

• Spherical aberration

Since spherical aberration is independent of the field, it is unchanged when the

system is perturbed. Its expression remains the same.

• Third order astigmatism

The Wavefront expansion for the astigmatism using equation 2.7 is:

W =
1

2

(
W222

~H2 − 2 ~H ~A222 + ~B2
222

) · ~ρ 2 = Wquadratic + Wlinear + Wconstant (2.8)

Where ~A222 and ~B222 are defined in Table 2.1. Again all the steps between

equation 2.7 and equation 2.8 can be found in [3].

The first term, Wquadratic, represents the term that is present in an aligned

system. It is the conventional quadratic field dependence which was present in

equation 2.5 and represented in figure 2.15.

Besides the quadratic dependence with the field, there is now a linear and a

constant dependencies. So even if a system is corrected for astigmatism, when

it is misaligned some linear and/or constant astigmatism can appear in the

system. The graphical representation of the different type of astigmatism are

shown in figures 2.15, 2.16 and 2.17.

An interesting case arises when the system is not corrected from astigma-

tism in the nominal design and when it is misaligned. The combination of the

different types of astigmatism will produce a ”binodal astigmatism” which is

represented in figure 2.18. Roland V. Shack was the first person to discover and

understand this type of astigmatism. The name comes from the fact that the

aberration has two nodes2. As seen on figure 2.18 the aberration is not null at

2A node is the position where the aberration is equal to zero
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(a) Sagittal focus (b) Tangential focus

Figure 2.15. Spot diagrams of the quadratic astigmatism

(a) Sagittal focus (b) Tangential focus

Figure 2.16. Spot diagrams of the linear astigmatism

(a) Sagittal focus (b) Tangential focus

Figure 2.17. Spot diagrams of the constant astigmatism
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(a) Sagittal focus (b) Tangential focus

Figure 2.18. Spot diagrams of the binodal astigmatism

the center of the field as it was the case for the usual quadratic astigmatism

but now it is null in the field and for two positions.

An other way to consider binodal astigmatism is to consider a two element

system which contains astigmatism. In this case the astigmatism of each element

increases quadratically from the center of the field. But when the system is

misaligned the astigmatism contribution of each element is no longer centered

at the center of the Gaussian image plane but shifted in the field as shown in

figure 2.19. Thus the node for each aberration contribution does not longer

coincide and two nodes appear in the field. To have a better visualization of

the phenomenon a 3D representation of the astigmatism of the two surfaces is

shown in figure 2.20. Due to the fact that the astigmatism is quadratic with

field, each astigmatism contribution was represented with a paraboloid. Since

each aberration contribution is not the same, one surface will be wider than

the other one. On this figure, the nodes of each contribution do not coincide

and for two positions where the two suraces intersect to each other, the total

astigmatism will be zero. Then there will be two nodes instead of one. A

representation in 2D is also shown in figure 2.21. To get more details on the

graphical view of the aberration summation and on the position of the nodes
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Aberration contribution
from element 1 

Aberration contribution
from element 2 

element 2 element 1 

Figure 2.19. Schematic view of a two element misaligned system

see [16].

It was pointed out in [16] that for a two element misaligned system, a binodal

astigmatism can exist but that is also true for a multiple element system. And

it was demonstrated in the dissertation of K.P. Thompson [3] that there can

never be more than 2 nodes for astigmatism. Moreover, it was shown in the

dissertation that the maximum number of nodes is equal to the field power of

the aberration. Here for astigmatism, the maximum number of nodes is two

because astigmatism is quadratic with field.

• Third order coma

The Wavefront expansion for coma using equation 2.7 is:

W =
(
(W131

~H − ~A131) · ~ρ
)
ρ2 = Wlinear + Wconstant (2.9)

Where ~A131 is defined in table 2.1.

The first term, Wlinear, represents the term that is present in an aligned system.

It is the conventional linear dependence with field for coma. But now when the
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Figure 2.20. Representation of the astigmatism contribution for each element in
3D. The node for each aberration contribution is displaced in the field (not centered
anymore on axis) because of the perturbations. Since astigmatism is quadratic with
field, each astigmatism contribution was represented with a paraboiloid.
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Reprensentation of the contirbution of each element

Astigmatism for element 1
Astigmatism for element 2

Figure 2.21. Representation of the astigmatism contribution for each element in
2D

system is misaligned, a new constant term will appear.

To have a better understanding, a centered two-element system is considered

again but now it will contain coma. In this case the coma of each element

increases linearly from the center of the Gaussian image plane (GIP). But when

the system is misaligned as shown in figure 2.19, the coma contribution of

each element is no longer centered at the center of the GIP but shifted in the

field. The representation of the coma contributions for the two element system

was done in figure 2.22. Since coma is linear with field, the shape in a three

dimensional view is a cone. As for astigmatism, the coma contribution of one

element is larger than the other one. Thus, one surface is wider than the other

one as shown in figure 2.22. There is a position on the intersection curve of the

two surfaces where the total coma is zero.
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Figure 2.22. Representation of the coma contribution for each element in 3D. The
perturbations shift the node of each contribution from the center of the Gaussian
image plane. Since coma is linear with field, each coma contribution was represented
with a cone.

If the nominal design of a system has some original coma and is misaligned,

coma will still increase linearly but its node will no longer be centered at the

center of the Gaussian image plane. According to 2.9, the node will be located

by ~A131/W131. On the other hand, if the original system is corrected for coma,

some coma can appear at the image plane if the system is misaligned. But this

time coma will be constant over the field.

Again as it was said before the maximum possible number of nodes is equal to

the field power of the aberration. Thus for coma, there can only be a maximum

of one node.

• Third order field curvature
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The Wavefront expansion for field curvature using equation 2.7 is:

W =
(
W220M( ~H · ~H)−2 ~H · ~A220M +B220M

)(
~ρ·~ρ)

= Wquadratic+Wlinear+Wconstant

(2.10)

Where ~A220M and B220M are defined in table 2.1.

Like for astigmatism, field curvature can exhibit a linear and a constant depen-

dence in a misaligned system.

• Third order distortion

The Wavefront expansion for third order distortion using equation 2.7 is:

W = W311( ~H · ~H) ~H · ~ρ (Wcubic)

− 2( ~H · ~A311) ~H · ~ρ (Wquadratic#1)

+ 2B311
~H · ~ρ (Wlinear#1)

− ( ~H · ~H) ~A311 · ~ρ (Wquadratic#2)

+ ( ~B2
311

~H∗) · ~ρ (Wlinear#2)

− ~C311 · ~ρ (Wconstant)

(2.11)

Where ~A311, B311, ~B2
311 and ~C311 are defined in table 2.1. Wcubic represents

the distortion of an aligned system and the other terms are the terms that can

appear when a system is misaligned.

Note that there can be more than one term for the same field dependence.

2.3.2 Fifth order aberrations

• Fifth order spherical aberration

Like for third order spherical aberration, there is no dependence with the field.

Thus the expression of fifth order spherical aberration in a misaligned system

remains the same.
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• Field cubed coma

The Wavefront expansion for field cubed coma using equation 2.7 is:

W = W331M

(
~H · ~H

)
~H · ~ρ (

~ρ · ~ρ )
(Wcubic)

− 2
(
~H · ~A331M

)
~H · ~ρ (

~ρ · ~ρ )
(Wquadratic#1)

+ 2B331M

(
~H · ~ρ )(

~ρ · ~ρ )
(Wlinear#1)

− (
~H · ~H

)
~A331M

· ~ρ (
~ρ · ~ρ )

(Wquadratic#2)

+
(
~B

2

331M
~H∗) · ~ρ (

~ρ · ~ρ )
(Wlinear#2)

− (
~C331M

· ~ρ)(
~ρ · ~ρ )

(Wconstant)

(2.12)

Where ~A331M
, B331M

, ~B2
331M

and ~C331M
are defined in table 2.1.

• Elliptical coma

The Wavefront expansion for elliptical coma using equation 2.7 is:

W =
( 1

4
W333

~H3 · ~ρ 3 (Wcubic)

− 3

4
( ~H2 ~A333) · ~ρ 3 (Wquadratic)

+
3

4
( ~H ~B 2

333) · ~ρ 3 (Wlinear)

− 1

4
~C 3

333 · ~ρ 3
)

(Wconstant)

(2.13)

Where ~A333, ~B 2
333 and ~C 3

333 are defined in table 2.1.

• Quartic field curvature

The Wavefront expansion for quartic field curvature using equation 2.7 is:

W =
(
W420M

(
~H · ~H

) · ( ~H · ~H
))(

~ρ · ~ρ)
(Wquartic)

− 4
((

~H · ~H
) · ( ~H · ~A420M

))(
~ρ · ~ρ)

(Wcubic)

+ B420M

(
~H · ~H

)(
~ρ · ~ρ)

(Wquadratic#1)

+ 2
(
~H2 · ~B2

420M

)(
~ρ · ~ρ)

(Wquadratic#2)

− 4
(
~H · ~C420M

)(
~ρ · ~ρ)

(Wlinear)

+ D420M

(
~ρ · ~ρ)

(Wconstant)

(2.14)
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Where ~A420M
, B420M

, ~B2
420M

, ~C420M
and ~D420M

are defined in table 2.1.

• Quartic astigmatism

The Wavefront expansion for quartic astigmatism using equation 2.7 is:

W =
1

2
W422

(
~H · ~H

)
~H2 · ~ρ 2 (Wquartic)

− (
~H · ~H

)(
~H ~A422

) · ~ρ 2 (Wcubic#1)

+
3

2

(
~H · ~H

)
~B2

422 · ~ρ 2 (Wquadratic#1)

− (
~H · ~A422

)
~H2 · ~ρ 2 (Wcubic#2)

− (
~C3

422
~H∗) · ~ρ 2 (Wlinear#1)

+
3

2
B422

~H2 · ~ρ 2 (Wquadratic#2)

− 3

2

(
~H ~C422

) · ~ρ 2 (Wlinear#2)

+
1

2
~D2

422 · ~ρ 2 (Wconstant)

(2.15)

Where ~A422, B422, ~B2
422, ~C422, ~C3

422 and ~D2
422 are defined in table 2.1.

• Fifth order coma

The Wavefront expansion for fifth order coma using equation 2.7 is:

W =
(
(W151

~H − ~A151) · ~ρ
)(

~ρ · ~ρ)2
= Wlinear + Wconstant (2.16)

Where ~A151 is defined in table 2.1.

There is a linear and a constant part as third order coma.

• Oblique spherical aberration

The Wavefront expansion for oblique spherical aberration using equation 2.7 is:

W =
1

2

((
W242

~H2 − 2 ~H ~A242 + ~B2
242

) · ~ρ 2
)
ρ2 = Wquadratic + Wlinear + Wconstant

(2.17)

Where ~A242 and ~B2
242 are defined in table 2.1.
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• Field curvature for oblique spherical aberration

The Wavefront expansion for field curvature for oblique spherical aberration

using equation 2.7 is:

W =
(
W240M( ~H · ~H)−2 ~H · ~A240M +B240M

)(
~ρ·~ρ)2

= Wquadratic+Wlinear+Wconstant

(2.18)

Where ~A240M and B240M are defined in table 2.1.

• Fifth order distortion

The Wavefront expansion for fifth order distortion using equation 2.7 is:

W = W511( ~H · ~H)( ~H · ~H) ~H · ~ρ (Wfifth)

− 4( ~H · ~H)( ~H · ~A511) ~H · ~ρ (Wquartic#1)

+ 6B511( ~H · ~H) ~H · ~ρ (Wcubic#1)

+ 2( ~H2 · ~B2
511) ~H · ~ρ (Wcubic#2)

− 4( ~H · ~C511) ~H · ~ρ (Wquadratic#1)

+ 3D511
~H · ~ρ (Wlinear#1)

− ( ~H · ~H)( ~H · ~H) ~A511 · ~ρ (Wquartic#2)

+ 2( ~H · ~H)( ~B2
511

~H∗) (Wcubic#3)

− 4( ~H · ~H)~C511 · ~ρ (Wquadratic#2)

− ( ~H2 ~C∗
511) · ~ρ (Wquadratic#3)

− (~C3
511

~H2∗) · ~ρ (Wquadratic#4)

+ 2( ~D2
511

~H∗) · ~ρ (Wlinear#2)

− ~E511 · ~ρ (Wconstant)

(2.19)

Where ~A511, B511, ~B2
511, ~C∗

511, ~C511, ~C3
511, D511, ~D2

511 and ~E511 are defined in

table 2.1.

At this point, the expressions and the behavior of the aberrations in a misaligned

system are known. But the wavefront expansion used for these theoretical derivations
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will not be convenient to use with optical software or with wavefront sensors during

the process of alignment. The Zernike polynomials would be more convenient. Thus

the next chapter will show how to relate the wavefront expansion of the different

aberrations to the Zernike polynomials and their field dependencies.

Wklm =
∑

j

Wklmj

~Aklm =
∑

j

Wklmj
~σj

Bklm =
∑

j

Wklmj
(~σj · ~σj)

~B2
klm =

∑
j

Wklmj
~σ2

j

~Cklm =
∑

j

Wklmj
(~σj · ~σj)~σj

~C3
klm =

∑
j

Wklmj
~σ3

j

Dklm =
∑

j

Wklmj
(~σj · ~σj)

2

~D2
klm =

∑
j

Wklmj
(~σj · ~σj)~σ2

j

~Eklm =
∑

j

Wklmj
(~σj · ~σj)

2 ~σj

Table 2.1. Vectors and scalars used in the expression of the wavefront expansion
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Chapter 3

Expressions of the field dependencies of the

Zernike polynomials in a perturbed optical

system

Chapter 2 has proved that the common aberrations in a misaligned system can be

expressed. It was shown that no new aberrations were created but the field dependen-

cies of each aberration were modified. Moreover, it has been seen that the new field

dependencies were always a power smaller than the original aberration. For example,

third order astigmatism which has a quadratic field dependence was exhibiting linear

and constant dependencies in a misaligned system.

The results shown in chapter 2 and which were derived in great detail in the dis-

sertation of K.P. Thompson give an insight in the behavior of a misaligned system. It

is a convenient tool to make a sensitivity analysis for example. But it would be easier

to retrieve the perturbations in a misaligned system using Zernike polynomials which

are more familar functions than the formulation in terms of wavefront expansions.

The reason is that the wavefront at the exit of an optical system is generally fitted

with the Zernike coefficients. Also, they are commonly used in optical software.

The issue with Zernike polynomials is that they do not explicitly give the infor-

mation about the field dependencies. They are expressed in terms of ρ and φ and the

information on the field dependencies is contained in the Zernike coefficients. Thus,

distortion will be represented like tilt with Z2 and Z3
1 since distortion behaves like

tilt except that its field dependence is cubic instead of being linear. It is the same

thing for third order field curvature and defocus, they are both represented by Z4
1

since field curvature is no more than defocus with a quadratic dependence.

1For the standard Zernike polynomials: Z2 =
√

4ρ cos φ, Z3 =
√

4ρ sin φ and Z4 =
√

3(2ρ2 − 1)



43

The previous chapter has shown that tilts and decenters will modify the field

dependencies of the aberrations. Thus, the information on the field for the Zernike

polynomials is necessary to decompose the aberrations in terms of centered and mis-

aligned aberrations.

In this chapter, it will be shown how the equations of chapter 2 relate to the

Zernike polynomials. The Zernike coefficients will be explicitly expressed in terms of

the field dependencies so as to use them to fit the data from a ray tracing program or a

wavefront sensor. Therefore, the equations in this section will appear complicated but

they will be convenient for fit purposes. This set of equations represents a powerful

tool to align an optical system because they are general and work for any type of

system as it will be shown in chapter 4 and 5.

First, the wavefront expansion and the Zernike coefficients will be related using

the vector multiplication. Then, the equations which give the field dependencies for

the Zernike polynomials for the third and fifth order will be given. And finally, the

useful equations will be compiled to summarize this chapter.

3.1 Relations between the wavefront expansion and the Zernike
polynomials by using the vector multiplication

To relate the vectorial form of the wavefront expansion to the Zernike polynomials,

the vector multiplication will be used. Thus in this section, the vector multiplica-

tion will be explained in detail and the required equations to express the Zernike

coefficients in the following sections will be underlined.

A multiplication between vectors gives an other vector coplanar with the other

two. To be able to multiply two vectors, a vector needs to be considered as a phasor.

If we consider two vectors ~A and ~B and express them as:

~A = aeiα = axî + ay ĵ ax = a sin α, ay = a cos α

~B = beiβ = bxî + by ĵ bx = b sin β, by = b cos β



44

Then the multiplication between these two vectors is defined as:

~A~B = ab ei(α+β) = (aybx + axby) î + (ayby − axbx) ĵ

= ab sin(α + β) î + ab cos(α + β) ĵ
(3.1)

By contrast to the dot product which is defined as follows:

~A · ~B = ab cos(α− β) = axbx + ayby (3.2)

The multiplication produces an other vector and the dot product a scalar. Thus,

when a vector is squared or cubed, the results is not simply the magnitude of the

vector squared or cubed as shown in equations 3.3 and 3.4.

~A2 = a2ei2α = 2axay î + (a2
y − a2

x) ĵ

= a2 sin 2α î + a2 cos 2α ĵ
(3.3)

~A3 = a3ei3α = (3a2
yax − a3

x) î + (a3
y − 3a2

xay) ĵ

= a3 sin 3α î + a3 cos 3α ĵ
(3.4)

The dissertation of Kevin P. Thompson also introduces conjugate vectors to preserve

pupil dependence. In the expression of the vector, this implies a sign change in the

exponent. The conjugate of ~A is expressed as:

~A∗ = ae−iα = −axî + ay ĵ (3.5)

Thus, the vector product with vector conjugate is defined as:

~A~B∗ = ab ei(α−β) = (axby − aybx) î + (ayby + axbx) ĵ (3.6)

Based on equations 3.3 through 3.5, the subsequent equations for ~H and ~ρ are

derived.

For ~H, the derivations are:

~H2 = 2xy î + (y2 − x2)ĵ (3.7)

~H3 = (3y2x− x3) î + (y3 − 3x2y)ĵ (3.8)

~H∗ = −x î + y ĵ (3.9)
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For ~ρ, the derivations are:

~ρ 2 = ρ2 sin 2φ î + ρ2 cos 2φ ĵ (3.10)

~ρ 3 = ρ3 sin 3φ î + ρ3 cos 3φ ĵ (3.11)

~ρ ∗ = −ρ sin φ î + ρ cos φ ĵ (3.12)

Then by using equations 3.2, 3.1, 3.6, 3.7-3.12 in 2.8-2.19 the equations of the

Zernike coefficients in the following sections 3.2 and 3.3 will be derived.

3.2 Field dependencies of the Zernike polynomials for the
third order aberrations

In this section, only the third order aberrations for the Zernike polynomials will

be considered. In this thesis, the standard Zernike polynomials are used and the ones

which are considered in this section are represented in table 3.1.

Term Orthonormal Zernike Polynomial Aberration name
Z(ρ,φ)

2
√

4ρ cos φ Tilt X

3
√

4ρ sin φ Tilt Y

4
√

3(2ρ2 − 1) Defocus

5
√

6(ρ2 sin 2φ) 45◦ 3rd order astigmatism

6
√

6(ρ2 cos 2φ) 0◦ 3rd order astigmatism

7
√

8(3ρ3 − 2ρ) sin φ 90◦ 3rd order coma

8
√

8(3ρ3 − 2ρ) cos φ 0◦ 3rd order coma

Table 3.1. Zernike polynomials for the third order aberrations

As it was said before, the Zernike polynomials do not explicitly include the infor-

mation on the field dependencies, they are only expressed with ρ and φ. This section

and the following one will show how to express explicitly the Zernike coefficients in

terms of the field components x and y. It will be shown that the wavefront expansion
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can be decomposed as:

W =
∑

i

((∑

j

Cj
i (x, y)

)
· Zi(ρ, φ)

)
where





Zi are the Zernike polynomials
Cj

i are the Zernike coefficients which
contain the field dependencies of theZi

i is the number of a zernike term
j is the power of the field dependence

(3.13)

By having the expressions of the coefficients Cj
i for the different zernike terms,

it will be possible to fit the zernike coefficients coming from a raytracing program

or a wavefront sensor for different field positions. The purpose of this section and

the following one, is to find the expressions of these Cj
i (x, y) for all the aberrations

from third to fifth order. Note that sometimes in the literature the Zi represent the

coefficients instead of the polynomials.

• Third order astigmatism

The different components of equation 2.8 can be expressed in terms of the field

components. Again, the components of ~H along ~x and ~y are x and y respectively.

And for ~ρ the components are ρ sin φ and ρ cos φ. This is emphasized, because

in the literature x and y sometimes represent the pupil components instead of

the field components.

For the quadratic component, the derivations are:

Wquadratic =
1

2
W222

~H2 · ~ρ 2

=
1

2
W222

(
2 x yρ2 sin 2φ + (y2 − x2)ρ2 cos 2φ

) (3.14)

Since 1
2
W222 is constant, the constant α0 which is equal to this term is intro-

duced, then equation 3.14 becomes:

Wquadratic =
(
2 α0x y

)
ρ2 sin 2φ +

(
α0(y

2 − x2)
)
ρ2 cos 2φ (3.15)
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√
6ρ2 sin 2φ and

√
6ρ2 cos 2φ represent the standard Zernike terms Z5 and Z6 as

shown in table 3.1. Thus, equation 3.15 can be rewritten as:

Wquadratic =
2 α0x y√

6
· Z5 +

α0(y
2 − x2)√

6
· Z6

= C2
5 · Z5 + C2

6 · Z6

(3.16)

Then, the constant α0 can be redefined (by including
√

6 in it) so as to get the

simplified terms: {
C2

5 = 2 α0x y

C2
6 = α0(y

2 − x2)
(3.17)

As it was said before, this quadratic part represents the astigmatism of a cen-

tered system. The subscript 0 for the constant was used to express this aberra-

tion. For the following aberrations the subscript 0 will be used again to express

the aberrations of a centered system.

For the linear component, the derivations are:

Wlinear = −(
~H ~A222

) · ~ρ 2

= −(
(A222xy + A222yx)ρ2 sin 2φ + (−A222xx + A222yy)ρ2 cos 2φ

) (3.18)

Equation 3.18 represents the linear part of the astigmatism, where A222x and

A222y are the ~x and ~y components of ~A222. Since these two components are

constant, an expression of the linear astigmatism with two new constants α1

and α2 can be found as it was done before for the quadratic term:
{

C1
5 = α1y + α2x

C1
6 = −α1x + α2y

(3.19)

For the constant part the derivations are:

Wconstant =
1

2
~B2

222 · ~ρ 2

=
(
2B222xB222yρ

2 sin 2φ + (B2
222y −B2

222x)ρ
2 cos 2φ

) (3.20)

Equation 3.20 represents the constant part of the astigmatism, where B222x and

B222y are the x and y components of ~B222. As for the linear component, an
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expression of the constant astigmatism with Z5 and Z6 with two new constants

α3 and α4 can be found since B222x and B222y are two constants:

{
C0

5 = α3

C0
6 = α4

(3.21)

Considering all the components of the astigmatism in a misaligned system, C5

and C6 can be defined as:

C5 =
∑

Cj
5 = 2 α0x y + α1y + α2x + α3

C6 =
∑

Cj
6 = α0(y

2 − x2)− α1x + α2y + α4

(3.22)

The same technique is used to find the subsequent expressions for the other

aberrations with the conventions defined in figure 2.1. The independent con-

stants βj, ξj, µj, χj, κj, γj, δj, νj, ζj, ηj (∀j) are used to express the other

aberrations. The subscript 0 for the constants will be used to express the aber-

rations of a centered system and the following numbers will be used to express

the aberrations that can possibly arise in a misaligned system.

• Third order coma

As it has been shown for astigmatism, the different components of coma in

equation 2.9 can be expressed in terms of the field components x and y as shown

in equation 3.23 and 3.25. And then the expressions of the field dependencies

of the Zernike coefficients can be derived.

Wlinear = W131( ~H · ~ρ)ρ2 = W131(xρ3 sin φ + yρ3 cos φ) (3.23)

=⇒
{

C1
7 = β0x

C1
8 = β0y

(3.24)

Wconstant = −( ~A131 · ~ρ) = −(A131xρ
3 sin φ + A131yρ

3 cos φ) (3.25)
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=⇒
{

C0
7 = β1

C0
8 = β2

(3.26)

Considering all the components of coma in a misaligned system, C7 and C8 can

be defined as:

C7 =
∑

Cj
7 = β0x + β1

C8 =
∑

Cj
8 = β0y + β2

(3.27)

• Third order field curvature

C4 can be derived using the same method as before: express the different com-

ponents of third order field curvature in equation 2.10 in terms of the field

components x and y and then derive C4.

Wquadratic = W220M(x2 + y2)ρ2 (3.28)

=⇒ C2
4 = γ0(x

2 + y2) (3.29)

Wlinear = −2(A220Mxx + A220Myy)ρ2 (3.30)

=⇒ C1
4 = γ1x + γ2y (3.31)

Wconstant = B220Mρ2 (3.32)

=⇒ C0
4 = γ3 (3.33)

Considering all the components of field curvature in a misaligned system, C4

can be expressed as:

C4 =
∑

Cj
4 = γ0(x

2 + y2) + γ1x + γ2y + γ3 (3.34)
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• Third order distortion

The different components of third order distortion in equation 2.11 can be ex-

press in terms of the field components x and y and then the expressions of C2

and C3 can be derived.

Wcubic = W311(x
2 + y2) ~H · (ρ sin φ î + ρ cos φĵ)

= W311

(
(x3 + xy2)ρ sin φ + (x2y + y3)ρ cos φ

) (3.35)

=⇒
{

C3
2 = ν0(x

2y + y3)

C3
3 = ν0(x

3 + xy2)
(3.36)

Wquadratic#1 = −2(xA311x + yA311y)(xρ sin φ + yρ cos φ)

= −2
(
(x2A311x + xyA311y)ρ sin φ + (xyA311x + y2A311y)ρ cos φ

)
(3.37)

=⇒
{

C2
2 = ν1xy + ν2y

2

C2
3 = ν1x

2 + ν2xy
(3.38)

Wlinear#1 = 2B311(xρ sin φ + yρ cos φ) (3.39)

=⇒
{

C1
2 = ν3y

C1
3 = ν3x

(3.40)

Since third order distortion has two quadratic and two linear dependencies, the

prime sign will be used to differentiate the components.

Wquadratic#2 = −(x2 + y2)(A311xρ sin φ + A311yρ cos φ) (3.41)

=⇒
{

C2′
2 = ν4(x

2 + y2)

C2′
3 = ν5(x

2 + y2)
(3.42)

Wlinear#2 = ( ~B2
311

~H∗) · (ρ sin φ î + ρ cos φĵ)

=
(
(−(B2

311y −B2
311x)x + 2B311xB311yy)ρ sin φ

+ (B2
311y −B2

311x)y + 2B311xB311yx)ρ cos φ
)

(3.43)
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=⇒
{

C1′
2 = ν6y + ν7x

C1′
3 = −ν6x + ν7y

(3.44)

Wconstant = −(C311xρ sin φ + C311yρ cos φ) (3.45)

=⇒
{

C0
2 = ν8

C0
3 = ν9

(3.46)

Considering all the components of third order distortion in a misaligned system,

C2 and C3 can be defined as:

C2 =
∑

Cj
2 = ν0(x

2y + y3) + ν1xy + ν2y
2 + ν3y + ν4(x

2 + y2) + ν6y + ν7x + ν8

C3 =
∑

Cj
3 = ν0(x

3 + xy2) + ν1x
2 + ν2xy + ν3x + ν5(x

2 + y2)− ν6x + ν7y + ν9

(3.47)

3.3 Field dependencies of the Zernike polynomials for the
fifth order aberrations

Fifth order aberrations will introduce some new Zernike coefficients but will also

reintroduce the Zernike coefficients that were seen for third order. That means that

there can be some coupling between third and fifth order aberrations. This section

will consider only the Zernike coefficients of table 3.2. The derivations of the Cj
i

for this section are found by following the same procedure as for the third order

aberrations.

• Field cubed coma

The different components of field cubed coma in equation 2.12 can be expressed

in terms of the field components x and y which leads to the expressions of C7

and C8. To differentiate the components that have the same field dependence,

the prime sign will be used.
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Term Orthonormal Zernike Polynomial Aberration name
Z(ρ,φ)

2
√

4ρ cos φ Tilt X

3
√

4ρ sin φ Tilt Y

4
√

3(2ρ2 − 1) Defocus

5
√

6(ρ2 sin 2φ) 45◦ 3rd order astigmatism

6
√

6(ρ2 cos 2φ) 0◦ 3rd order astigmatism

7
√

8(3ρ3 − 2ρ) sin φ 90◦ 3rd order coma

8
√

8(3ρ3 − 2ρ) cos φ 0◦ 3rd order coma

9
√

8ρ3 sin 3φ 30◦ trefoil

10
√

8ρ3 cos 3φ 0◦ trefoil

11
√

5(6ρ4 − 6ρ2 + 1) 3rd order spherical aberration

12
√

10(4ρ4 − 3ρ2) cos 2φ 0◦ 5th order astigmatism

13
√

10(4ρ4 − 3ρ2) sin 2φ 45◦ 5th order astigmatism

16
√

12(10ρ5 − 12ρ3 + 3ρ) cos φ 0◦ 5th order coma

17
√

12(10ρ5 − 12ρ3 + 3ρ) sin φ 90◦5th order coma

Table 3.2. Zernike polynomials for the fifth order aberrations

Wcubic = W331M

(
(x2 + y2) ~H · ~ρ)

ρ2

= W331M

((
x3 + xy2

)
ρ3 sin φ +

(
y3 + x2y

)
ρ3 cos φ

) (3.48)

=⇒
{

C3
7 = ξ0(x

3 + xy2)

C3
8 = ξ0(y

3 + x2y)
(3.49)

Wquadratic#1 =− 2
((

xA331Mx
+ yA331My

)
~H · ρ2~ρ

)

=− 2
((

A331Mx
x2 + A331My

xy
)
ρ3 sin φ

+
(
A331Mx

xy + A331My
y2

)
ρ3 cos φ

)
(3.50)

=⇒
{

C2
7 = ξ1 x2 + ξ2 xy

C2
8 = ξ1 xy + ξ2 y2

(3.51)

Wlinear#1 = 2B331M
~H · ρ2~ρ

= 2B331M

(
xρ3 sin φ + yρ3 cos φ

) (3.52)
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=⇒
{

C1
7 = ξ3 x

C1
8 = ξ3 y

(3.53)

Wquadratic#2 = −
((

x2 + y2
)
~A331M

· ρ2~ρ
)

= −
(
A331Mx

(
x2 + y2

)
ρ3 sin φ + A331My

(
x2 + y2

)
ρ3 cos φ

) (3.54)

=⇒
{

C2′
7 = ξ4 (x2 + y2)

C2′
8 = ξ5 (x2 + y2)

(3.55)

Wlinear#2 =
(
~B

2

331M
~H∗) · ρ2~ρ

=
((

(B2
331Mx

−B2
331My

)x + (2B331Mx
B331My

)y
)
î

+
(
(B2

331My
−B2

331Mx
)y + (2B331Mx

B331My
)x

)
ĵ
)(

ρ3 sin φ î + ρ3 cos φ ĵ
)

=
(
2B331Mx

B331My
y +

(
B2

331Mx
−B2

331My

)
x
)
ρ3 sin φ

+
(
2B331Mx

B331My
x− (

B2
331Mx

−B2
331My

)
y
)
ρ3 cos φ

(3.56)

=⇒
{

C1′
7 = ξ6 y + ξ7 x

C1′
8 = ξ6 x− ξ7 y

(3.57)

Wconstant = −(
~C331M

· ~ρ)
ρ2

= −C331Mx
ρ3 sin φ− C331My

ρ3 cos φ
(3.58)

=⇒
{

C0
7 = ξ8

C0
8 = ξ9

(3.59)

Considering all the components of field cubed coma in a misaligned system, C7

and C8 can be defined as:

C7 =
∑

Cj
7 =ξ0(x

3 + xy2) + ξ1 x2 + ξ2 xy + ξ3 x

+ ξ4 (x2 + y2) + ξ6 y + ξ7 x + ξ8

C8 =
∑

Cj
8 =ξ0(y

3 + x2y) + ξ1 xy + ξ2 y2 + ξ3 y

+ ξ5 (x2 + y2) + ξ6 x− ξ7 y + ξ9

(3.60)
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• Elliptical coma (Trefoil)

The derivations of C9 and C10 is done with the same method as before by

expressing the different components of elliptical coma in equation 2.13 in terms

of the field components x and y.

Wcubic =
1

4
W333

((
3y2x− x3

)
ρ3 sin 3φ +

(
y3 − 3x2y

)
ρ3 cos 3φ

)
(3.61)

=⇒
{

C3
9 = µ0(3y

2x− x3)

C3
10 = µ0(y

3 − 3x2y)
(3.62)

Wquadratic = −3

4

((
A333x(−x2 + y2) + 2A333yxy

)̂
i

+
(
(A333x(−2xy) + A333y(y

2 − x2)
)
ĵ
)
· (ρ3 sin 3φ î + ρ3 cos 3φ ĵ

)

(3.63)

=⇒
{

C2
9 = µ1(y

2 − x2) + µ22xy

C2
10 = −2µ1xy + µ2(y

2 − x2)
(3.64)

Wlinear =
3

4

((
x(B2

333y −B2
333x) + y2B333xB333y

)̂
i

+
(
y(B2

333y −B2
333x)− x2B333xB333y

)
ĵ
)
· (ρ3 sin 3φ î + ρ3 cos 3φ ĵ

)

(3.65)

=⇒
{

C1
9 = µ3x + µ4y

C1
10 = µ3y − µ4x

(3.66)

Wconstant = −1

4

((
3C2

333yC333x−C3
333x

)
ρ3 sin 3φ+

(
C3

333y−3C2
333xC333y

)
ρ3 cos 3φ

)

(3.67)

=⇒
{

C0
9 = µ5

C0
10 = µ6

(3.68)
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Considering all the components of elliptical coma in a misaligned system, C9

and C10 can be defined as:

C9 =
∑

Cj
9 = µ0(3y

2x− x3) + µ1(y
2 − x2) + µ22xy + µ3x + µ4y + µ5

C10 =
∑

Cj
10 = µ0(y

3 − 3x2y)− 2µ1xy + µ2(y
2 − x2) + µ3y − µ4x + µ6

(3.69)

• Quartic field curvature

C4 can be derived using the same method as before: express the different compo-

nents of quartic field curvature in equation 2.14 in terms of the field components

x and y and then derive C4.

Wquartic = W420M(x2 + y2)(x2 + y2)ρ2 (3.70)

=⇒ C4
4 = ψ0(x

4 + y4 + 2x2y2) (3.71)

Wcubic = −4(x2 + y2)(A420Mxx + A420Myy)ρ2 (3.72)

=⇒ C3
4 = ψ1(x

3 + xy2) + ψ2(x
2y + y3) (3.73)

Wquadratic#1 = B420M(x2 + y2)ρ2 (3.74)

=⇒ C2
4 = ψ3(x

2 + y2) (3.75)

Wquadratic#2 = 2
(
2B420MxB420My · 2xy + (B2

420My −B2
420Mx)(y

2 − x2)
)
ρ2 (3.76)

=⇒ C2′
4 = ψ4xy + ψ5(y

2 − x2) (3.77)

Wlinear = −4(C420Mxx + C420Myy)ρ2 (3.78)
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=⇒ C1
4 = ψ6x + ψ7y (3.79)

Wconstant = D420Mρ2 (3.80)

=⇒ C0
4 = ψ8 (3.81)

Considering all the components of quartic field curvature in a misaligned system,

C4 can be expressed as:

C4 =
∑

Cj
4 =ψ0(x

4 + y4 + 2x2y2) + ψ1(x
3 + xy2) + ψ2(x

2y + y3)

+ ψ3(x
2 + y2) + ψ4xy + ψ5(y

2 − x2) + ψ6x + ψ7y + ψ8

(3.82)

• Quartic astigmatism

The different components of quartic astigmatism in equation 2.15 can be ex-

pressed in terms of the field components x and y and then the expressions of C5

and C6 can be derived. Again, to differentiate the components that have the

same field dependence, the prime sign will be used.

Wquartic =
1

2
W422

(
x2 + y2

)(
2xyρ2 sin 2φ + (y2 − x2)ρ2 cos 2φ

)

=
1

2
W422

(
(2x3y + 2xy3)ρ2 sin 2φ + (y4 − x4)ρ2 cos 2φ

) (3.83)

=⇒
{

C4
5 = 2χ0(x

3y + xy3)

C4
6 = χ0(y

4 − x4)
(3.84)

Wcubic#1 = −(
x2 + y2

)(
(xA422y + yA422x)ρ

2 sin 2φ + (yA422y − xA422x)ρ
2 cos 2φ

)

= −(
A422x(x

2y + y3) + A422y(x
3 + xy2)

)
ρ2 sin 2φ

+
(
A422y(x

2y + y3)− A422x(x
3 + xy2)

)
ρ2 cos 2φ

(3.85)

=⇒
{

C3
5 = χ1(x

2y + y3) + χ2(x
3 + xy2)

C3
6 = −χ1(x

3 + xy2) + χ2(x
2y + y3)

(3.86)
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Wquadratic#1 =
3

2

(
(x2+y2)2B422xB422yρ

2 sin 2φ+(x2+y2)(B2
422y−B2

422x)ρ
2 cos 2φ

)

(3.87)

=⇒
{

C2
5 = χ3(x

2 + y2)

C2
6 = χ4(x

2 + y2)
(3.88)

Wcubic#2 =−
((

A422x(xy2 − x3) + A422y(2xy2)
)
ρ2 sin 2φ

+
(− A422x(2x

2y) + A422y(y
3 − x2y)

)
ρ2 cos 2φ

) (3.89)

=⇒
{

C3′
5 = χ5(xy2 − x3) + χ6(2xy2)

C3′
6 = −χ5(2x

2y) + χ6(y
3 − x2y)

(3.90)

Wlinear#1 = −1

2

((
3C2

422yC422x − C3
422x)y − (C3

422y − 3C2
422xC422y)x

)
ρ2 sin 2φ

+
(
(3C2

422yC422x − C3
422x)x + (C3

422y − 3C2
422xC422y)y

)
ρ2 cos 2φ

)

(3.91)

=⇒
{

C1
5 = χ7y − χ8x

C1
6 = χ7x + χ8y

(3.92)

Wquadratic#2 =
3

2
B422

(
2xy ρ2 sin 2φ + (y2 − x2)ρ2 cos 2φ

)
(3.93)

=⇒
{

C2′
5 = χ92xy

C2′
6 = χ9(−x2 + y2)

(3.94)

Wlinear#2 = −3

2

(
(C422yx+C422xy)ρ2 sin 2φ+(C422yy−C422xx)ρ2 cos 2φ

)
(3.95)

=⇒
{

C1′
5 = χ10x + χ11y

C1′
6 = χ10y − χ11x

(3.96)

Wconstant =
1

2

(
2D422xD422yρ

2 sin 2φ + (D2
422y −D2

422x)ρ
2 cos 2φ

)
(3.97)
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=⇒
{

C0
5 = χ12

C0
6 = χ13

(3.98)

Considering all the components of quartic astigmatism in a misaligned system,

C5 and C6 can be defined as:

C5 =
∑

Cj
5 = 2χ0(x

3y + xy3) + χ1(x
2y + y3) + χ2(x

3 + xy2) + χ3(x
2 + y2)

+ χ5(xy2 − x3) + χ6(2xy2) + χ7y − χ8x + χ92xy

+ χ10x + χ11y + χ12

C6 =
∑

Cj
6 = χ0(y

4 − x4)− χ1(x
3 + xy2) + χ2(x

2y + y3) + χ4(x
2 + y2)

− χ5(2x
2y) + χ6(y

3 − x2y) + χ7x + χ8y + χ9(−x2 + y2)

+ χ10y − χ11x + χ13

(3.99)

• Fifth order coma

As before, the expression of the different components of fifth order coma in

equation 2.16 in terms of the field components x and y leads to the derivation

of Z16 and Z17.

Wlinear =
∑

j

W151j

(
xρ5 sin φ + yρ5 cos φ

)
(3.100)

=⇒
{

C1
16 = κ0y

C1
17 = κ0x

(3.101)

Wconstant = −(
A151xρ

5 sin φ + A151yρ
5 cos φ

)
(3.102)

=⇒
{

C0
16 = κ1

C0
17 = κ2

(3.103)

Considering all the components of fifth order coma in a misaligned system, C16

and C17 can be defined as:

C16 =
∑

Cj
16 = κ0y + κ1

C17 =
∑

Cj
17 = κ0x + κ2

(3.104)



59

• Oblique spherical aberration

The different components of oblique spherical aberration in equation 2.17 can

be expressed in terms of the field components x and y and then the expressions

of C12 and C13 can be derived.

Wquadratic =
1

2
W242

(
~H2 · ~ρ 2

)
ρ2

=
1

2
W242

(
2xyρ4 sin 2φ + (y2 − x2)ρ4 cos 2φ

) (3.105)

=⇒
{

C2
12 = η0(y

2 − x2)

C2
13 = η02xy

(3.106)

Wlinear = −
((

~H ~A242

) · ~ρ 2
)
ρ2

= −
((

A242xy + A242yx
)
ρ4 sin 2φ +

(− A242xx + A242yy
)
ρ4 cos 2φ

)

(3.107)

=⇒
{

C1
12 = −η1x + η2y

C1
13 = η1y + η2x

(3.108)

Wconstant =
1

2

(
~B2

242 · ~ρ 2
)
ρ2

=
1

2

(
2B242xB242yρ

4 sin 2φ + (B2
242y −B2

242x)ρ
4 cos 2φ

) (3.109)

=⇒
{

C0
12 = η3

C0
13 = η4

(3.110)

Considering all the components of oblique spherical aberration in a misaligned

system, C12 and C13 can be defined as:

C12 =
∑

Cj
12 = η0(y

2 − x2)− η1x + η2y + η3

C13 =
∑

Cj
13 = η02xy + η1y + η2x + η4

(3.111)
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• Field curvature for oblique spherical aberration

The different components of field curvature for oblique spherical aberration in

equation 2.18 can be expressed in terms of the field components x and y which

leads to the expressions of C11.

Wquadratic = W240M(x2 + y2)ρ4 (3.112)

=⇒ C2
11 = δ0(x

2 + y2) (3.113)

Wlinear = −2(A240Mxx + A240Myy)ρ4 (3.114)

=⇒ C1
11 = δ1x + δ2y (3.115)

Wconstant = B240Mρ4 (3.116)

=⇒ C0
11 = δ3 (3.117)

Considering all the components of field curvature for oblique spherical aberra-

tion in a misaligned system, C11 can be defined as:

C11 =
∑

Cj
11 = δ0(x2 + y2) + δ1x + δ2y + δ3 (3.118)

• Fifth order distortion

The different components of fifth order distortion in equation 2.19 can be ex-

pressed in terms of the field components x and y and then the expressions of

C2 and C3 can be derived. To differentiate the components that have the same

field dependence, the primes superscript will be used.

Wfifth = W511(x
2 + y2)2(xρ sin φ + yρ cos φ)

= W511

(
(x5 + xy4 + 2x3y2)ρ sin φ + (x4y + y5 + 2x2y3)ρ cos φ

) (3.119)
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=⇒
{

C5
2 = ζ0(x

4y + y5 + 2x2y3)

C5
3 = ζ0(x

5 + xy4 + 2x3y2)
(3.120)

Wquartic#1 = −4(x2 + y2)(xA511x + yA511y)(xρ sin φ + yρ cos φ)

= −4
((

A511x(x
4 + x2y2) + A511y(x

3y + xy3)
)
ρ sin φ

+
(
A511x(x

3y + xy3) + A511y(x
2y2 + y4)

)
ρ cos φ

) (3.121)

=⇒
{

C4
2 = ζ1(x

3y + xy3) + ζ2(x
2y2 + y4)

C4
3 = ζ1(x

4 + x2y2) + ζ2(x
3y + xy3)

(3.122)

Wcubic#1 = 6B511(x
2 + y2) ~H · (ρ sin φ î + ρ cos φĵ)

= 6B511

(
(x3 + xy2)ρ sin φ + (x2y + y3)ρ cos φ

) (3.123)

=⇒
{

C3
2 = ζ3(x

2y + y3)

C3
3 = ζ3(x

3 + xy2)
(3.124)

Wcubic#2 = 2
(
4B511xB511yxy + (B2

511y −B2
511x)(y

2 − x2)
)(

xρ sin φ + yρ cos φ
)

= 2
((

4B511xB511yx
2y + (B2

511y −B2
511x)(y

2x− x3)
)
ρ sin φ

+ (
(
4B511xB511yxy2 + (B2

511y −B2
511x)(y

3 − x2y)
)
ρ cos φ

)

(3.125)

=⇒
{

C3′
2 = ζ4xy2 + ζ5(y

3 − x2y)

C3′
3 = ζ4x

2y + ζ5(y
2x− x3)

(3.126)

Wquadratic#1 = −4(xC511x + yC511y)(xρ sin φ + yρ cos φ)

= −4
(
(x2C511x + xyC511y)ρ sin φ + (xyC511x + y2C511y)ρ cos φ

)
(3.127)

=⇒
{

C2
2 = ζ6xy + ζ7y

2

C2
3 = ζ6x

2 + ζ7xy
(3.128)
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Wlinear#1 = 3D511(xρ sin φ + yρ cos φ) (3.129)

=⇒
{

C1
2 = ζ8y

C1
3 = ζ8x

(3.130)

Wquartic#2 = −(x2 + y2)2(A511xρ sin φ + A511yρ cos φ)

= −(
A511x(x

4 + y4 + 2x2y2)ρ sin φ + A511y(x
4 + y4 + 2x2y2)ρ cos φ

)
(3.131)

=⇒
{

C4′
2 = ζ9(x

4 + y4 + 2x2y2)

C4′
3 = ζ10(x

4 + y4 + 2x2y2)
(3.132)

Wcubic#3 = 2(x2 + y2)( ~B2
511

~H∗) · (ρ sin φ î + ρ cos φĵ)

= 2
((− (B2

511y −B2
511x)(x

3 + xy2) + 2B511xB511y(yx2 + y3)
)
ρ sin φ

+
(
(B2

511y −B2
511x)(x

2y + y3) + 2B511xB511y(x
3 + xy2)

)
ρ cos φ

)

(3.133)

=⇒
{

C3′′
2 = ζ11(x

2y + y3) + ζ12(x
3 + xy2)

C3′′
3 = −ζ11(x

3 + xy2) + ζ12(yx2 + y3)
(3.134)

Wquadratic#2 = −4(x2 + y2)(C511xρ sin φ + C511yρ cos φ) (3.135)

=⇒
{

C2′
2 = ζ13(x

2 + y2)

C2′
3 = ζ14(x

2 + y2)
(3.136)

Wquadratic#3 = −(
~H2(−C511xî + C511y ĵ)

) · (~ρ)

= −
((− C511x(y

2 − x2) + 2C511yxy
)
ρ sin φ

+
(
2C511xxy + C511y(y

2 − x2)
)
ρ cos φ

)
(3.137)

=⇒
{

C2′′
2 = 2ζ15xy + ζ16(y

2 − x2)

C2′′
3 = −ζ15(y

2 − x2) + 2ζ16xy
(3.138)
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Wquadratic#4 = −(~C3
511

~H2∗) · ~ρ
=

(− 2(C3
511y − 3C2

511xC511y)xy

+ (3C2
511yC511x − C3

511x)(y
2 − x2)

)
ρ sin φ

+
(
(C3

511y − 3C2
511xC511y)(y

2 − x2)

+ 2(3C2
511yC511x − C3

511x)xy
)
ρ cos φ

(3.139)

=⇒
{

C2′′′
2 = ζ17(y

2 − x2) + 2ζ18xy

C2′′′
3 = −2ζ17xy + ζ18(y

2 − x2)
(3.140)

Wlinear#2 = 2( ~D2
511

~H∗) · (ρ sin φ î + ρ cos φĵ)

= 2
(
(−(D2

511y −D2
511x)x + 2D511xD511yy)ρ sin φ

+ ((D2
511y −D2

511x)y + 2D511xD511yx)ρ cos φ
)

(3.141)

=⇒
{

C1′
2 = ζ19y + ζ20x

C1′
3 = −ζ19x + ζ20y

(3.142)

Wconstant = −(E511xρ sin φ + E511yρ cos φ) (3.143)

=⇒
{

C0
2 = ζ21

C0
3 = ζ22

(3.144)

Considering all the components of fifth order distortion in a misaligned system,



64

C2 and C3 can be defined as:

C2 =
∑

Cj
2 = ζ0(x

4y + y5 + 2x2y3) + ζ1(x
3y + xy3) + ζ2(x

2y2 + y4)

+ ζ3(x
2y + y3) + ζ4xy2 + ζ5(y

3 − x2y) + ζ6xy + ζ7y
2 + ζ8y

+ ζ9(x
4 + y4 + 2x2y2) + ζ11(x

2y + y3) + ζ12(x
3 + xy2)

+ ζ13(x
2 + y2) + 2ζ15xy + ζ16(y

2 − x2) + ζ17(y
2 − x2)

+ 2ζ18xy + ζ19y + ζ20x + ζ21

C3 =
∑

Cj
3 = ζ0(x

5 + xy4 + 2x3y2) + ζ1(x
4 + x2y2) + ζ2(x

3y + xy3)

+ ζ3(x
3 + xy2) + ζ4x

2y + ζ5(y
2x− x3) + ζ6x

2 + ζ7xy + ζ8x

+ ζ10(x
4 + y4 + 2x2y2)− ζ11(x

3 + xy2) + ζ12(yx2 + y3)

+ ζ14(x
2 + y2)− ζ15(y

2 − x2) + 2ζ16xy − 2ζ17xy

+ ζ18(y
2 − x2)− ζ19x + ζ20y + ζ22

(3.145)

3.4 Summary of the results

This section summarizes the results found in sections 3.2 and 3.3 for the field

dependencies of the Zernike polynomials except that the equations shown here are

expressed with the usual conventions used by optical software instead of the ones used

in the dissertation of K.P. Thompson. Thus, a right-handed convention is considered

here and that will lead to replace x by −x. But optical softwares usually ”look” at the

image plane from behind and therefore x is unchanged. Also, here φ is now defined

from the ~x axis which will imply to replace cos φ by sin φ and vice versa. Thus to

summarize, the only modification will be to exchange the expression of the cosine and

the sine components for each aberration.

Again, the terms αj, βj, ξj, µj, χj, κj, γj, δj, νj, ζj, ηj (∀j) are independent

constants. The subscript 0 for these constants is used to express the aberrations of a

centered system and the following numbers are used to express the aberrations that



65

can possibly arise in a misaligned system.

A two-element system is well described with third order aberrations. In this case

the following equations are used:

Third order astigmatism: W222

C5 = α0(y
2 − x2)− α1x + α2y + α4

C6 = 2 α0x y + α1y + α2x + α3

Third order coma: W131

C7 = β0y + β2

C8 = β0x + β1

Third order field curvature: W220M

C4 = γ0(x
2 + y2) + γ1x + γ2y + γ3

Third order distortion: W311

C2 = ν0(x
3 + xy2) + ν1x

2 + ν2xy + ν3x + ν5(x
2 + y2)− ν6x + ν7y + ν9

C3 = ν0(x
2y + y3) + ν1xy + ν2y

2 + ν3y + ν4(x
2 + y2) + ν6y + ν7x + ν8

Fifth order aberrations give better results for systems with multiple degrees of

freedom. Thus the following equations are used:

Field cubed coma: W331

C7 = ξ0(y
3 + x2y) + ξ1 xy + ξ2 y2 + ξ3 y + ξ5 (x2 + y2) + ξ6 x− ξ7 y + ξ9

C8 = ξ0(x
3 + xy2) + ξ1 x2 + ξ2 xy + ξ3 x + ξ4 (x2 + y2) + ξ6 y + ξ7 x + ξ8

Elliptical coma (trefoil): W333

C9 = µ0(y
3 − 3x2y)− 2µ1xy + µ2(y

2 − x2) + µ3y − µ4x + µ6

C10 = µ0(3y
2x− x3) + µ1(y

2 − x2) + µ22xy + µ3x + µ4y + µ5
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Quartic field curvature: W420

C4 =ψ0(x
4 + y4 + 2x2y2) + ψ1(x

3 + xy2) + ψ2(x
2y + y3)

+ ψ3(x
2 + y2) + ψ4xy + ψ5(y

2 − x2) + ψ6x + ψ7y + ψ8

Quartic astigmatism: W422

C5 = χ0(y
4 − x4)− χ1(x

3 + xy2) + χ2(x
2y + y3) + χ4(x

2 + y2)

− χ5(2x
2y) + χ6(y

3 − x2y) + χ7x + χ8y + χ9(−x2 + y2) + χ10y − χ11x + χ13

C6 = 2χ0(x
3y + xy3) + χ1(x

2y + y3) + χ2(x
3 + xy2) + χ3(x

2 + y2)

+ χ5(xy2 − x3) + χ6(2xy2) + χ7y − χ8x + χ92xy + χ10x + χ11y + χ12

Fifth order coma: W151

C16 = κ0x + κ2

C17 = κ0y + κ1

Oblique spherical aberration: W242

C12 = η02xy + η1y + η2x + η4

C13 = η0(y
2 − x2)− η1x + η2y + η3

Fifth order field curvature: W240M

C11 = δ0(x
2 + y2) + δ1x + δ2y + δ3

Fifth order distortion: W511

C2 = ζ0(x
5 + xy4 + 2x3y2) + ζ1(x

4 + x2y2) + ζ2(x
3y + xy3) + ζ3(x

3 + xy2)

+ ζ4x
2y + ζ5(y

2x− x3) + ζ6x
2 + ζ7xy + ζ8x + ζ10(x

4 + y4 + 2x2y2)

− ζ11(x
3 + xy2) + ζ12(yx2 + y3) + ζ14(x

2 + y2)− ζ15(y
2 − x2)

+ 2ζ16xy − 2ζ17xy + ζ18(y
2 − x2)− ζ19x + ζ20y + ζ22

C3 = ζ0(x
4y + y5 + 2x2y3) + ζ1(x

3y + xy3) + ζ2(x
2y2 + y4) + ζ3(x

2y + y3)

+ ζ4xy2 + ζ5(y
3 − x2y) + ζ6xy + ζ7y

2 + ζ8y + ζ9(x
4 + y4 + 2x2y2)

+ ζ11(x
2y + y3) + ζ12(x

3 + xy2) + ζ13(x
2 + y2) + 2ζ15xy + ζ16(y

2 − x2)

+ ζ17(y
2 − x2) + 2ζ18xy + ζ19y + ζ20x + ζ21
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These equations will be used in Chapter 4 and 5 to align two different telescopes.

The first one is a two element telescope, so only the equations for third order aber-

rations will be used. And the second one is a four element telescope with a lot of

degrees of freedom, thus the equations including the fifth order will be useful.
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Chapter 4

Application on the 90” telescope

Now that the field dependencies of the Zernike polynomials in a misaligned system

are known, it will be possible to develop a process to align an optical system.

To show the different steps, the process for the alignment will be shown on a real

system. The optical system used in this chapter is a two-element telescope located

on Kitt Peak.

In [6, 7, 8, 9, 10, 11, 12, 13, 14] it is claimed and proved that for a generic two-

mirror telescope (Cassegrain, Ritchey Chretien. . . ), a decenter of the secondary will

introduce some constant coma over the whole field and a tilt about the ”free coma

point”1 will generate mostly astigmatism linear with the field.

In this chapter, it will be shown how the results of the previous chapters apply for

the particular case of the 90” telescope which is not a generic two-mirror telescope.

It will be seen that the same type of relations found in [9, 10, 12] can be obtained.

Since the process to align this type of telescope is not really complicated, it is a good

way to verify the method by using the new set of Zernike. The method used in this

chapter will follow the block diagram represented in figure 4.1

This system contains only two elements, so only the third order aberrations will

be considered.

In a first section, the design of the telescope will be presented. Then, the different

steps to get the relations between the Zernike coefficients and the perturbations will

be studied. Finally, the results of the alignment process from the real system will be

shown.

1This is the location for a two-mirror system where a rotation about it will not introduce coma,
see [11] for more explanations.



69

 Simulation on a raytracing program
  Real system


Expression of the reconstructor


Perturb model


Calculate Zernike coefficients C(x,y)


at different field positions


Fit data to field


 dependent functions


Values of the misalignments


Measure Zernike coefficients C(x,y)


at different field positions


Least squares fit data by


using the 
reconstructor


Figure 4.1. Block diagram of the method

4.1 Design of the 90”

The 90-inch telescope is a two element mirror-system with a primary mirror which

has a diameter of 2286 mm and a radius of curvature of 12159 mm. The second

element is a corrector; it is composed of four lenses and one filter made of Fused

Silica. The group of lenses, the filter and the detector are already aligned in a box

which can be moved relative to the primary. Thus the alignment of this telescope

will consist of aligning this box relative to the primary mirror by using a wavefront

measurement at the image plane. The actual system is equipped with a curvature

sensor which fits the standard Zernike coefficients to the aberrated wavefront at the

exit of the system. The design of the telescope is represented in figure 4.2 in three

dimensions. Note that a hole is present in the primary because the original telescope

was a Cassegrain-type design. And the box with the refractive elements was placed to

replace the secondary mirror in order to have a wider field of view. The prescriptions

of the design of the telescope can be found in Appendix B.
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Figure 4.2. 3D view of the optical design

4.2 Procedure to find the alignment equations on Code Vr

To align the telescope, first the alignment equations have to be found with an

optical software. This corresponds to find the expression of the reconstructor in

figure 4.1. The software chosen to show the results will be Code Vr. But the same

results were found using Zemaxr. And what will be done in this section could also

be done with a different software.

The alignment process with Code Vr will be done in four steps:

1. Find the free coma point position

2. Perturb the corrector about the free coma point

3. Get the zernike coefficients at different field positions

4. Fit the zernike coefficients with a least-squares fit method to relate the pertur-

bations, the zernike coefficients and the field coordinates
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The general principle is to find the 4x4 matrix M which relates the Zernike co-

efficients to the perturbations as shown in equation 4.1. By knowing this matrix it

will be possible to inverse it by a least-squares fit to get the perturbations when the

Zernike coefficients are known which represents the last block in figure 4.1.

To find the matrix the Zernike values will be calculated for one perturbation at a

time. Thus, each perturbation will allow to calculate one column of M. For instance,

if the system is only tilted around ~x, the first column of the matrix can be calculated.




C5

C6

C7

C8


 =




m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44


 ·




TiltX
TiltY
DecX
DecY


 (4.1)

Where mij (1 ≤ i ≤ 4, 1 ≤ j ≤ 4) are the components of the matrix M.

This section consists in finding this Matrix M which represents the reconstructor

in figure 4.1.

4.2.1 First step: Find the free coma point position

In a two-mirror system, it can be shown that there is a point where it is possible

to rotate the secondary about without introducing any coma. It is called the ”neutral

point” or the ”free coma point”. In [11, 12, 13] the position of this point is derived by

calculating the amount of coma introduced by a tilt and a decenter of the secondary

about its vertex. It is shown that the coma introduced by a decenter can be cancelled

by the coma introduced by a tilt. Then this combination of tilt and decenter can

be reduced by only one tilt about a new axis of rotation which is located at the free

coma point.

The alignment of the telescope will be done by choosing this point as the reference

point for tilt and decenter. It is a convenient choice to decouple the effects of astigma-

tism and coma since a rotation about this point will introduce only astigmatism and
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it will be shown later that a decenter of the secondary will introduce mostly constant

coma.

Here the calculations to find the position of this free coma point will not be derived

since the second element is not simply a mirror but it is made of four lenses. The

calculations to find this point would have been long and complicated. Instead of

doing all the calculations, Code Vr will be used to realize this step.

This is done by introducing a coordinate break before the group of lenses and by

setting the thickness of this coordinate break as a variable. Then, the right thickness

can be found to get no coma on axis when a tilt is introduced at the coordinate break

by using the optimization function in Code Vr.

4.2.2 Second step: Perturbed the corrector about the free coma point

The second step in the process to find the equations which relate the Zernike

coefficients to the perturbations is to perturb the secondary by a significant amount

of tilt and decenter. One perturbation at a time will be done.

• Secondary tilted around the ~x axis

When the secondary is tilted around ~x by .1 degree the spot diagram in the

xy plane2 in figure 4.3 is obtained3.

Figure 4.3 shows that linear astigmatism is dominant, it is almost the same

pattern that was shown in figure 2.16 except that is not composed of straight

segments since the centered system has aberrations.

Thus the conclusion is that a tilt around ~x about the free coma point introduces

mainly linear astigmatism.

2Plane perpendicular to the optical axis
3This corresponds to an alpha tilt of .1 degree in Code Vr. This alpha should not be taken for

the αj defined previously for the astigmatism. The sign conventions used by Code Vr for the angle
can be found in Appendix C.
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(a) Inside focus
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(b) Outside focus

Figure 4.3. 2D spot diagram in the xy plane for alpha tilt=.1 degree

• Secondary tilted around the ~y axis

When the secondary is tilted around ~y by .1 degree4 the spot diagram of

figure 4.4 is obtained.

This perturbation introduces again mostly linear astigmatism as it can be seen

in figure 4.4. It is the same spot diagram that was shown in figure 4.3 except

that here the pattern is rotated by 90 degrees.

• Secondary decentered along the ~x axis

When the secondary is decentered along ~x by 1 mm the spot diagram of

figure 4.5 is observed.

This perturbation introduces mostly constant coma along ~x as it can be seen

in figure 4.5. It is not exactly constant coma due to the fact that the original

centered design had a small amount of coma. So it is more linear coma with

4This corresponds to a beta tilt of .1 degree in Code Vr. This beta should not be taken for the
βj defined previously for coma.
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(b) Outside focus

Figure 4.4. 2D spot diagram in the xy plane for beta tilt=.1 degree

its node shifted from the center of the Gaussian image plane. But since the

constant part is much larger than the linear one, the spot diagram shows mostly

a constant coma.

• Secondary decentered along the ~y axis

When the secondary is decentered along ~y by 1 mm, the spot diagram of figure

4.6 is observed.

This perturbation introduces mostly constant coma along ~y as it can be seen

in figure 4.6. It is the same spot diagram that was shown on figure 4.5 for the

decenter in the ~x direction except that here, the coma is oriented along ~y.

4.2.3 Third step: Get the Zernike coefficients for different positions in

the field

For each perturbation, the Zernike coefficients are calculated for different field

positions with a Code Vr macro which is given in appendix D. The equivalent macro



75

90 inches prime focus correcto

 0.120 mm

-65.0-52.0-39.0-26.0-13.0 0.0 13.0 26.0 39.0 52.0 65.0

Real Image Height (mm)

-65.0

-52.0

-39.0

-26.0

-13.0

 0.0

13.0

26.0

39.0

52.0

65.0

R
e
a
l
 
I
m
a
g
e
 
H
e
i
g
h
t
 
(
m
m
)

Figure 4.5. 2D spot diagram in the xy plane for a decenter along ~x of 1 mm
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Figure 4.6. 2D spot diagram in the xy plane for a decenter along ~y of 1 mm
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Figure 4.7. Positions of the field points in the image plane

for Zemaxr can be found in appendix F (it is the macro for the LSST but the macro

is similar for the 90”).

A grid of field points inside the field of view is created where the Zernike coefficients

are calculated. The 50 field points which are considered are represented in figure 4.7.

4.2.4 Fourth step: Least squares fit

To get the equations which relate the Zernike coefficients to the perturbations

and the field positions, a least-squares fit is used in a Matlabr program which can be

found in Appendix E. Basically, the Matlabr program fits the values of the Zernike

coefficients calculated in the previous step with the help of the equations found in

chapter 3 for each perturbation independently. In this process, the equations of

chapter 3 with the field dependencies are necessary.

To have a better visualization, some graphics were generated for each fit. For the

astigmatism for example, three graphics are generated for the constant, the linear and

the quadratic parts. Also, two other graphics are generated, one for the representa-
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tion of the total amount of astigmatism and one for the residual astigmatism which

represents the amount of astigmatism when the constant, the linear and the quadratic

parts have been removed from the original data. Thus, the residual represents mostly

the noise.

For the graphic representation of each aberration, the magnitude and the orien-

tation of the Zernike coefficients are used. The expressions of the amplitude and the

orientation are calculated by using the results of Appendix F.

For astigmatism, the magnitude and the orientation are represented by:
{

M = 2
√

6 ·
√

(C5)2 + (C6)2

A = 1
2
tan−1 C5

C6

(4.2)

For coma, the amplitude and the orientation are represented by:
{

M = 3
√

8 ·
√

(C7)2 + (C8)2

A = tan−1 C7

C8

(4.3)

When the system is aligned, the amount of astigmatism and coma is small as

shown on figure 4.8 and 4.9.

The effects of each perturbation on the coma and the astigmatism are studied

here.

• Tilt of .1 degree around ~x

A tilt of .1 degree around ~x produces mainly linear astigmatism as it was

pointed out on the 2D spot diagram of figure 4.3.

By fitting the Zernike coefficients calculated in the previous step with the matrix

formulation of C5 and C6 in a perturbed system which is shown in equation 4.4,

the values of α0, α1, α2, α3 and α4 are calculated. Here, only the linear part

is significant. The program returns: α1 ≈ −5.767, where x and y are in mm

and the Zernike coefficients in nm. Thus by considering that the secondary was

tilted by .1 degree, the general equation is: α1 = −57.67 · TiltX, where TiltX

represents the amount of tilt for the secondary around ~x in degrees.
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Figure 4.8. Astigmatism representation for the nominal centered system
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Figure 4.9. Coma representation for the nominal centered system
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Figure 4.10. Astigmatism representation when secondary tilted .1 degree around ~x

[
C5

C6

]
=

[
(y2 − x2) −x y 0 1

2xy y x 1 0

]
·




α0

α1

α2

α3

α4




(4.4)

The fact that linear astigmatism is the most important component can be seen

in figure 4.10 and 4.11. The coma present is only the linear coma from the

nominal centered system represented in figure 4.9 and the total astigmatism is

almost similar to the linear part.

• Tilt of .1 degree around ~y

It was seen in the second step that a tilt around ~y will also produce only

linear astigmatism but with a pattern tilted by 90 degrees compared to figure

4.10. This is confirmed in figure 4.12 and 4.13.

Here the program returns: α2 ≈ −5.767, where x and y are in mm and the
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Figure 4.11. Coma representation when secondary tilted .1 degree around ~x

Zernike coefficients in nm. Thus by considering that the secondary was tilted by

.1 degree, the general equation is: α2 = −57.67 · TiltY , where TiltY represents

the amount of tilt for the secondary around ~y in degrees. The other terms are

negligible.

• Decenter of 1mm along ~x

It was seen previously that a decenter along ~x was producing constant coma

along ~x. This is confirmed with the graphics from Matlabr in figure 4.14 and

4.15.

By fitting the Zernike coefficients calculated in the previous step with the matrix

formulation of C7 and C8 in a perturbed system which is shown in equation 4.5,

the values of β0, β2 and β2 are calculated. Here, only the constant part is

significant. The program returns: β2 ≈ −199.8, where x and y are in mm and

the Zernike coefficients in nm. Thus by considering that the secondary was
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Figure 4.12. Astigmatism representation when secondary tilted .1 degree around ~y
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Figure 4.13. Coma representation when secondary tilted .1 degree around ~y



82

−100 0 100
−100

−50

0

50

100
Original data for Astig3 of AlignPFC_DecX_NoOpt.dat

X position (mm)

Y
 p

o
si

tio
n

 (
m

m
)

−100 0 100
−100

−50

0

50

100
Constant fit

X position (mm)

Y
 p

o
si

tio
n

 (
m

m
)

−100 0 100
−100

−50

0

50

100
Linear fit

X position (mm)

Y
 p

o
si

tio
n

 (
m

m
)

−100 0 100
−100

−50

0

50

100
Quadratic fit

X position (mm)

Y
 p

o
si

tio
n

 (
m

m
)

−100 0 100
−100

−50

0

50

100
Residual Astig3

X position (mm)

Y
 p

o
si

tio
n

 (
m

m
)

Figure 4.14. Astigmatism representation when secondary decentered 1mm along ~x

decentered by 1mm, the general equation is: β2 = −199.8 ·DecX, where DecX

represents the amount of decenter for the secondary in the ~x direction in mm.

[
C7

C8

]
=

[
y 0 1
x 1 0

]
·



β0

β1

β2


 (4.5)

• Decenter of 1mm along ~y

It was seen previously that a decenter along ~y will also produce only constant

coma but orientated along ~y instead of ~x. This is confirmed in figure 4.16 and

4.17.

Here the program returns: β1 ≈ −199.8, where x and y are in mm and the

Zernike coefficients in nm. Thus by considering that the secondary was de-

centered by 1mm, the general equation is: β1 = −199.8 ·DecY , where DecY

represents the amount of decenter for the secondary in the ~y direction in mm.
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Figure 4.15. Coma representation when secondary decentered 1mm along ~x

The other terms are negligible.

Finally, the Zernike coefficients can be expressed in terms of the perturbations

and the field positions in a matrix form as shown in equation 4.6.




C5

C6

C7

C8


 =




57.67 x −57.67 y 0 0
−57.67 y −57.67 x 0 0

0 0 0 −199.78
0 0 −199.78 0


 ·




TiltX
TiltY
DecX
DecY


 (4.6)

Where x and y are in mm, the Zernike coefficients in nm, the tilts in degrees and

the decenters in mm.

Then, it is possible to invert the matrix which was just derived in equation 4.6

so as to retrieve the perturbations by having the values of the Zernike coefficients for

one position in the field. Of course, in the real system one measure in the field will

not be enough to get accurate values of the perturbations due to the noise. Thus, a
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Figure 4.16. Astigmatism representation when secondary decentered 1mm along ~y

−100 −50 0 50 100
−100

−50

0

50

100
Original data for Coma3 of AlignPFC_DecY_NoOpt.dat

X position (mm)

Y
 p

os
iti

on
 (

m
m

)

−100 −50 0 50 100
−100

−50

0

50

100
Constant fit

X position (mm)

Y
 p

os
iti

on
 (

m
m

)

−100 −50 0 50 100
−100

−50

0

50

100
Linear fit

X position (mm)

Y
 p

os
iti

on
 (

m
m

)

−100 −50 0 50 100
−100

−50

0

50

100
Residual Coma3

X position (mm)

Y
 p

os
iti

on
 (

m
m

)

Figure 4.17. Coma representation when secondary decentered 1mm along ~y
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(b) Coma representation

Figure 4.18. Aberration representations when the secondary is tilted by .1 degree
around ~x

least-squares fit with multiple measurements in the field will be used to minimize the

effects of the noise.

The same kind of representation that was done with Matlabr for the total amount

can be done in Code Vr as shown in figure 4.18 and 4.19 where astigmatism and coma

have been represented for a tilt of 0.1 degree around ~x and a decenter of 1mm along

~x. It is a good way to get a fast representation of the aberrations at the image plane

but there is no possibility to have a decomposition of the different field dependencies

of each aberration. It is only a representation of the total amount of each aberration

and there is no text output of the data that were fitted.
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Figure 4.19. Aberration representations when the secondary is decentered by 1mm
along ~x
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4.3 A graphical method to verify the results from the previ-
ous procedure

The previous results can be verified by using a graphical analysis. This is done

by following these steps:

1. Remove the aberrations of the nominal centered system

2. Find the ”Free coma point”

3. Analyze each degree of freedom

4. Find the relation between the Zernike coefficients and the perturbations graph-

ically

4.3.1 Aberrations removed from the nominal centered system

To see only the effects of misalignments in the system, it is possible to simplify

the analysis by removing the aberrations present in the centered system. In the real

system this can be done by subtracting the values of the Zernike coefficients calculated

in Code Vr from the wavefront measurement that will be made with the wavefront

sensor of the real system.

In Code Vr, instead of a subtraction, the aberrations can be removed by using

aspherizations on the surfaces of the lenses. This will not greatly affect the results

if the coefficients are not too large, it will only affect higher orders. This way, the

direct effects of the misalignments of the corrector can be observed. This optimized

system is a diffraction limited system as it can be seen on the spot diagram in figure

4.20 where all the rays are contained in the Airy disk represented by the black circle.

Since the way to find the ”free coma point” was already discussed in the previous

section, it will not be done here.
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Figure 4.20. Spot diagram for different field positions for the optimized system

4.3.2 Analyzis of each degree of freedom

As it was done before, the system is perturbed for each degree of freedom. A tilt

of the secondary around ~x or ~y will introduce only linear astigmatism as shown in

figure 4.21 and 4.22. Due to the fact that the aberrations have been removed from the

original design, only the linear astigmatism appears. This is confirmed by fitting the

data into its different components as shown in figure 4.23. Only the representation

of the astigmatism for the tilt around ~x is shown here since it is the same for the tilt

around ~y except that there is a 90 degrees rotation.

By decentering the secondary along ~x and ~y, constant coma orientated along ~x

and ~y is introduced respectively as shown in figure 4.24.

4.3.3 Graphical analysis of the spot diagrams

Even if the relations found in chapter 3 are not known, the Zernike coefficients

and the perturbations can still be found by using a graphical analysis.

The linear astigmatism of figure 4.21, where the secondary is tilted around ~x, is
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(b) Outside focus

Figure 4.21. 2D spot diagram in the xy plane for alpha tilt=.1 degree for the
optimized design
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(b) Outside focus

Figure 4.22. 2D spot diagram in the xy plane for beta tilt=.1 degree for the
optimized design
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Figure 4.23. Astigmatism representation when the secondary is tilted by .1 degree
around ~x
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(a) Decenter along ~x
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(b) Decenter along ~y

Figure 4.24. 2D spot diagram in the xy plane for a decenter of 1mm for the
optimized design
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(a) Case when y=0 (~x axis) (b) Case when
x=0 (~y axis)

Figure 4.25. Graphical representation to get the expressions of C5 and C6

considered for the inside focus image. For y=0 (~x axis) for the positive x values,

only the sin 2φ component is present which represents Z5. Thus, for the case y=0,

C5 = x · TiltX · Constant1. This is shown in figure 4.25.

For x=0 (~y axis) for the positive values of y, there is only the − cos 2φ component

which represents −Z6. Thus, for the case x=0, C6 = −y · TiltX · Constant1. This is

shown in figure 4.25.

The same analysis is performed when the secondary is tilted around the ~y axis.

The equations are then: C5 = −y ·TiltY ·Constant2 and C6 = −x ·TiltY ·Constant2.

Therefore, a linear combination of tilts around ~x and ~y will generate astigmatism

which is represented by:

C5 =Constant1 · (−x · TiltX + y · TiltY )

C6 =Constant2 · (y · TiltX + x · TiltY )
(4.7)

Note that the minus sign has been included in the constants. Thus, the equations

of chapter 3 have been retrieved graphically. To get the exact coefficients, a least-

squares fit can be used as it was done previously. The calculations with Matlabr

give: Constant1 = Constant2 = −58.3.

For the coma, the analysis is even easier since the amplitude and the orientation

are constant.
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By including the decentrations, the final equation becomes:




C5

C6

C7

C8


 =




58.3 x −58.3 y 0 0
−58.3 y −58.3 x 0 0

0 0 0 −199.88
0 0 −199.88 0


 ·




TiltX
TiltY
DecX
DecY


 (4.8)

Which is really close to the previous results. The small differences come from the

introduction of the aspherizations on the lenses.

4.4 Results from the real system

During the first attempt to align the 90”, the assumption was made that the

system did not have a lot of initial aberrations referring to the nominal design in

Code Vr. Thus, only constant coma and linear astigmatism were expected. But the

alignment based only on the linear astigmatism and the constant coma did not worked

because the aberrations observed were not coming only from the misalignments.

Therefore, to understand the behavior of the aberrations, the data coming from

the wavefront sensor of the telescope were fitted with all the components of the

astigmatism and the coma and it was then possible to align the telescope as well as

it can be for the tilts and almost for the decenters 5.

The results of the last run to align the telescope are shown in this section. They

are important in the sense that they validate the equations and the method developed

in this thesis.

4.4.1 Analysis of the astigmatism

The astigmatism representation of the system in figure 4.26 shows that the linear

part is not significant, meaning that the secondary is aligned in terms of tilts.

5Not possible to fully aligned the telescope because a fixed amount of time was allowed for the
alignment of this telescope
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Also, it can be seen in figure 4.26 that an important quadratic astigmatism which

was not expected is present. By comparing the total amount of astigmatism and this

quadratic part, it can be seen that it is the main contribution. More quantitative

results are shown in table 4.1 where the average and the maximum6 values have been

considered for each component.

Average value Maximum value
Type of
astigmatism

RMS wavefront
error (nm)

RMS spot size
diameters (”)

RMS wavefront
error (nm)

RMS spot size
diameter (”)

Constant 46 0.06 46 0.006
Linear 48 0.07 69 0.09
Quadratic 274 0.37 538 0.73
Quartic 2 0 7 0.01
Residual 39 0.05 227 0.31

Table 4.1. Results for the astigmatism for the data of the wavefront sensor from
the 90” telescope

The constant part is orientated at 41 degrees and came probably from the primary

mirror.

The residual linear part can be corrected by a tilt of 0.012 degrees around ~x and

0.002 degrees around ~y. But the values are small enough not to have to tilt the

secondary further.

Because the field dependence is mainly quadratic, this means that the astigmatism

comes from the nominal centered system and not from the misalignments. There can

be several reasons for the presence of this astigmatism. It can be due to the fact

that the spacings between the elements and/or the radius of curvature of the primary

and/or the conic constants are not as they were supposed to be. Thus, a further

analysis needs to be done to see the influence of all these parameters and see if a

solution could be found to correct for this aberration in a simple way. Note that an

acceptable spot size is .7 arseconds, thus it will maybe not be necessary to correct for

6The maximum value is located at the edge of the field due to the field dependence of the
astigmatism
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Figure 4.26. Astigmatism representation for the 90” telescope

the quadratic astigmatism.

4.4.2 Analysis of the coma

If the corrector is decentered, constant coma over the field is expected. To see if

the data are consistent, each star is represented by a green square in figure 4.27 to

show its value for the cosine and the sine coma. Since the coefficient for Z8 (cosine

coma) is related to a decenter in the ~x direction and the coefficient for Z7 (sine

coma) is related to a decenter in the ~y direction, the values of the decentrations are

also represented on the axes . And finally, the average value with error bars for the

standard deviations in both directions are represented.

Figure 4.27 shows that the measurements contain a large amount of noise; the

average value is in the order of the value of the standard deviation.

As it was done for astigmatism, the coma is decomposed in its different components

in figure 4.28 where the total amount of coma, the constant fit, the linear fit and the
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Figure 4.27. Plot of the coma values for the 90” telescope

residual coma are represented.

Figure 4.28 shows that the coma contains a constant part but there is also a lot of

noise as it was said before. Indeed on the last graphic of the residual coma, it is not

possible to discern any pattern, the directions and the amplitudes are erratic. Figure

4.28 also shows that linear coma is not significant.

Figures 4.27 and 4.28 show that there are a few points which deviate a lot from the

average value. Therefore, they increase the value of the standard deviation. These

points are located at the edge of the field and can be taken away from the data to get

a better estimation of the error in the measurements. This was done in figure 4.29.

With the new set of data shown in figure 4.29, the new average values for C7 and

C8 are:

C7 = 173.6nm

C8 = −159.3nm
(4.9)
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Figure 4.28. Decomposition of the coma for the real data from the wavefront sensor
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Figure 4.29. Plot of the coma values without the stars at the edge of the CCD
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And the corresponding standard deviations for C7 and C8 are:

σC7 = 90.7nm

σC8 = 124.3nm
(4.10)

If gaussian distributions are assumed, the true value of C7 is between C7 − 2σC7√
N

and C7 +
2σC7√

N
and C8 is between C8 − 2σC8√

N
and C8 +

2σC8√
N

7 with a 95% confidence.

Thus:

C7 = 173.6± 27nm

C8 = −159.3± 37nm
(4.11)

Equations 4.11 correspond to move the prime focus corrector:

• In the ~x direction by 0.78± 0.18mm

• In the −~y direction by 0.85± 0.13mm

This section has shown that the equations developed in the previous section are

useful in the process of aligning the telescope. But they need to be used with caution

because as it was seen in this section, the system does not always behave as the model.

Here the astigmatism was to be decomposed in terms of its field dependencies so as

not to take into account the quadratic part in the alignment process.

The next chapter will use the same analysis which was performed for this system

but for a more complicated system where the theory on fifth order aberrations is to

be used.

7With N the number of measurements in the field so the number of stars



98

Chapter 5

Application to the LSST

In this chapter a more complicated design is considered. It will be seen that

the method applied for the 90” telescope can be used in a similar way to the Large

Synoptic Survey Telescope (LSST) which presents a difficult alignment problem due

to the number of elements, the small f/# which is equal to 1.25, and the wide field

of view.

Because of the complexity of the system, it will be necessary to consider the

higher order aberrations which can not be neglected as for the 90” telescope. Thus,

the expressions of the Zernike polynomials which include the fifth order will have to

be used.

In a first section, the design of the telescope will be presented. Then a reverse

optimization alignment method which does not use the equations developed earlier

will be shown. Finally it will be underlined the efficiency of the technique used for

the 90” telescope compared to a ”brut force” method.

5.1 Design on the LSST

The optical design considered here and represented in figure 5.1 is the design

realized by LLNL under contract to NOAO in support of LSST. The starting point

of the design was a three-mirror telescope designed by Roger Angel et al. with a

centrally obscured, 3.0 degree full field of view, 8.4m aperture telescope that operates

at f/1.25. The instrument imaging assembly consists of two refractive correctors, a

group of interchangeable spectral filters and a 55cm diameter array of CCD detectors.

This instrument will be called later on: ”the corrector”. It is placed in the shadow

of the secondary mirror obscuration. The central obscuration is about 50% by radius
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(a) 2D representation of the design (b) 3D representation of the design

Figure 5.1. Design of the LSST

which represents an effective area that is equivalent to a 7m unobstructed telescope.

For more details on the design of the system see [21].

5.2 Reverse optimization

To realize the alignment of the telescope it is not necessary to have all the tools

which were developed in the previous chapters and it is always possible to use a ”brut

force” which uses only numerical calculations. Of course this kind of approach is not

the best way to tackle the problem since no insights are gained but it allows to get

to a solution without a time consuming analysis.

This section will present how to realize this ”brut force” analysis on a smaller

scaled version of the LSST by running Monte Carlo simulations.

5.2.1 Degrees of freedom considered for the analysis

The scaled version considered here is similar to the design presented in the previous

section. Thus the results shown here can be applied directly to the LSST.
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In this design, the primary mirror is considered as the reference. So, it will be

fixed and the other elements will be perturbed relative to it.

It is possible to consider a large number of degrees of freedom, but here only 19

will be considered.

For the bending modes, only the surface of the primary is considered. Since the

design here is a smaller version of the LSST, it will be necessary to account only

for the astigmatism (Z5 and Z6) and the trefoil (Z10 and Z11) which corresponds to

4 degrees of freedom. For the LSST it is necessary to consider 12 bending modes,

Z4-Z15, on the primary and also 6 modes, Z4-Z9 on the secondary.

The other 15 degrees of freedom will be represented by the 3 decenters along each

axis and the tilts around the ~x and ~y axes for the other three elements. Because the

system is axially symmetric, a rotation around ~z has no effect.

5.2.2 Scheme of the analysis

The general procedure used here can be summarized into 5 steps:

1. Perturbation of each degree of freedom

2. Calculation of the wavefront of the perturbed system given by an optical soft-

ware

3. Simulation of the wavefront measurement by adding noise to the wavefront data

4. Estimation of the perturbations with optical software by using a Merit function

5. Correction of the perturbations with the previous estimation

During the first step, each degree of freedom is perturbed randomly in a rea-

sonable range in Zemaxr. Then, the wavefront is calculated and a real wavefront

measurement is simulated by adding noise to the calculated wavefront. Then a merit

function is used with the unperturbed model of the telescope to get a combination of
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perturbations that will produced an identical wavefront so as to get an estimation of

the misalignments. And finally, the estimated perturbations are used to correct for

the misalignments. Since the problem is underconstrained, multiple combinations of

perturbations will produced the same wavefront. Therefore, the system will not con-

verge with one iteration considering also that some noise was added. Thus the process

will be repeated 5 times to see when the system converges to an aligned situation.

5.2.3 Starting point

As it was said before, the first step consists in randomly perturbing the system

for each degree of freedom. The random value RV is generated from a uniform

distribution with a value PV that is set for each degree as shown in table 5.1. RV is

defined as:

RV = rand(PV )− PV

2
(5.1)

Where x 7→ rand(x) represents a function which generates a random floating point

number uniformly distributed between 0 and x.

Element Degree of freedom PV
M1 Z5 and Z6 .56µm

Z10 and Z11 .47µm
M2, M3, corrector DecX and DecY 400µm

TiltX and TiltY .01degrees
Spacings Distance M1-M2 148µm

Distance M2-M3 936µm
Distance last lens-focal plane 4mm

Table 5.1. PV values for each degree of freedom

The contribution of all the perturbations produces a certain RMS spot radius at

the image plane. The distribution of the inital RMS spot radius for all the models

are represented in the histogram of figure 5.2.
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Figure 5.2. Distribution of the initial RMS spot radius for all the models

5.2.4 Results of the analysis

The scheme presented previously has been iterated five times and at the end for

the five iterations the RMS spot radius relative to the centroid was calculated for

each model. The different iterations are represented in figure 5.3 where the RMS

spot radius of the corrected system is a function of the initial value of the model. It

shows the improvement of the spot size at the image plane compared to the original

perturbed system. Note that for the unperturbed model, the spot size is equal to

1.8µm.

Figure 5.3 shows that with the first iteration a lot of the models converge to a

small RMS spot radius close to the target value of the unperturbed system. Thus, this

analysis has shown that it was possible to align the telescope with a good accuracy

even if the original spot radius was large.

The same analysis on the original design of the LSST has been done by C. Claver
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Figure 5.3. Iterations of the process
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and J.H. Burge [22]. Due to the different scale, only half of the models were converging

during the first iteration to a reasonable spot size. But after 5 iterations about 91% of

the models were meeting the requirements for the image spot size as shown in figure

5.4 which was taken from [22].

But this analysis does not account for the motions of the mirrors. Some of the

solutions use large tilts and decenters for the elements which may not be acceptable

for the real system from a mechanical point of view. Also, for the LSST the alignment

process can require five iterations and sometimes never meet the requirements if the

system is in a local minimum. Therefore the technique used for the 90” by fitting the

wavefront with the equations found in chapter 3 give better insight on the behavior

of the system and will lead to a better procedure. It is worth pointing out that it is

possible to align the telescope using only a numerical method but it is more efficient

to find a structured procedure.

5.3 Relations between the perturbations and the Zernike co-
efficients

The previous section has shown the limits of a numerical based method and the

importance to have some insight in the behavior of the system. Thus this section

will follow the same procedure that was used with the 90” in order to have a better

understanding of the behavior of the system.

The goal to perform a good alignment is to find the matrix A defined in equation

5.2 . Thus, by having a wavefront measurement for the real system, it will be possible

to determine the perturbations of the system by inverting the matrix. This matrix

represents the reconstructor of figure 4.1.
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Figure 5.4. The merit function for the solved models versus initial merit function of
the perturbed model. In each panel from top-left to bottom-right the solutions from
successive iterations are shown. Points above the solid diagonal have degraded, those
below have improved. The dashed horizontal line is the unperturbed merit function
target.
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
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=
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a5,1 a5,2 a5,3 . . . a5,10 a5,11 a5,12

a6,1 a6,2 a6,3 . . . a6,10 a6,11 a6,12
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

(5.2)

Where aij (1 ≤ i ≤ 10, 1 ≤ j ≤ 12) are the components of the matrix A, d

and t represent respectively the decenter and the tilt, M2, M3 and Corr. represent

respectively the secondary, the tertiary and the corrector. Note that here, only 12

degrees of freedom were considered and it will be necessary later on to account for

the spacing errors and the bending modes of the primary and the secondary which

represent the more complex part in the alignment process1. Also, note that it was

assumed in equation 5.2 that the Zernike coefficients are linear with the perturbations.

Recalling the equations through fifth order of chapter 3 and summarized in section

1This part will not be realized in this thesis.
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3.4, the components of the matrix A are (∀ 1 ≤ i ≤ 12):

a1,i = χ0(y
4 − x4)− χ1(x

3 + xy2) + χ2(x
2y + y3) + χ4(x

2 + y2)− χ5(2x
2y)

+ χ6(y
3 − x2y) + χ7x + χ8y + χ9(−x2 + y2) + χ10y − χ11x + χ13

a2,i = 2χ0(x
3y + xy3) + χ1(x

2y + y3) + χ2(x
3 + xy2) + χ3(x

2 + y2)

+ χ5(xy2 − x3) + χ6(2xy2) + χ7y − χ8x + χ92xy + χ10x + χ11y + χ12

a3,i = ξ0(y
3 + x2y) + ξ1 xy + ξ2 y2 + ξ3 y + ξ5 (x2 + y2) + ξ6 x− ξ7 y + ξ9

a4,i = ξ0(x
3 + xy2) + ξ1 x2 + ξ2 xy + ξ3 x + ξ4 (x2 + y2) + ξ6 y + ξ7 x + ξ8

a5,i = µ0(y
3 − 3x2y)− 2µ1xy + µ2(y

2 − x2) + µ3y − µ4x + µ6

a6,i = µ0(3y
2x− x3) + µ1(y

2 − x2) + µ22xy + µ3x + µ4y + µ5

a7,i = η02xy + η1y + η2x + η4

a8,i = η0(y
2 − x2)− η1x + η2y + η3

a9,i = κ0x + κ2

a10,i = κ0y + κ1

(5.3)

To create the matrix A, each degree of freedom has to be perturbed independently

and the corresponding Zernike coefficients has to be calculated. Here, the fifth order

aberrations have been considered with the third order terms since the system is a fast

wide field angle telescope with multiple elements.

Basically, the same procedure that was followed for the 90” will be used except

that each element will be perturbed about its vertex instead of the no coma point.

The reason for that is that there may not exist a single point where all the elements

can be perturbed about and introducing only one aberration.

The scheme will contain three major steps and will be done into Zemaxr this

time but the same analysis has been done in Code Vr (the macro in Zemaxr for the

LSST can be found in Appendix G):

1. Perturb each element with two tilts around ~x and ~y and two decenters along ~x

and ~y
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(a) Decenter along the ~x direction (b) Decenter along the ~y direction

Figure 5.5. Spot diagrams when the secondary is decentered by 1mm

2. Get the Zernike coefficients at different field positions

3. Fit the Zernike coefficients with a least-squares fit to find the reconstructor A

5.3.1 First step: Perturbation of each degree of freedom

To find the values of the reconstructor, each degree of freedom is perturbed inde-

pendently. As said before only the tilts and decenters of the mirrors and the corrector

are considered. For the decenters a value of 1mm is chosen and for the tilts, .1 degree

will be considered.

• Secondary mirror

Decentering the secondary by 1mm along ~x or ~y produces mostly constant coma

as shown in figure 5.5. The same cubic shape of the OPD plot in Zemaxr for

all field points confirms this assessment.

Now if the mirror is tilted by .1 degree about its vertex around ~x and ~y, the spot

diagram of figure 5.6 will be observed. Again constant coma along ~x and ~y is
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(a) Tilt around ~x (b) Tilt around ~y

Figure 5.6. Spot diagrams when the secondary is tilted by .1 degree

observed but here there is a factor 10 of difference in the spot radius compared

to the decenters and the patterns are rotated by 90◦.

• Tertiary mirror

The same kind of spot diagrams for the decenters and the tilts are observed for

the tertiary (compared to the secondary). It is the same conclusion, coma is

the main contribution to the aberrated image.

• Corrector

For the corrector the effects of the perturbations are different. The decenters

will produce mainly a combination of astigmatism and coma as shown on the

spot diagram of figure 5.7. And the tilts will produce mainly field curvature

and astigmatism as shown on the spot diagram of figure 5.8.

The observations made here were really general. The effects of the higher order

were hidden by the large amount of the third order aberrations. And their contribu-

tions will be underlined in the third step by fitting the Zernike coefficients with the
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(a) Decenter along the ~x direction (b) Decenter along the ~y direction

Figure 5.7. Spot diagrams when the corrector is decentered by 1mm

(a) Tilt around ~x (b) Tilt around ~y

Figure 5.8. Spot diagrams when the corrector is tilted by .1 degree
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Figure 5.9. Positions of the field points in the image plane for the LSST

equations found in chapter 3.

5.3.2 Second step: Calculations of the Zernike coefficients for different

field positions

The focal length of the telescope is 10496.4mm and its field of view is equal to

±1.5◦. Thus, the equivalent size of the image plane is defined by a circle with a radius

of 274.9mm.

Therefore, to account for a different variety of rays contained in this field of view,

the grid of field points represented in figure 5.9 is considered. The Zernike coefficients

are calculated at these field positions2 so as to be fitted in the third step with their

field dependencies.

248 field points are considered here
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5.3.3 Third step: Least-squares fit to get the reconstructor

To find the coefficients ai,j defined in equations 5.3 of the reconstructor, each

degree of freedom is perturbed independently so as to find one column at a time by

doing a least-squares fit with the Zernike coefficients calculated in the previous step

for the different field positions. To calculate the coefficients, a Matlabr program,

which can be found in Appendix H, was used.

Each element is tilted around ~x and ~y by .1 degree and decentered along ~x and ~y

by 1mm.

• Secondary mirror perturbed

When the secondary mirror is tilted around ~x the following coefficients can be

calculated:

a1,1 = 416.4 · x
a2,1 = 2069− 416.4 · y
a3,1 = −177507 + 0.165 · y − 0.0119 · (x2 + y2) + 0.466 · y
a4,1 = −0.165 · x + 0.466 · x
a5,1 = −0.181 · y + 0.0054 · (y2 − x2)

a6,1 = −0.181 · x + 0.0108 · xy

a7,1 = 31.3 + 2.1 · y
a8,1 = −2.1 · x
a9,1 = 0

a10,1 = 2364.25

(5.4)
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The second column is given by tilting the secondary about ~y:

a1,2 = −416.4 · y
a2,2 = −2069− 416.4 · x
a3,2 = −0.165 · y + 0.466 · y
a4,2 = 177507 + 0.165 · x + 0.0119 · (x2 + y2) + 0.466 · x
a5,2 = 0.181 · y + 0.0108 · xy

a6,2 = 0.181 · x− 0.0054 · (y2 − x2)

a7,2 = −31.3 + 2.1 · x
a8,2 = 2.1 · y
a9,2 = −2364.25

a10,2 = 0

(5.5)

Then the third and fourth columns of A represented by equations 5.6 and 5.7

are calculated by decentering the secondary mirror along ~x and ~y respectively.

a1,3 = 3.793 · y
a2,3 = 3.793 · x
a3,3 = 0

a4,3 = −1755.24

a5,3 = 0

a6,3 = 0

a7,3 = 0.054 · x
a8,3 = 0.054 · y
a9,3 = 60.64

a10,3 = 0

(5.6)
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a1,4 = 3.793 · x
a2,4 = −3.793 · y
a3,4 = −1755.24

a4,4 = 0

a5,4 = 0

a6,4 = 0

a7,4 = −0.054 · y
a8,4 = 0.054 · x
a9,4 = 0

a10,4 = 60.64

(5.7)

These coefficients correspond to the field dependencies of the Zernike coefficients

when the secondary is perturbed. Some examples of the graphical representation

of the fitted coefficients can be found at the end of this section.

• Tertiary mirror perturbed

As it was done for the secondary mirror, the fifth and the sixth columns are

calculated by tilting the tertiary mirror around ~x and ~y respectively and the

seventh and eighth columns are found by decentering the tertiary along ~x and

~y respectively. Their values are given in equations 5.8 through 5.11.
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a1,5 = −130.6 · x− 0.000083 · (x3 + xy2)

a2,5 = −5164 + 130.6 · y + 0.0036 · (x2 + y2) + 0.000083 · (x2y + y3)

a3,5 = −186150− 0.454 · y + 0.0277 · (x2 + y2)− 1.12 · y + 0.0464 · y2

a4,5 = 0.454 · x− 1.12 · x + 0.0464 · xy

a5,5 = 0.545 · y − 0.0065 · (y2 − x2)

a6,5 = 0.545 · x− 0.013 · xy

a7,5 = −229 + 0.62 · y
a8,5 = −0.62 · x
a9,5 = 0

a10,5 = −4315

(5.8)

a1,6 = 130.6 · y + 0.000083 · (y3 + x2y)

a2,6 = 5164 + 130.6 · x− 0.0036 · (x2 + y2) + 0.000083 · (xy2 + x3)

a3,6 = 0.454 · y − 1.12 · y − 0.0464 · xy

a4,6 = 186150− 0.454 · x− 0.0277 · (x2 + y2)− 1.12 · x− 0.0464 · x2

a5,6 = −0.545 · y − 0.013 · xy

a6,6 = −0.545 · x + 0.0065 · (y2 − x2)

a7,6 = 229 + 0.62 · x
a8,6 = 0.62 · y
a9,6 = 4315

a10,6 = 0

(5.9)
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a1,7 = −0.8997 · y
a2,7 = −0.8997 · x
a3,7 = 0.00053 · xy

a4,7 = −1237.7 + 0.0002936 · (x2 + y2) + 0.00053 · x2

a5,7 = −0.000298 · xy

a6,7 = 0.000149 · (y2 − x2)

a7,7 = 0.025 · x
a8,7 = 0.025 · y
a9,7 = −25.88

a10,7 = 0

(5.10)

a1,8 = −0.8997 · x
a2,8 = 0.8997 · y
a3,8 = −1237.7 + 0.0002936 · (x2 + y2) + 0.00053 · y2

a4,8 = 0.00053 · xy

a5,8 = −0.000149 · (y2 − x2)

a6,8 = −0.000298 · xy

a7,8 = −0.025 · y
a8,8 = 0.025 · x
a9,8 = 0

a10,8 = −25.88

(5.11)

The coefficients calculated in this subsection correspond to the field dependen-

cies of the Zernike coefficients when the tertiary is perturbed.
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• Corrector perturbed

Finally, to find the values for the last four columns of A, the corrector is tilted

and decentered like it was done for the mirrors. The expressions of the last

columns are given in equations 5.12 through 5.15.

a1,9 = −38.35 · x + 0.000084 · (x3 + xy2)

a2,9 = −38 + 38.35 · y − 0.000084 · (x2y + y3)

a3,9 = 869 + 0.006797 · (x2 + y2)− 0.02109 · y2

a4,9 = −0.02109 · xy

a5,9 = −0.00609 · (y2 − x2)

a6,9 = −0.01218 · xy

a7,9 = 1.27 · y
a8,9 = −1.27 · x
a9,9 = 0

a10,9 = 0

(5.12)

a1,10 = +38.35 · y − 0.000084 · (x2y + y3)

a2,10 = 38 + 38.35 · x− 0.000084 · (x3 + xy2)

a3,10 = 0.02109 · xy

a4,10 = −869− 0.006797 · (x2 + y2) + 0.02109 · x2

a5,10 = −0.01218 · xy

a6,10 = 0.00609 · (y2 − x2)

a7,10 = 1.27 · x
a8,10 = 1.27 · y
a9,10 = 0

a10,10 = 0

(5.13)
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a1,11 = −0.705 · y
a2,11 = −0.705 · x
a3,11 = −0.000635 · xy

a4,11 = 160.56− 0.0002345 · (x2 + y2)− 0.000635 · x2

a5,11 = −0.00034 · xy

a6,11 = 0.00017 · (y2 − x2)

a7,11 = −0.0824 · y
a8,11 = 0.0824 · x
a9,11 = 0

a10,11 = 0

(5.14)

a1,12 = −0.705 · x
a2,12 = 0.705 · y
a3,12 = 160.56− 0.0002345 · (x2 + y2)− 0.000635 · y2

a4,12 = −0.000635 · xy

a5,12 = 0.00017 · (y2 − x2)

a6,12 = 0.00034 · xy

a7,12 = 0.0824 · x
a8,12 = 0.0824 · y
a9,12 = 0

a10,12 = 0

(5.15)

The coefficients calculated and shown here for the four last columns of the re-

constructor correspond to the field dependencies of the Zernike coefficients when the

corrector is perturbed.
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The coefficients ai,j introduced earlier correspond to the field dependencies of the

different aberrations. Some examples of their representations are shown in the follow-

ing pages where the original aberrations of the centered system have been removed

by subtraction. They have been represented with their magnitude and orientation by

using the results of Appendix F as it was done for the 90” telescope. Except for the

third order astigmatism and coma where the representation in polar coordinates is

used instead of the cartesian representation with the sine and cosine. It is different

for these two cases because there is some coupling between the fifth order and the

third order. The fifth order aberrations modify the expressions of the third order.

Since the important idea was to get a visual representation of the amount of each

field component, the simple polar representation was used. The Matlabr program

used for the graphical representation is the same that was used to have the numerical

values of the Zernike coefficients and can be found in Appendix H.

Since there is no point to show the representations for all the coefficients seen

previously, only some significant ones are presented here in figures 5.10 through 5.14.
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Figure 5.10. Representation of the third order astigmatism when M3 is tilted by
0.1 degree around ~x
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Figure 5.11. Representation of the third order coma when the corrector is tilted by
0.1 degree around ~x
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Figure 5.12. Representation of the fifth order astigmatism when M3 is tilted by 0.1
degree around ~x
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Figure 5.13. Representation of the fifth order coma when M3 is decentered by 1mm
along ~y
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Figure 5.14. Representation of the trefoil when M3 is tilted by 0.1 degree around ~x
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5.4 Simulation of the real system

To test the alignment process with the reconstructor calculated in the previous

section 5.3, wavefront measurements are simulated as if they were coming from the

real system. To realize this task, Zemaxr is used.

The design in Zemaxr is randomly perturbed for the 12 degrees of freedom con-

sidered in the previous section to simulate the perturbed system. Then, the Zernike

coefficients and the reconstructor are calculated at different field positions (48 points

are considered) which were represented earlier in figure 5.9. After that, the pertur-

bations can be calculated with the values of the Zernike coefficients by using a least

squares fit because the expressions of the matrix A (the reconstructor) is known.

Then to test if the calculated perturbations are right, the design is corrected with

these predicted misalignments and the RMS spot size at the image plane is compared

with its original value before the correction. The procedure can be summarized with

the following four steps:

1. Randomly perturb the model

2. Calculate the Zernike coefficients for 48 field positions

3. Calculate the perturbations with a least squares fit

4. Evaluate the image quality with the ”corrected” system

It was not done here but to simulate a real wavefront measurement from the

system, some noise needs to be added to the values of the Zernike coefficients as it

was done for the ”reverse optimization” technique.

The first, second and fourth steps have been done with Zemaxr’s macros and they

can be found in Appendix I. The third step has been done with a Matlabr program

and can be found in Appendix J.
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5.4.1 Original models considered for the alignment procedure

To evaluate the performance of the perturbed models which will be considered for

the simulation, a merit function, which contains the RMS spot size for different field

points, is created. The field points used to create the merit function are shown in

table 5.2 where Hx represents the field position in the ~x direction and Hy the field

position in the ~y direction.

Point number Hx Hy
1 0 0
2 0 0.2
3 0 0.4
4 0 0.6
5 0 0.8
6 0 1
7 0.2 0
8 0.4 0
9 0.6 0
10 0.8 0
11 1 0

Table 5.2. Field positions considered for the merit function

For the simulation, 100 models are generated and their merit function values in

µm are represented in the histogram of figure 5.15.

5.4.2 Results after the correction

After the perturbations have been calculated with a least squares fit by using the

values of the Zernike coefficients, they are entered in the perturbed models and the

merit function is calculated so as to see if the misalignments have been well predicted.

The results are shown in figure 5.16 were the initial merit function is represented

as a function of the solved merit function. The solved merit function is the merit

function that is calculated for the perturbed model after it has been corrected with

the predicted perturbations. If a model is under the solid line of figure 5.16 the
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Figure 5.15. Histogram representation of the values of the initial merit functions
for the 100 perturbed models.

system has improved and if it is above it has degraded. The dashed horizontal line

corresponds to the unperturbed merit function target.

Figure 5.16 shows with one implementation of the procedure that the models

converge to the target value. But they do not converge enough. Thus, a second

iteration of the process was realized and represented in figure 5.17. On this last

figure, it is shown that the results have improved but not enough, they still do not

converge exactly to the target value. By looking at the remaining aberrations in

the ”corrected” models, the field curvature was dominant. Therefore the fact that

the values do not converge exactly it is due to the field curvature that has not been

consider in the expression of the reconstructor. Thus for the alignment process it will

be necessary to consider Z4 by using its expression in a perturbed system which was

developed in Chapter 3.
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Figure 5.16. Results of the alignment process for the LSST for the first iteration
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Figure 5.17. Results of the alignment process for the LSST for the second iteration
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Chapter 6

Conclusion

This thesis has shown that it was possible to develop the expressions of field

dependencies for the Zernike polynomials to fully describe misaligned system. And

that it was possible to use them as a tool to retrieve the perturbations present in a

given system.

Also, it was shown that this procedure to analyze a misaligned system gives a

good insight and ease the procedure to align a system. It allows to detect immediately

possible sources of error during an alignment procedure compared to a ”brut force”

method where only numerical calculations are considered. Moreover, as it was shown

with the 90”, it allows to minimize the effects of the noise and to make an alignment

analysis even if a centered system contains original aberrations.

Some future work need to be done to fully describe the alignment process of the

LSST by including the field curvature. Also, the errors in the spacings have not been

included in the process. That should be straightforward to investigate by considering

the expressions of C4 (Zernike coefficient for the defocus). Then, it could be interesting

to analyze the bending modes of the mirrors by developing a new set of equations that

were not developed in this thesis. Furthermore, the effects of the different degrees of

freedom can be analyzed more clearly by doing a single value decomposition of the

reconstructor. Then to really test the procedure an analysis which consider the noise

in the measurements should be performed. But this last part should not really affect

the results since the method applied in this thesis already accounts for the noise.

To conclude, the equations developed in this thesis in terms of field dependencies

have shown their convenience in an alignment process to get insight. But they can

also be applied in a tolerance analysis or during the design of unobstructed systems.
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Appendix A

Derivations of the wavefront expansion at the

medial focus

The wavefront expansion at the sagittal focal surface when only field curvature and

astigmatism are considered is:

W = W220H
2ρ2 + W222H

2ρ2 cos2 φ (A.1)

The medial surface is obtained from the coefficient W220M
= W220 + 1

2
W222. Thus to

express the wavefront relative to the medial focal plane, the trigonometric relation

cos2 φ = 1
2

+ 1
2
cos 2φ is used in equation A.1:

W = W220H
2ρ2 + W222H

2ρ2

(
1

2
+

1

2
cos 2φ

)

= W220M
H2ρ2 +

1

2
W222H

2ρ2 cos 2φ

(A.2)

In the vector notation, the wavefront is expressed as:

W = W220M

(
~H · ~H

)(
~ρ · ~ρ )

+
1

2
W222

(
~H2 · ~ρ 2

)
(A.3)
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Appendix B

Design of the 90” telescope
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Appendix C

Code Vr conventions for tilts

Figure C.1. Tilt definitions for tilt(ADE), tilt(BDE) and tilt(CDE).
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Appendix D

Macro in Code Vr for the alignment of the 90”

!Purpose of the macro:
!
!The general goal of this macro is to perturb the corrector of the 90" telescope
!for all its degrees of freedom and calculate the Zernike coefficients for
!50 different field positions when the system is perturbed.
!The values of the Zernike coefficients are then stored
!in 4 different ASCII files (extension .dat) so as to be
!used later on with Matlab. The 4 files correspond to the 2 tilts and the 2
!decenters. Note the use of the GOTO statements. It is never suitable to use them
!in a program but they were used here as a subroutine. After the execution of the
!part of the macro that goes with the GOTO, the macro comes back to the point
!where the GOTO was called.
!
! Regis Tessieres - September 24th 2003
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!Definitions of the field points!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

^FIELD==0 !Iniatialization of the variable ^FIELD which will be used as a counter
!The first set of 25 field points are entered (Code V can only defines 25
!points at a time)
XRI 0 0 -40 -20 0 20 40 -30 -10 10 30 -40 -20 0 20

40 50 -30 -1010 30 -60 -50 -40 -20
YRI 60 50 40 40 40 40 40 30 30 30 30 20 20 20 20 20

10 10 10 10 10 0 0 0 0
^FIELD==1
!The variable ^Field is increment to keep track that the first set of field
!points have been defined
GOT MAIN
!After the definition of the first points, the macro goes to the main
!part of the program

LBL FIELD_2 !After the main part of the program has been executed
!the macro comes back to this point

^FIELD==2 !The variable ^Field is increment to keep track
!that the second set of field points have been defined

!The last set of 25 field points are entered
XRI 0 20 40 50 60 -30 -10 10 30 -40 -20 0 20 40 -30

-10 10 30 -40 -20 0 20 40 0 0
YRI 0 0 0 0 0 -10 -10 -10 -10 -20 -20 -20 -20 -20 -30

-30 -30 -30 -40 -40 -40 -40 -40 -50 -60
GOT MAIN !After the definition of the last set of points,
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!the macro goes to the main part of the program again

!Main part of the macro: the correcto is perturbed with tilts and decenters!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

LBL MAIN
^STEP==0 !Initialization of the counter ^STEP
ADE s7 0;BDE s7 0;XDE s7 0;YDE s7 0
!The decenters and tilts are initialized to 0

ADE s7 .1 !Alpha tilt of .1 degree at the no coma point
^STEP==1
GOT ANALYSIS !Go to the subroutine analysis which allows

!to calculate the Zernike coefficients for coma
!and astigmatism and store them into an ASCII file

LBL STEP_1 !After the Zernike coefficients have been calculated
!and stored the macro comes back here

ADE s7 0 !Put back the alpha tilt to zero

BDE s7 .1 !Beta tilt of .1 degree
^STEP==2
GOT ANALYSIS !Go to the subroutine analysis which allows

!to calculate the Zernike coefficients for coma and astigmatism
! and store them into an ASCII file

LBL STEP_2 !After the Zernike coefficients have been calculated and
!stored the macro comes back here

BDE s7 0 !Put back the beta tilt to zero

XDE s7 1 !Decenter of 1 mm in the x direction
^STEP==3
GOT ANALYSIS !Go to the subroutine analysis which allows

!to calculate the Zernike coefficients for coma
!and astigmatism and store them into an ASCII file

LBL STEP_3 !After the Zernike coefficients have been calculated
!and stored the macro comes back here

XDE s7 0 !Put back the decenter in the x direction to zero

YDE s7 1 !Decenter of 1mm in the y direction
^STEP==4
GOT ANALYSIS !Go to the subroutine analysis which allows

!to calculate the Zernike coefficients for coma and astigmatism
!and store them into an ASCII file

LBL STEP_4 !After the Zernike coefficients have been calculated
!and stored the macro comes back here

YDE s7 0 !Put back the decenter in the y direction to zero

!Little loop to know which field set have been defined so as to know
!of the macro needs to redo the analysis for
!the second set or of it is the end of the program
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IF ^FIELD=1
GOT FIELD_2
ELSE

GOT END
END IF

!Subroutine ANALYSIS!
!!!!!!!!!!!!!!!!!!!!!

!This subroutine allows to calculate and store the zernike
!coefficients for coma and astigmatism
LBL ANALYSIS

FOR ^field_num 1 25 1
!Calculation of the Zernike coefficients
^Z_5==ZFRCOEF(1, ^field_num, 1, 5, 121, 37, ’ENP’)
^Z_6==ZFRCOEF(1, ^field_num, 1, 6, 121, 37, ’ENP’)
^Z_7==ZFRCOEF(1, ^field_num, 1, 7, 121, 37, ’ENP’)
^Z_8==ZFRCOEF(1, ^field_num, 1, 8, 121, 37, ’ENP’)

!Loop to store the data into ASCII files
IF ^STEP=1

!The data for the alpha tilt
OPE APP U^unit_align AlignPFC_TiltX_Opt
WRI U^unit_align (XRI F^field_num) (YRI F^field_num) ^Z_5*550/sqrt(6)
^Z_6*550/sqrt(6) ^Z_7*550/sqrt(8) ^Z_8*550/sqrt(8)
CLO U^unit_align

ELSE IF ^STEP=2
!The data for the beta tilt
OPE APP U^unit_align AlignPFC_TiltY_Opt
WRI U^unit_align (XRI F^field_num) (YRI F^field_num) ^Z_5*550/sqrt(6)
^Z_6*550/sqrt(6) ^Z_7*550/sqrt(8) ^Z_8*550/sqrt(8)
CLO U^unit_align

ELSE IF ^STEP=3
!The data for the decenter along the x direction
OPE APP U^unit_align AlignPFC_DecX_Opt
WRI U^unit_align (XRI F^field_num) (YRI F^field_num) ^Z_5*550/sqrt(6)
^Z_6*550/sqrt(6) ^Z_7*550/sqrt(8) ^Z_8*550/sqrt(8)
CLO U^unit_align

ELSE IF ^STEP=4
!The data for the decenter along the y direction
OPE APP U^unit_align AlignPFC_DecY_Opt
WRI U^unit_align (XRI F^field_num) (YRI F^field_num) ^Z_5*550/sqrt(6)
^Z_6*550/sqrt(6) ^Z_7*550/sqrt(8) ^Z_8*550/sqrt(8)
CLO U^unit_align
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ELSE

END IF
END FOR

!Loop to know which perturbation is studied
IF ^STEP=1

GOT STEP_1
ELSE IF ^STEP=2

GOT STEP_2
ELSE IF ^STEP=3

GOT STEP_3
ELSE IF ^STEP=4

GOT STEP_4
ELSE

END IF

LBL END !End of the program



136

Appendix E

Matlabr program for the 90” telescope

alignment

% pfc: Program to fit the data from a ray tracing program or a wavefront
% sensor by using a least squares fit with the equations of the Zernike
% coefficients in misaligned systems.
%
%Output: Coefficients of each field dependence for coma and astigmatism and
%graphical representation of each field dependence.
%
% Regis Tessieres - September 24th 2003

format long %Double precision
clear all

%Load file selected by the user
[filename, pathname] = uigetfile( ... {’*.txt;*.dat;*.xls’,’ASCII
Files (*.txt;*.dat;*.xls)’;

’*.txt’, ’Text files (*.txt)’; ...
’*.dat’,’Data files (*.dat)’; ...
’*.xls’,’Excel files (*.xls)’; ...
’*.*’, ’All Files (*.*)’}, ...
’Select an ASCII file’);

%Store the values of the file into a matrix D
D= importdata(filename,’\t’);
%Get the number of points
nbpoints=size(D); nbpoints=nbpoints(1);

%read the data in the file%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

%initialization of the variables
Z56=[]; Z5=[]; Z6=[]; Z78=[]; Z7=[]; Z8=[];

for i=1:nbpoints

%Store the values of astigmatism
z5(i)=D(i,3);
z6(i)=D(i,4);
%Calculation of the amplitude and the orientation for astigmatism
amplZ56(i)=sqrt(z5(i).^2+z6(i).^2);
phiZ56(i)=1./2.*atan2(z6(i),z5(i));
Z5=[Z5;z5(i)];
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Z6=[Z6;z6(i)];
Z56=[Z56;z5(i);z6(i)];

%Store the values of coma
z7(i)=D(i,5);
z8(i)=D(i,6);
%Calculation of the amplitude and the orientation for coma
amplZ78(i)=sqrt(z7(i).^2+z8(i).^2);
phiZ78(i)=atan2(z8(i),z7(i));
Z7=[Z7;z7(i)];
Z8=[Z8;z8(i)];
Z78=[Z78;z7(i);z8(i)];

x(i)=D(i,1);
y(i)=D(i,2);

end
%Conversion to vector
x=x’; y=y’; amplZ56=amplZ56’; phiZ56=phiZ56’; amplZ78=amplZ78’;
phiZ78=phiZ78’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Creation of the matrix and Least-squares fit (LSF) for the zernike coefficients%

%Matrix for the LSF for Astig3 (third order astigmatism)
MAstig3=[]; %initialization of the matrix for Astig3 (z5 and z6)

for i=1:nbpoints
M1=[0 1 x(i) y(i) 2.*x(i).*y(i)];
M2=[1 0 y(i) -x(i) ((y(i)).^2-(x(i)).^2)];

A=[M1;M2];
MAstig3=[MAstig3;A];

end

%least-squares fit for z5 and z6 (Output of the program)
RAstig3=MAstig3\Z56

%Matrix for the LSF for Coma3 (third order coma)%
MComa3=[]; %initialization of the matrix for Coma3 (z7 and z8)
for i=1:nbpoints

M1=[1 0 x(i)];
M2=[0 1 y(i)];

A=[M1;M2];
MComa3=[MComa3;A];

end
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%least-squares fit for z7 and z8 (Output of the program)
RComa3=MComa3\Z78

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Graphic representation of the 5 aberrations with their fit for astigmatism

%Astig3

%Constant part
B=ones(nbpoints); B=B(:,1); Z5cst=RAstig3(2).*B;
Z6cst=RAstig3(1).*B;
%Amplitude of the constant part
amplcst=((Z5cst).^2+(Z6cst).^2).^(1./2);
%Orientation of the constant part
phicst=1./2.*atan2(Z6cst,Z5cst);

%Linear part 1
Z5lin1=RAstig3(3).*x+RAstig3(4).*y;
Z6lin1=RAstig3(3).*y-RAstig3(4).*x;
%Amplitude of the linear part
ampllin1=((Z6lin1).^2+(Z5lin1).^2).^(1./2);
%Orientation of the linear part
philin1=1./2.*atan2(Z6lin1,Z5lin1);

%Quadratic part 1
Z5quad1=RAstig3(5).*2.*x.*y; Z6quad1=RAstig3(5).*(y.^2-x.^2);
%Amplitude of the quadratic part
amplquad1=((Z6quad1).^2+(Z5quad1).^2).^(1./2);
%Orientation of the quadratic part
phiquad1=1./2.*atan2(Z6quad1,Z5quad1);

%Residual part
Z5res=Z5-Z5cst-Z5lin1-Z5quad1; Z6res=Z6-Z6cst-Z6lin1-Z6quad1;
%Amplitude of the residual astigmatism
amplres=((Z6res).^2+(Z5res).^2).^(1./2);
%Orientation of the residual astigmatism
phires=1./2.*atan2(Z6res,Z5res);

%Creation of the plot with the 5 graphs
figure subplot(2,3,1)
quiv(x,y,1./10.*amplZ56.*cos(phiZ56),1./10.*amplZ56.*sin(phiZ56),0);
axis square title([’Original data for Astig3 of ’,filename]);
xlabel(’X position (mm)’); ylabel(’Y position (mm)’); axis([-100
100 -100 100]);

subplot(2,3,2)
quiv(x,y,1./10.*amplcst.*cos(phicst),1./10.*amplcst.*sin(phicst),0);
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axis square title(’Constant fit’); xlabel(’X position (mm)’);
ylabel(’Y position (mm)’); axis([-100 100 -100 100]);

subplot(2,3,3)
quiv(x,y,1./10.*ampllin1.*cos(philin1),1./10.*ampllin1.*sin(philin1),0);
axis square title(’Linear fit’); xlabel(’X position (mm)’);
ylabel(’Y position (mm)’); axis([-100 100 -100 100]);

subplot(2,3,4)
quiv(x,y,1./10.*amplquad1.*cos(phiquad1),1./10.*amplquad1.*sin(phiquad1),0);
axis square title(’Quadratic fit’); xlabel(’X position (mm)’);
ylabel(’Y position (mm)’); axis([-100 100 -100 100]);

subplot(2,3,5)
quiv(x,y,1./10.*amplres.*cos(phires),1./10.*amplres.*sin(phires),0);
axis square title(’Residual Astig3’); xlabel(’X position (mm)’);
ylabel(’Y position (mm)’); axis([-100 100 -100 100]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Coma3

%Constant part
Z7cst=RComa3(1).*B; Z8cst=RComa3(2).*B;

%Linear part 1
Z7lin1=RComa3(3).*x; Z8lin1=RComa3(3).*y;

%Residual part
Z7res=Z7-Z7cst-Z7lin1; Z8res=Z8-Z8cst-Z8lin1;

%Creation of the plot with the 4 graphs
figure subplot(2,2,1) quiv(x,y,1./10.*Z7,1./10.*Z8,0); axis square
title([’Original data for Coma3 of ’,filename]); xlabel(’X
position (mm)’); ylabel(’Y position (mm)’); axis([-100 100 -100
100]);

subplot(2,2,2) quiv(x,y,1./10.*Z7cst,1./10.*Z8cst,0); axis square
title(’Constant fit’); xlabel(’X position (mm)’); ylabel(’Y
position (mm)’); axis([-100 100 -100 100]);

subplot(2,2,3) quiv(x,y,1./10.*Z7lin1,1./10.*Z8lin1,0); axis
square title(’Linear fit’); xlabel(’X position (mm)’); ylabel(’Y
position (mm)’); axis([-100 100 -100 100]);

subplot(2,2,4) quiv(x,y,1./10.*Z7res,1./10.*Z8res,0); axis square
title(’Residual Coma3’); xlabel(’X position (mm)’); ylabel(’Y
position (mm)’); axis([-100 100 -100 100]);
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Appendix F

Calculations of the amplitude and the

orientation with the Zernike coefficients

F.1 Third order aberrations

Since only third order coma and astigmatism are analyzed for the alignment of the

90” telescope, the calculations to find the amplitude and the orientation will be done

only for these two aberrations.

F.1.1 Third order astigmatism

The expression of the wavefront error in terms of Zernike considering only third order

astigmatism is:

∆W = C5 ·
√

6ρ2 sin 2φ + C6 ·
√

6ρ2 cos 2φ

=
√

6ρ2 · (C5 sin 2φ + C6 cos 2φ
) (F.1)

By using the relation a cos x + b sin x =
√

a2 + b2 · cos
(
x − tan−1( b

a
)
)
1 equation F.1

can be rewritten as:

∆W = ρ2
√

6
√

(C5)2 + (C6)2 · cos
(
2
(
φ− 1

2
tan−1 C5

C6

))
(F.2)

Then by using the trigonometric relation cos 2φ = 2 cos2 φ−1, equation F.2 becomes:

∆W = ρ2
√

6
√

(C5)2 + (C6)2 · 2 cos2
(
φ− 1

2
tan−1 C5

C6

)
− ρ2

√
6
√

(C5)2 + (C6)2 (F.3)

The second term in equation F.3 is for defocus, thus only the first is considered for

astigmatism. From equation F.3 the magnitude and the orientation for third order

astigmatism can be derived:{
M = 2

√
6 ·

√
(C5)2 + (C6)2

A = 1
2
tan−1 C5

C6

(F.4)

1This equation will also be used in the expressions of the next aberrations for simplification
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F.1.2 Third order coma

The expression of the wavefront error in terms of Zernike considering only third order

coma is:

∆W = C7 ·
√

8(3ρ3 − 2ρ) sin φ + C8 ·
√

8(3ρ3 − 2ρ) cos φ

=
√

8(3ρ3 − 2ρ)(C7 sin φ + C8 cos φ)

=
√

8(3ρ3 − 2ρ)
√

(C7)2 + (C8)2 cos
(
φ− tan−1 C7

C8

)

=
√

8 · 3ρ3
√

(C7)2 + (C8)2 cos
(
φ− tan−1 C7

C8

)

−
√

8 · 2ρ
√

(C7)2 + (C8)2 cos
(
φ− tan−1 C7

C8

)

(F.5)

The last term of equation F.5 is tilt. Thus only the first term is considered to get

the magnitude and the orientation of third order coma:

{
M = 3

√
8 ·

√
(C7)2 + (C8)2

A = tan−1 C7

C8

(F.6)

F.2 Fifth order aberrations

When the fifth order is considered, it is more complicated in the sense that fifth

order aberrations will also create third order aberrations as it will be seen in the

calculations.

Here only third order astigmatism and coma, trefoil and fifth order astigmatism

and coma will be considered since they are the only aberrations considered for the

alignment of the LSST.
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F.2.1 Third order astigmatism

By considering the contributions of third order and fifth order astigmatism, the wave-

front error can be written as:

∆W = C5 ·
√

6ρ2 sin 2φ + C6 ·
√

6ρ2 cos 2φ− 3
√

10 · C12ρ
2 cos 2φ− 3

√
10 · C13ρ

2 sin 2φ

= ρ2
[(√

6 C5 − 3
√

10 C13

)
sin 2φ +

(√
6 C6 − 3

√
10 C12

)
cos 2φ

]

= ρ2

√(√
6 C5 − 3

√
10 C13

)2
+

(√
6 C6 − 3

√
10 C12

)2

· cos

(
2φ− tan−1

√
6 C5 − 3

√
10 C13√

6 C6 − 3
√

10 C12

)

(F.7)

By considering only the components for third order astigmatism:

∆W =2ρ2

√(√
6 C5 − 3

√
10 C13

)2
+

(√
6 C6 − 3

√
10 C12

)2

· cos2

(
φ− 1

2
tan−1

√
6 C5 − 3

√
10 C13√

6 C6 − 3
√

10 C12

)
(F.8)

Thus, the magnitude and the orientation of third order astigmatism are:



M = 2
√(√

6 C5 − 3
√

10 C13

)2
+

(√
6 C6 − 3

√
10 C12

)2

A = 1
2
tan−1

√
6 C5−3

√
10 C13√

6 C6−3
√

10 C12

(F.9)

F.2.2 Third order coma

By considering the contributions of third order and fifth order coma, the wavefront

error can be written as:

∆W = C7

√
8(3ρ3 − 2ρ) sin φ + C8

√
8(3ρ3 − 2ρ) cos φ

− 12
√

12 C16ρ
3 cos φ− 12

√
12 C17ρ

3 sin φ
(F.10)

By considering only the components for third order coma, the wavefront error can be

rewritten as:

∆W = ρ3
[(

3
√

8 C7 − 12
√

12 C17

)
sin φ +

(
3
√

8 C8 − 12
√

12 C16

)
cos φ

]

= ρ3

√(
3
√

8 C7 − 12
√

12 C17

)2
+

(
3
√

8 C8 − 12
√

12 C16

)2

· cos

(
φ− tan−1 3

√
8 C7 − 12

√
12 C17

3
√

8 C8 − 12
√

12 C16

) (F.11)
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Thus the magnitude and the orientation of third order coma are:




M =
√(

3
√

8 C7 − 12
√

12 C17

)2
+

(
3
√

8 C8 − 12
√

12 C16

)2

A = tan−1 3
√

8 C7−12
√

12 C17

3
√

8 C8−12
√

12 C16

(F.12)

F.2.3 Trefoil

The expression of the wavefront error in terms of Zernike considering only trefoil is:

∆W = ρ3
√

8
(
C9 sin 3φ + C10 cos 3φ

)

= ρ3
√

8 ·
(√

(C9)2 + (C10)2 · cos

[
3
(
φ− 1

3
tan−1 C9

C10

)])
(F.13)

By using the trigonometric relation cos 3x = 4 cos3 x − 3 cos x and considering only

the components for trefoil, the wavefront error can be expressed as:

∆W = ρ3 8
√

2
√

(C9)2 + (C10)2 · cos3

(
φ− 1

3
tan−1 C9

C10

)
(F.14)

Thus the magnitude and the orientation of trefoil are:
{

M = 8
√

2
√

(C9)2 + (C10)2

A = 1
3
tan−1 C9

C10

(F.15)

F.2.4 Fifth order astigmatism

The expression of the wavefront error in terms of Zernike considering only fifth order

astigmatism is:

∆W = 4
√

10 ρ4 cos 2φC12 + 4
√

10 ρ4 sin 2φC13

= 4
√

10ρ4 · (C12 cos 2φ + C13 sin 2φ
)

= 4
√

10ρ4
√

(C12)2 + (C13)2 · cos

[
2
(
φ− 1

2
tan−1 C13

C12

)] (F.16)

By using the trigonometric relation cos 2φ = 2 cos2 φ − 1 and considering only fifth

order astigmatism, the wavefront error can be expressed as:

∆W = 8
√

10ρ4
√

(C12)2 + (C13)2 · cos2
(
φ− 1

2
tan−1 C13

C12

)
(F.17)
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Thus the magnitude and the orientation of fifth order astigmatism are:

{
M = 8

√
10

√
(C12)2 + (C13)2

A = 1
2
tan−1 C13

C12

(F.18)

F.2.5 Fifth order coma

The expression of the wavefront error in terms of Zernike considering only fifth order

coma is:

∆W = 10
√

12ρ5 · (C16 cos φ + C17 sin φ)

= 10
√

12ρ5
√

(C16)2 + (C17)2 · cos
(
φ− tan−1 C17

C16

) (F.19)

According to equation F.19, the magnitude and orientation of fifth order coma are:

{
M = 10

√
12

√
(C16)2 + (C17)2

A = tan−1 C17

C16

(F.20)
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Appendix G

Macro in Zemaxr for the LSST

!This macro defines 48 points, calculate the Zernike coefficients for these points
!and store the data
!into an ASCII file defined by the user.
!
! Regis Tessieres - September 24th 2003

path$ = "c:\LSST\analysis\"
!Define the path where the file is going to be stored

REWIND
INPUT "Enter the name of the output file:" , filename$
!Pop up window to ask for the file name
outfile$ = path$ + filename$ + ".dat"
PRINT outfile$
pi=4*ATAN(1)
!Definition of pi to use it later on

!First set of field points (Only 12 field points can be defined at a time)
NUMFIELD 12
!fix the number of field and define each field

FTYP=0
FLDX 1 = 0
FLDY 1 = 1.5
FWGT 1 = 1
FLDX 2 = -1
FLDY 2 = 1
FWGT 2 = 1
FLDX 3 = -0.75
FLDY 3 = 1
FWGT 3 = 1
FLDX 4 = -0.5
FLDY 4 = 1
FWGT 4 = 1
FLDX 5 = -0.25
FLDY 5 = 1
FWGT 5 = 1
FLDX 6 = 0
FLDY 6 = 1
FWGT 6 = 1
FLDX 7 = 0.25
FLDY 7 = 1
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FWGT 7 = 1
FLDX 8 = 0.5
FLDY 8 = 1
FWGT 8 = 1
FLDX 9 = 0.75
FLDY 9 = 1
FWGT 9 = 1
FLDX 10 = 1
FLDY 10 = 1
FWGT 10 = 1
FLDX 11 = -1
FLDY 11 = 0.5
FWGT 11 = 1
FLDX 12 = -0.75
FLDY 12 = 0.5
FWGT 12 = 1

!Optimize the system to have the best focus
OPTIMIZE 5
!Update the windows
UPDATE ALL
GOSUB ZERN
!Go to the subroutine Zern to calulate and store the zernike coefficients

FTYP=0
FLDX 1 = -0.5
FLDY 1 = 0.5
FWGT 1 = 1
FLDX 2 = -0.25
FLDY 2 = 0.5
FWGT 2 = 1
FLDX 3 = 0
FLDY 3 = 0.5
FWGT 3 = 1
FLDX 4 = 0.25
FLDY 4 = 0.5
FWGT 4 = 1
FLDX 5 = 0.5
FLDY 5 = 0.5
FWGT 5 = 1
FLDX 6 = 0.75
FLDY 6 = 0.5
FWGT 6 = 1
FLDX 7 = 1
FLDY 7 = 0.5
FWGT 7 = 1
FLDX 8 = -1.5
FLDY 8 = 0
FWGT 8 = 1
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FLDX 9 = -1
FLDY 9 = 0
FWGT 9 = 1
FLDX 10 = -0.75
FLDY 10 = 0
FWGT 10 = 1
FLDX 11 = -0.5
FLDY 11 = 0
FWGT 11 = 1
FLDX 12 = -0.25
FLDY 12 = 0
FWGT 12 = 1

!Update the windows
UPDATE ALL
GOSUB ZERN
!Go to the subroutine Zern to calulate and store the zernike coefficients

FTYP=0
FLDX 1 = 0
FLDY 1 = 0
FWGT 1 = 1
FLDX 2 = 0.25
FLDY 2 = 0
FWGT 2 = 1
FLDX 3 = 0.5
FLDY 3 = 0
FWGT 3 = 1
FLDX 4 = 0.75
FLDY 4 = 0
FWGT 4 = 1
FLDX 5 = 1
FLDY 5 = 0
FWGT 5 = 1
FLDX 6 = 0
FLDY 6 = -1.5
FWGT 6 = 1
FLDX 7 = 1.5
FLDY 7 = 0
FWGT 7 = 1
FLDX 8 = -1
FLDY 8 = -0.5
FWGT 8 = 1
FLDX 9 = -0.75
FLDY 9 = -0.5
FWGT 9 = 1
FLDX 10 = -0.5
FLDY 10 = -0.5
FWGT 10 = 1



148

FLDX 11 = -0.25
FLDY 11 = -0.5
FWGT 11 = 1
FLDX 12 = 0
FLDY 12 = -0.5
FWGT 12 = 1

!Update the windows
UPDATE ALL
GOSUB ZERN
!Go to the subroutine Zern to calulate and store the zernike coefficients

FTYP=0
FLDX 1 = 0.25
FLDY 1 = -0.5
FWGT 1 = 1
FLDX 2 = 0.5
FLDY 2 = -0.5
FWGT 2 = 1
FLDX 3 = 0.75
FLDY 3 = -0.5
FWGT 3 = 1
FLDX 4 = 1
FLDY 4 = -0.5
FWGT 4 = 1
FLDX 5 = -1
FLDY 5 = -1
FWGT 5 = 1
FLDX 6 = -0.75
FLDY 6 = -1
FWGT 6 = 1
FLDX 7 = -0.5
FLDY 7 = -1
FWGT 7 = 1
FLDX 8 = -0.25
FLDY 8 = -1
FWGT 8 = 1
FLDX 9 = 0
FLDY 9 = -1
FWGT 9 = 1
FLDX 10 = 0.25
FLDY 10 = -1
FWGT 10 = 1
FLDX 11 = 0.5
FLDY 11 = -1
FWGT 11 = 1
FLDX 12 = 0.75
FLDY 12 = -1
FWGT 12 = 1
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!Update the windows
UPDATE ALL
GOSUB ZERN
!Go to the subroutine Zern to calulate and store the zernike coefficients

END

!Subroutine to get the Zernike polynomial and store them into a file

SUB ZERN

OUTPUT outfile$ APPEND

FOR j=1,12,1
GETZERNIKE 17,1,j,3,1,0
PRINT TANG(FLDX(j)*pi/180)*10496.5," ",TANG(FLDY(j)*pi/180)*10496.5,
" ",VEC1(12)*550/sqrt(3)

NEXT

OUTPUT screen
RETURN
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Appendix H

Matlabr program for the LSST alignment

% lsstC: Program to fit the data from a raytracing program or a wavefront
% sensor by using a least squares fit with the equations of the Zernike
% coefficients in misaligned systems.
%
%Output: Coefficients of each field dependence for each aberration and
%graphical representation of each field dependence.
%
% Regis Tessieres - September 24th 2003

format long
clear all

%Load file selected by the user
[filename, pathname] = uigetfile( ...
{’*.txt;*.dat;*.xls’,’ASCII Files (*.txt;*.dat;*.xls)’;

’*.txt’, ’Text files (*.txt)’; ...
’*.dat’,’Data files (*.dat)’; ...
’*.xls’,’Excel files (*.xls)’; ...
’*.*’, ’All Files (*.*)’}, ...
’Select an ASCII file’);

%Store the values of the file into a matrix D when the system is perturbed
D= importdata(filename,’\t’);
nbpoints=size(D);
nbpoints=nbpoints(1);

%Load file of the centered system
[filename0, pathname0] = uigetfile( ...
{’*.txt;*.dat;*.xls’,’ASCII Files (*.txt;*.dat;*.xls)’;

’*.txt’, ’Text files (*.txt)’; ...
’*.dat’,’Data files (*.dat)’; ...
’*.xls’,’Excel files (*.xls)’; ...
’*.*’, ’All Files (*.*)’}, ...
’Select the file for centered sys’);

%The values of the Zernike
%coefficients of the centered system willl be subtracted from the Zernike
%coefficients when the system is perturbed.
D0= importdata(filename0,’\t’); %Store the values of the centered system.

%read the data in the file%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

%initialization
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Z56=[];
Z5=[];
Z6=[];
Z78=[];
Z7=[];
Z8=[];
Z910=[];
Z9=[];
Z10=[];
Z1213=[];
Z12=[];
Z13=[];
Z1617=[];
Z16=[];
Z17=[];

for i=1:nbpoints

%Store the values for third order astigmatism and calculate its
%amplitude and orientation
z5(i)=D(i,3)-D0(i,3);
z6(i)=D(i,4)-D0(i,4);
amplZ56(i)=sqrt(z5(i).^2+z6(i).^2);
phiZ56(i)=1./2.*atan2(z6(i),z5(i));
Z5=[Z5;z5(i)];
Z6=[Z6;z6(i)];
Z56=[Z56;z5(i);z6(i)];

%Store the values for third order coma and calculate its
%amplitude and orientation
z7(i)=D(i,5)-D0(i,5);
z8(i)=D(i,6)-D0(i,6);
amplZ78(i)=sqrt(z7(i).^2+z8(i).^2);
phiZ78(i)=atan2(z8(i),z7(i));
Z7=[Z7;z7(i)];
Z8=[Z8;z8(i)];
Z78=[Z78;z7(i);z8(i)];

%Store the values for trefoil and calculate its
%amplitude and orientation
z9(i)=D(i,7)-D0(i,7);
z10(i)=D(i,8)-D0(i,8);
Z9=[Z9;z9(i)];
Z10=[Z10;z10(i)];
amplZ910(i)=sqrt(z9(i).^2+z10(i).^2);
phiZ910(i)=1./3.*atan2(z10(i),z9(i));
Z910=[Z910;z9(i);z10(i)];

%Store the values for fifth order astigmatism and calculate its
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%amplitude and orientation
z12(i)=D(i,10)-D0(i,10);
z13(i)=D(i,9)-D0(i,9);
Z12=[Z12;z12(i)];
Z13=[Z13;z13(i)];
amplZ1213(i)=sqrt(z12(i).^2+z13(i).^2);
phiZ1213(i)=1./2.*atan2(z12(i),z13(i));
Z1213=[Z1213;z12(i);z13(i)];

%Store the values for fifth order coma and calculate its
%amplitude and orientation
z16(i)=D(i,12)-D0(i,12);
z17(i)=D(i,11)-D0(i,11);
Z16=[Z16;z16(i)];
Z17=[Z17;z17(i)];
amplZ1617(i)=sqrt(z16(i).^2+z17(i).^2);
phiZ1617(i)=atan2(z16(i),z17(i));
Z1617=[Z1617;z16(i);z17(i)];

%Store the field positions
x(i)=D(i,1);
y(i)=D(i,2);

end
%Conversion to vector
x=x’;
y=y’;
amplZ56=amplZ56’;
phiZ56=phiZ56’;
amplZ78=amplZ78’;
phiZ78=phiZ78’;
amplZ910=amplZ910’;
phiZ910=phiZ910’;
amplZ1213=amplZ1213’;
phiZ1213=phiZ1213’;
amplZ1617=amplZ1617’;
phiZ1617=phiZ1617’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Creation of the matrix and Least-squares fit (LSF) for the zernike coefficients%

%Matrix for the LSF for Astig3 (third order astigmatism)
MAstig3=[]; %initialization of the matrix for Astig3 (z5 and z6)

for i=1:nbpoints
M1=[0 1 y(i) x(i) 2.*x(i).*y(i) -x(i) y(i) 2.*x(i).*(y(i)).^2 ...

x(i).*(y(i)).^2-(x(i)).^3 0 ((x(i)).^2+(y(i)).^2) ...
((x(i)).^3+x(i).*(y(i)).^2) (x(i)).^2.*y(i)+(y(i)).^3 ...
2.*((x(i)).^3.*y(i)+x(i).*(y(i)).^3)];
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M2=[1 0 -x(i) y(i) ((y(i)).^2-(x(i)).^2) y(i) x(i) ...
((y(i)).^3-(x(i)).^2.*y(i)) -2.*(x(i)).^2.*y(i) ...

((x(i)).^2+(y(i)).^2) 0 (x(i)).^2.*y(i)+(y(i)).^3 ...
-((x(i)).^3+x(i).*(y(i)).^2) ((y(i)).^4-(x(i)).^4)];

A=[M1;M2];
MAstig3=[MAstig3;A];

end

%least-squares fit for z5 and z6 (Output of the program)
RAstig3=MAstig3\Z56

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Matrix for the LSF for Coma3 (third order coma)%

MComa3=[]; %initialization of the matrix for Coma3 (z7 and z8)
for i=1:nbpoints

M1=[0 1 x(i) y(i) 0 ((x(i)).^2+(y(i)).^2) x(i) x(i).*y(i) ...
(x(i)).^2 ((x(i)).^3+x(i).*(y(i)).^2)];

M2=[1 0 -y(i) x(i) ((x(i)).^2+(y(i)).^2) 0 y(i) (y(i)).^2 ...
(x(i).*y(i)) ((y(i)).^3+y(i).*(x(i)).^2)];

A=[M1;M2];
MComa3=[MComa3;A];

end

%least-squares fit for z7 and z8 (Output of the program)
RComa3=MComa3\Z78

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Matrix for the LSF for Trefoil5%

MTrefoil=[]; %initialization of the matrix for Trefoil5 (z9 and z10)
for i=1:nbpoints

M1=[0 1 y(i) x(i) 2.*x(i).*y(i) ((y(i)).^2-(x(i)).^2) ...
(3.*(y(i)).^2.*x(i)-(x(i)).^3)];

M2=[1 0 -x(i) y(i) ((y(i)).^2-(x(i)).^2) -2.*x(i).*y(i) ...
(-3.*(x(i)).^2.*y(i)+(y(i)).^3)];

A=[M1;M2];
MTrefoil=[MTrefoil;A];

end

%least-squares fit for z9 and z10 (Output of the program)
RTrefoil=MTrefoil\Z910

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%Matrix for the LSF for Astig5 (fifth order astigmatism)%

MAstig5=[]; %initialization of the matrix for Astig5 (z12 and z13)
for i=1:nbpoints

M1=[0 1 y(i) -x(i) ((y(i)).^2-(x(i)).^2)];
M2=[1 0 x(i) y(i) 2.*x(i).*y(i)];

A=[M1;M2];
MAstig5=[MAstig5;A];

end

%least-squares fit for z12 and z13 (Output of the program)
RAstig5=MAstig5\Z1213

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Matrix for the LSF for Coma5 (fifth order coma)%

MComa5=[]; %initialization of the matrix for Coma5 (z16 and z17)
for i=1:nbpoints

M1=[0 1 y(i)];
M2=[1 0 x(i)];

A=[M1;M2];
MComa5=[MComa5;A];

end

%least-squares fit for z16 and z17 (Output of the program)
RComa5=MComa5\Z1617

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Graphic representation of the 5 aberrations with their fit

%Astig3%
%%%%%%%%

%Constant part
B=ones(nbpoints);
B=B(:,1);
Z5cst=RAstig3(2).*B;
Z6cst=RAstig3(1).*B;
amplcst=((Z5cst).^2+(Z6cst).^2).^(1./2);
phicst=1./2.*atan2(Z6cst,Z5cst);
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%Linear part 1
Z5lin1=RAstig3(3).*y+RAstig3(4).*x;
Z6lin1=-RAstig3(3).*x+RAstig3(4).*y;
ampllin1=((Z5lin1).^2+(Z6lin1).^2).^(1./2);
philin1=1./2.*atan2(Z6lin1,Z5lin1);

%Linear part 2
Z5lin2=-RAstig3(6).*x+RAstig3(7).*y;
Z6lin2=RAstig3(6).*y+RAstig3(7).*x;
ampllin2=((Z5lin2).^2+(Z6lin2).^2).^(1./2);
philin2=1./2.*atan2(Z6lin2,Z5lin2);

%Quadratic part 1
Z5quad1=RAstig3(5).*2.*x.*y;
Z6quad1=RAstig3(5).*(y.^2-x.^2);
amplquad1=((Z5quad1).^2+(Z6quad1).^2).^(1./2);
phiquad1=1./2.*atan2(Z6quad1,Z5quad1);

%Quadratic part 2
Z5quad2=RAstig3(11).*(x.^2+y.^2);
Z6quad2=RAstig3(10).*(x.^2+y.^2);
amplquad2=((Z5quad2).^2+(Z6quad2).^2).^(1./2);
phiquad2=1./2.*atan2(Z6quad2,Z5quad2);

%Cubic part 1
Z5cub1=RAstig3(8).*2.*x.*(y.^2)+RAstig3(9).*(x.*(y.^2)-x.^3);
Z6cub1=RAstig3(8).*(y.^3-(x.^2).*y)-RAstig3(9).*(2.*(x.^2).*y);
amplcub1=((Z5cub1).^2+(Z6cub1).^2).^(1./2);
phicub1=1./2.*atan2(Z6cub1,Z5cub1);

%Cubic part 2
Z5cub2=RAstig3(12).*(x.^3+x.*(y.^2))+RAstig3(13).*((x.^2).*y+y.^3);
Z6cub2=RAstig3(12).*((x.^2).*y+y.^3)-RAstig3(13).*(x.^3+x.*(y.^2));
amplcub2=((Z5cub2).^2+(Z6cub2).^2).^(1./2);
phicub2=1./2.*atan2(Z6cub2,Z5cub2);

%Quartic part (Astig of an aligned system)
Z5quar=RAstig3(14).*(2.*((x.^3).*y+x.*(y.^3)));
Z6quar=RAstig3(14).*((y.^4-x.^4));
amplquar=((Z5quar).^2+(Z6quar).^2).^(1./2);
phiquar=1./2.*atan2(Z6quar,Z5quar);

%Residual part
Z5res=Z5-Z5cst-Z5lin1-Z5lin2-Z5quad1-Z5quad2-Z5cub1-Z5cub2-Z5quar;
Z6res=Z6-Z6cst-Z6lin1-Z6lin2-Z6quad1-Z6quad2-Z6cub1-Z6cub2-Z6quar;
amplres=((Z5res).^2+(Z6res).^2).^(1./2);
phires=1./2.*atan2(Z6res,Z5res);
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%Creation of the plot with the 9 graphs for Astig3%

figure(’Position’,[1 29 1024 670],...
’PaperOrientation’,’Landscape’,...
’PaperPosition’,[0.25 0.25 11.193 7.7677])

subplot(’Position’,[.08 .69 .20 .20])%(3,3,1)
quiv(x,y,1./10.*amplZ56.*cos(phiZ56),1./10.*amplZ56.*sin(phiZ56),0);
axis square
title([’Original data for Astig3 of ’,filename]);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.38 .69 .20 .20])%(3,3,2)
quiv(x,y,1./10.*amplcst.*cos(phicst),1./10.*amplcst.*sin(phicst),0);
axis square
title(’Constant fit’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.68 .69 .20 .20])%(3,3,3)
quiv(x,y,1./10.*ampllin1.*cos(philin1),1./10.*ampllin1.*sin(philin1),0);
axis square
title(’Linear fit #1’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.08 .39 .20 .20])%(3,3,4)
quiv(x,y,1./10.*ampllin2.*cos(philin2),1./10.*ampllin2.*sin(philin2),0);
axis square
title(’Linear fit #2’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.38 .39 .20 .20])%(3,3,5)
quiv(x,y,1./10.*amplquad1.*cos(phiquad1),1./10.*amplquad1.*sin(phiquad1),0);
axis square
title(’Quadratic fit #1’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.68 .39 .20 .20])%(3,3,6)
quiv(x,y,1./10.*amplquad2.*cos(phiquad2),1./10.*amplquad2.*sin(phiquad2),0);
axis square
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title(’Quadratic fit #2’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.08 .09 .20 .20])%(3,3,7)
quiv(x,y,1./10.*amplcub1.*cos(phicub1),1./10.*amplcub1.*sin(phicub1),0);
axis square
title(’Cubic fit #1’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.38 .09 .20 .20])%(3,3,8)
quiv(x,y,1./10.*amplcub2.*cos(phicub2),1./10.*amplcub2.*sin(phicub2),0);
axis square
title(’Cubic fit #2’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.68 .09 .20 .20])%(3,3,9)
quiv(x,y,1./10.*amplquar.*cos(phiquar),1./10.*amplquar.*sin(phiquar),0);
axis square
title(’Quartic fit’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

figure
quiv(x,y,1./10.*amplres.*cos(phires),1./10.*amplres.*sin(phires),0);
axis square
title(’Residual Astig3’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

%Coma3%
%%%%%%%

%Constant part
Z7cst=RComa3(2).*B;
Z8cst=RComa3(1).*B;

%Linear part 1
Z7lin1=RComa3(3).*x+RComa3(4).*y;
Z8lin1=RComa3(3).*y-RComa3(4).*x;

%Linear part 2
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Z7lin2=RComa3(7).*x;
Z8lin2=RComa3(7).*y;

%Quadratic part 1
Z7quad1=RComa3(6).*(x.^2+y.^2);
Z8quad1=RComa3(5).*(x.^2+y.^2);

%Quadratic part 2
Z7quad2=RComa3(9).*(x.^2)+RComa3(8).*x.*y;
Z8quad2=RComa3(9).*x.*y+RComa3(8).*(y.^2);

%Cubic part
Z7cub=RComa3(10).*((x(i)).^3+x.*(y(i)).^2);
Z8cub=RComa3(10).*((y(i)).^3+y.*(x(i)).^2);

%Residual part
Z7res=Z7-Z7cst-Z7lin1-Z7lin2-Z7quad1-Z7quad2-Z7cub;
Z8res=Z8-Z8cst-Z8lin1-Z8lin2-Z8quad1-Z8quad2-Z8cub;

%Creation of the plot with the 7 graphs for Coma3%

figure(’Position’,[1 29 1024 670],...
’PaperOrientation’,’Landscape’,...
’PaperPosition’,[0.25 0.25 11.193 7.7677])

subplot(’Position’,[.08 .69 .20 .20])%subplot(3,3,1)
quiv(x,y,1./1.*Z7,1./1.*Z8,0);
axis square
title([’Original data for Coma3 of ’,filename]);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.38 .69 .20 .20])%subplot(3,3,2)
quiv(x,y,1./1.*Z7cst,1./1.*Z8cst,0);
axis square
title(’Constant fit’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.68 .69 .20 .20])%subplot(3,3,3)
quiv(x,y,1./1.*Z7lin1,1./1.*Z8lin2,0);
axis square
title(’Linear fit #1’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.08 .39 .20 .20])%subplot(3,3,4)
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quiv(x,y,1./1.*Z7lin2,1./1.*Z8lin2,0);
axis square
title(’Linear fit #2’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.38 .39 .20 .20])%subplot(3,3,5)
quiv(x,y,1./1.*Z7quad1,1./1.*Z8quad1,0);
axis square
title(’Quadratic fit #1’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.68 .39 .20 .20])%subplot(3,3,6)
quiv(x,y,1./1.*Z7quad2,1./1.*Z8quad2,0);
axis square
title(’Quadratic fit #2’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.08 .09 .20 .20])%subplot(3,3,7)
quiv(x,y,1./1.*Z7cub,1./1.*Z8cub,0);
axis square
title(’Cubic fit’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(’Position’,[.38 .09 .20 .20])%subplot(3,3,8)
quiv(x,y,1./1.*Z7res,1./1.*Z8res,0);
axis square
title(’Residual Coma3’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

%Ttrefoil5%

%Constant part
clear amplcst phicst
Z9cst=RTrefoil(2).*B;
Z10cst=RTrefoil(1).*B;
amplcst=((Z9cst).^2+(Z10cst).^2).^(1./2);
phicst=1./3.*atan2(Z10cst,Z9cst);

%Linear part
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Z9lin=RTrefoil(3).*y+RTrefoil(4).*x;
Z10lin=-RTrefoil(3).*x+RTrefoil(4).*y;
ampllin=((Z9lin).^2+(Z10lin).^2).^(1./2);
philin=1./3.*atan2(Z10lin,Z9lin);

%Quadratic part
Z9quad=RTrefoil(6).*(y.^2-x.^2)+RTrefoil(5).*2.*x.*y;
Z10quad=-RTrefoil(6).*2.*x.*y+RTrefoil(5).*(y.^2-x.^2);
amplquad=((Z9quad).^2+(Z10quad).^2).^(1./2);
phiquad=1./3.*atan2(Z10quad,Z9quad);

%Cubic part
Z9cub=RTrefoil(7).*(3.*y.^2.*x-x.^3);
Z10cub=RTrefoil(7).*(-3.*x.^2.*y+y.^3);
amplcub=((Z9cub).^2+(Z10cub).^2).^(1./2);
phicub=1./3.*atan2(Z10cub,Z9cub);

%Residual part
clear amplres phires
Z9res=Z9-Z9cst-Z9lin-Z9quad-Z9cub;
Z10res=Z10-Z10cst-Z10lin-Z10quad-Z10cub;
amplres=((Z9res).^2+(Z10res).^2).^(1./2);
phires=1./3.*atan2(Z10res,Z9res);

%Creation of the plot with the 6 graphs for trefoil%

figure
subplot(2,3,1)
quiv(x,y,10./1.*amplZ910.*cos(phiZ910),10./1.*amplZ910.*sin(phiZ910),0);
axis square
title([’Original data for Trefoil5 of ’,filename]);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(2,3,2)
quiv(x,y,10./1.*amplcst.*cos(phicst),10./1.*amplcst.*sin(phicst),0);
axis square
title(’Constant fit’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(2,3,3)
quiv(x,y,10./1.*ampllin.*cos(philin),10./1.*ampllin.*sin(philin),0);
axis square
title(’Linear fit’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
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axis([-350 350 -350 350]);

subplot(2,3,4)
quiv(x,y,10./1.*amplquad.*cos(phiquad),10./1.*amplquad.*sin(phiquad),0);
axis square
title(’Quadratic fit’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(2,3,5)
quiv(x,y,10./1.*amplcub.*cos(phicub),10./1.*amplcub.*sin(phicub),0);
axis square
title(’Cubic fit’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(2,3,6)
quiv(x,y,10./1.*amplres.*cos(phires),10./1.*amplres.*sin(phires),0);
axis square
title(’Residual Trefoil5’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

%Astig5%

%Constant part
clear amplcst phicst
Z12cst=RAstig5(2).*B;
Z13cst=RAstig5(1).*B;
amplcst=((Z13cst).^2+(Z12cst).^2).^(1./2);
phicst=1./2.*atan2(Z12cst,Z13cst);

%Linear part
clear ampllin philin
Z12lin=RAstig5(3).*y-RAstig5(4).*x;
Z13lin=RAstig5(3).*x+RAstig5(4).*y;
ampllin=((Z13lin).^2+(Z12lin).^2).^(1./2);
philin=1./2.*atan2(Z12lin,Z13lin);

%Quadratic part
clear amplquad phiquad
Z12quad=RAstig5(5).*(y.^2-x.^2);
Z13quad=RAstig5(5).*2.*x.*y;
amplquad=((Z13quad).^2+(Z12quad).^2).^(1./2);
phiquad=1./2.*atan2(Z12quad,Z13quad);
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%Residual part
clear amplres phires
Z12res=Z12-Z12cst-Z12lin-Z12quad;
Z13res=Z13-Z13cst-Z13lin-Z13quad;
amplres=((Z13res).^2+(Z12res).^2).^(1./2);
phires=1./2.*atan2(Z12res,Z13res);

%Creation of the plot with the 4 graphs for astig5%

figure
subplot(2,2,1)
quiv(x,y,1./1.*amplZ1213.*cos(phiZ1213),1./1.*amplZ1213.*sin(phiZ1213),0);
axis square
title([’Original data for Astig5 of ’,filename]);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(2,2,2)
quiv(x,y,1./1.*amplcst.*cos(phicst),1./1.*amplcst.*sin(phicst),0);
axis square
title(’Constant fit’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(2,2,3)
quiv(x,y,1./1.*ampllin.*cos(philin),1./1.*ampllin.*sin(philin),0);
axis square
title(’Linear fit’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(2,2,4)
quiv(x,y,1./1.*amplres.*cos(phires),1./1.*amplres.*sin(phires),0);
axis square
title(’Residual Astig5’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

%Coma5%

%Constant part
Z16cst=RComa5(2).*B;
Z17cst=RComa5(1).*B;

%Linear part
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Z16lin=RComa5(3).*y;
Z17lin=RComa5(3).*x;

%Residual part
Z16res=Z16-Z16cst-Z16lin;
Z17res=Z17-Z17cst-Z17lin;

%Creation of the plot with the 4 graphs for Coma5%

figure
subplot(2,2,1)
quiv(x,y,1./1.*Z17,1./1.*Z16,0);
axis square
title([’Original data for Coma5 of ’,filename]);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(2,2,2)
quiv(x,y,1./1.*Z17cst,1./1.*Z16cst,0);
axis square
title(’Constant fit’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(2,2,3)
quiv(x,y,1./1.*Z17lin,1./1.*Z16lin,0);
axis square
title(’Linear fit’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(2,2,4)
quiv(x,y,1./1.*Z17res,1./1.*Z16res,0);
axis square
title(’Residual Coma5’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);
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Appendix I

Zemaxr macro to simulate the LSST

! LSSTperturb.zpl
! Perturbs inital case of LSST design
! Uses uniform distribution given by P-V variations:
! Assuming Focal plane is fixed, relative misalignments with P-V :
! Decenter (in mm) gives dx, dy for SM, TM, Corr.
! Tilt (degrees) gives tx, ty for SM, TM, Corr.
! Regis Tessieres - September 24th 2003

Decenter = 1
Tilt = 0.08

! Program start
print "Macro LSSTperturb.ZPL in progress"

path$ = "c:\LSST\MONTE"

FOR i=1,100,1
FORMAT 1.0
infile$ = path$"\LSSTperturb"i".zmx"
outfile$ = path$"\LSSTmodel"i".txt"
FORMAT 8.6
LOADLENS "C:\LSST\LSST_Monte.zmx"
GOSUB PERTURB
SAVELENS infile$
GOSUB MERIT
GOSUB CALCULATIONS

NEXT

print " All done :))))))))))))"

END

! subroutines

!--------------------------------------------------------
SUB PERTURB
! Perturb the system

!Secondary
!---------
msurf = 5

! Decenter
PV = Decenter
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GOSUB random
PARM 1,msurf,RV
GOSUB random
PARM 2,msurf,RV

! Tilt
PV = Tilt
GOSUB random
PARM 3,msurf,RV
GOSUB random
PARM 4,msurf,RV

!Tertiary
!--------
msurf = 11

! Decenter
PV = Decenter
GOSUB random
PARM 1,msurf,RV
GOSUB random
PARM 2,msurf,RV

! Tilt
PV = Tilt
GOSUB random
PARM 3,msurf,RV
GOSUB random
PARM 4,msurf,RV

!CORRECTOR
!---------
msurf = 15

! Decenter
PV = Decenter
GOSUB random
PARM 1,msurf,RV
GOSUB random
PARM 2,msurf,RV

! Tilt
PV = Tilt
GOSUB random
PARM 3,msurf,RV
GOSUB random
PARM 4,msurf,RV

return
!--------------------------------------------------------------
SUB MERIT
!Calculation of the weighted RMS Spot Radius

UPDATE ALL
OUTPUT "C:\LSST\Original_Distribution.txt" APPEND
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PRINT 1000*MFCN()
OUTPUT SCREEN

RETURN
!--------------------------------------------------------------

SUB CALCULATIONS
! Calculate the zernike coefficients for 48 points in the field

!Definition of pi to use it later on
pi=4*ATAN(1)

!First set of field points (Only 12 field points can be defined at a time)
NUMFIELD 12
!fix the number of field and define each field

FTYP=0
FLDX 1 = 0
FLDY 1 = 1.5
FWGT 1 = 1
FLDX 2 = -1
FLDY 2 = 1
FWGT 2 = 1
FLDX 3 = -0.75
FLDY 3 = 1
FWGT 3 = 1
FLDX 4 = -0.5
FLDY 4 = 1
FWGT 4 = 1
FLDX 5 = -0.25
FLDY 5 = 1
FWGT 5 = 1
FLDX 6 = 0
FLDY 6 = 1
FWGT 6 = 1
FLDX 7 = 0.25
FLDY 7 = 1
FWGT 7 = 1
FLDX 8 = 0.5
FLDY 8 = 1
FWGT 8 = 1
FLDX 9 = 0.75
FLDY 9 = 1
FWGT 9 = 1
FLDX 10 = 1
FLDY 10 = 1
FWGT 10 = 1
FLDX 11 = -1
FLDY 11 = 0.5
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FWGT 11 = 1
FLDX 12 = -0.75
FLDY 12 = 0.5
FWGT 12 = 1

!Update the windows
UPDATE ALL

GOSUB ZERN
!Go to the subroutine Zern to calulate and store the zernike coefficients

FTYP=0
FLDX 1 = -0.5
FLDY 1 = 0.5
FWGT 1 = 1
FLDX 2 = -0.25
FLDY 2 = 0.5
FWGT 2 = 1
FLDX 3 = 0
FLDY 3 = 0.5
FWGT 3 = 1
FLDX 4 = 0.25
FLDY 4 = 0.5
FWGT 4 = 1
FLDX 5 = 0.5
FLDY 5 = 0.5
FWGT 5 = 1
FLDX 6 = 0.75
FLDY 6 = 0.5
FWGT 6 = 1
FLDX 7 = 1
FLDY 7 = 0.5
FWGT 7 = 1
FLDX 8 = -1.5
FLDY 8 = 0
FWGT 8 = 1
FLDX 9 = -1
FLDY 9 = 0
FWGT 9 = 1
FLDX 10 = -0.75
FLDY 10 = 0
FWGT 10 = 1
FLDX 11 = -0.5
FLDY 11 = 0
FWGT 11 = 1
FLDX 12 = -0.25
FLDY 12 = 0
FWGT 12 = 1
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!Update the windows
UPDATE ALL
GOSUB ZERN
!Go to the subroutine Zern to calulate and store the zernike coefficients

FTYP=0
FLDX 1 = 0
FLDY 1 = 0
FWGT 1 = 1
FLDX 2 = 0.25
FLDY 2 = 0
FWGT 2 = 1
FLDX 3 = 0.5
FLDY 3 = 0
FWGT 3 = 1
FLDX 4 = 0.75
FLDY 4 = 0
FWGT 4 = 1
FLDX 5 = 1
FLDY 5 = 0
FWGT 5 = 1
FLDX 6 = 0
FLDY 6 = -1.5
FWGT 6 = 1
FLDX 7 = 1.5
FLDY 7 = 0
FWGT 7 = 1
FLDX 8 = -1
FLDY 8 = -0.5
FWGT 8 = 1
FLDX 9 = -0.75
FLDY 9 = -0.5
FWGT 9 = 1
FLDX 10 = -0.5
FLDY 10 = -0.5
FWGT 10 = 1
FLDX 11 = -0.25
FLDY 11 = -0.5
FWGT 11 = 1
FLDX 12 = 0
FLDY 12 = -0.5
FWGT 12 = 1

!Update the windows
UPDATE ALL
GOSUB ZERN
!Go to the subroutine Zern to calulate and store the zernike coefficients

FTYP=0
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FLDX 1 = 0.25
FLDY 1 = -0.5
FWGT 1 = 1
FLDX 2 = 0.5
FLDY 2 = -0.5
FWGT 2 = 1
FLDX 3 = 0.75
FLDY 3 = -0.5
FWGT 3 = 1
FLDX 4 = 1
FLDY 4 = -0.5
FWGT 4 = 1
FLDX 5 = -1
FLDY 5 = -1
FWGT 5 = 1
FLDX 6 = -0.75
FLDY 6 = -1
FWGT 6 = 1
FLDX 7 = -0.5
FLDY 7 = -1
FWGT 7 = 1
FLDX 8 = -0.25
FLDY 8 = -1
FWGT 8 = 1
FLDX 9 = 0
FLDY 9 = -1
FWGT 9 = 1
FLDX 10 = 0.25
FLDY 10 = -1
FWGT 10 = 1
FLDX 11 = 0.5
FLDY 11 = -1
FWGT 11 = 1
FLDX 12 = 0.75
FLDY 12 = -1
FWGT 12 = 1

!Update the windows
UPDATE ALL
GOSUB ZERN
!Go to the subroutine Zern to calulate and store the zernike coefficients

RETURN

!---------------------------------------------------------------
SUB random
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! returns RV
! random value from uniform distribution with P-V range PV
RV = rand(PV)-PV/2.
RETURN
!---------------------------------------------------------------
!Subroutine to get the Zernike polynomial and store them into a file
SUB ZERN

OUTPUT outfile$ APPEND

FOR j=1,12,1
GETZERNIKE 17,1,j,3,1,0
PRINT TANG(FLDX(j)*pi/180)*10496.5," ",TANG(FLDY(j)*pi/180)*10496.5," ",
PRINT VEC1(14)*550/sqrt(6)," ",
PRINT VEC1(13)*550/sqrt(6)," ",VEC1(16)*550/sqrt(8)," ",
PRINT VEC1(15)*550/sqrt(8)," ",
PRINT VEC1(19)*550/sqrt(8)," ",VEC1(18)*550/sqrt(8)," ",
PRINT VEC1(20)*550/sqrt(10)," ",
PRINT VEC1(21)*550/sqrt(10)," ",VEC1(22)*550/sqrt(12)," ",
PRINT VEC1(23)*550/sqrt(12)

NEXT

OUTPUT screen
RETURN
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Appendix J

Matlabr routine to calculate the expected

perturbations

function Rlsf=LSF(filename)
%Routine to calculate the expected perturbations
%Can be use in an other program to calulate the perturbations
%of several models

format long %double precision
D= importdata(filename,’\t’);
nbpoints=size(D);
nbpoints=nbpoints(1);

%read the data in the file%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

%initialization
Z56=[];
Z5=[];
Z6=[];
Z78=[];
Z7=[];
Z8=[];
Z910=[];
Z9=[];
Z10=[];
Z1213=[];
Z12=[];
Z13=[];
Z1617=[];
Z16=[];
Z17=[];
Z=[];
M=[];
B=zeros(10*nbpoints,12);

for i=1:nbpoints

%Store the values for third order astigmatism
z5(i)=D(i,3);
z6(i)=D(i,4);

%Store the values for third order coma
z7(i)=D(i,5);



172

z8(i)=D(i,6);

%Store the values for trefoil
z9(i)=D(i,7);
z10(i)=D(i,8);

%Store the values for fifth order astigmatism
z12(i)=D(i,9);
z13(i)=D(i,10);

%Store the values for fifth order coma
z16(i)=D(i,11);
z17(i)=D(i,12);

%Store the field positions
x(i)=D(i,1);
y(i)=D(i,2);

%Vector Z with all the zernike coefficients
Y=[z5(i) z6(i) z7(i) z8(i) z9(i) z10(i) z12(i) z13(i) z16(i) z17(i)]’;
Z=[Z;Y];

% Creation of a Matrix %
%%%%%%%%%%%%%%%%%%%%%%%%

%First column
a11=416.4.*x(i);
a21=2069-416.4.*y(i);
a31=-177507+0.165.*y(i)-0.0119.*((x(i)).^2+(y(i)).^2)+0.466.*y(i);
a41=-0.165.*x(i)+0.466.*x(i);
a51=-0.181.*y(i)+0.0054.*((y(i)).^2-(x(i)).^2);
a61=-0.181.*x(i)+0.0108.*x(i).*y(i);
a71=31.3+2.1.*y(i);
a81=-2.1.*x(i);
a91=0;
a101=2364.25;

%Second column
a12=-416.4.*y(i);
a22=-2069-416.4.*x(i);
a32=-0.165.*y(i)+0.466.*y(i);
a42=177507+0.165.*x(i)+0.0119.*((x(i)).^2+(y(i)).^2)+0.466.*x(i);
a52=0.181.*y(i)+0.0108.*x(i).*y(i);
a62=0.181.*x(i)-0.0054.*((y(i)).^2-(x(i)).^2);
a72=-31.3+2.1.*x(i);
a82=2.1.*y(i);
a92=-2364.25;
a102=0;

%Third column
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a13=3.793.*y(i);
a23=3.793.*x(i);
a33=0;
a43=-1755.24;
a53=0;
a63=0;
a73=0.054.*x(i);
a83=0.054.*y(i);
a93=60.64;
a103=0;

%Fourth column
a14=3.793.*x(i);
a24=-3.793.*y(i);
a34=-1755.24;
a44=0;
a54=0;
a64=0;
a74=-0.054.*y(i);
a84=0.054.*x(i);
a94=0;
a104=60.64;

%Fifth column
a15=-130.6.*x(i)-0.000083.*((x(i)).^3+x(i).*(y(i)).^2);
a25=-5164+130.6.*y(i)+0.0036.*((x(i)).^2+(y(i)).^2)+...
0.000083.*((y(i)).^3+y(i).*(x(i)).^2);
a35=-186150-0.454.*y(i)+0.0277.*((x(i)).^2+(y(i)).^2)-...
1.12.*y(i)+0.0464.*(y(i)).^2;
a45=0.454.*x(i)-1.12.*x(i)+0.0464.*x(i).*y(i);
a55=0.545.*y(i)-0.0065.*((y(i)).^2-(x(i)).^2);
a65=0.545.*x(i)-0.013.*x(i).*y(i);
a75=-229+0.62.*y(i);
a85=-0.62.*x(i);
a95=0;
a105=-4315;

%Sixth column
a16=130.6.*y(i)+0.000083.*((y(i)).^3+y(i).*(x(i)).^2);
a26=5164+130.6.*x(i)-0.0036.*((x(i)).^2+(y(i)).^2)+...
0.000083.*((x(i)).^3+x(i).*(y(i)).^2);
a36=0.454.*y(i)-1.12.*y(i)-0.0464.*x(i).*y(i);
a46=186150-0.454.*x(i)-0.0277.*((x(i)).^2+(y(i)).^2)-...
1.12.*x(i)-0.0464.*(x(i)).^2;
a56=-0.545.*y(i)-0.013.*x(i).*y(i);
a66=-0.545.*x(i)+0.0065.*((y(i)).^2-(x(i)).^2);
a76=229+0.62.*x(i);
a86=0.62.*y(i);
a96=4315;
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a106=0;

%Seventh column
a17=-0.8997.*y(i);
a27=-0.8997.*x(i);
a37=0.00053.*x(i).*y(i);
a47=-1273.7+0.0002936.*((x(i)).^2+(y(i)).^2)+0.00053.*(x(i)).^2;
a57=-0.000298.*x(i).*y(i);
a67=0.000149.*((y(i)).^2-(x(i)).^2);
a77=0.025.*x(i);
a87=0.025.*y(i);
a97=-25.88;
a107=0;

%Eighth column
a18=-0.8997.*x(i);
a28=0.8997.*y(i);
a38=-1237.7+0.0002936.*((x(i)).^2+(y(i)).^2)+0.00053.*(y(i)).^2;
a48=0.00053.*x(i).*y(i);
a58=-0.000149.*((y(i)).^2-(x(i)).^2);
a68=-0.000298.*x(i).*y(i);
a78=-0.025.*y(i);
a88=0.025.*x(i);
a98=0;
a108=-25.88;

%Nineth column
a19=-38.35.*x(i)+0.000084.*((x(i)).^3+x(i).*(y(i)).^2);
a29=-38+38.35.*y(i)-0.000084.*((y(i)).^3+y(i).*(x(i)).^2);
a39=869+0.006797.*((x(i)).^2+(y(i)).^2)-0.02109.*(y(i)).^2;
a49=-0.02109.*x(i).*y(i);
a59=-0.00609.*((y(i)).^2-(x(i)).^2);
a69=-0.01218.*x(i).*y(i);
a79=1.27.*y(i);
a89=-1.27.*x(i);
a99=0;
a109=0;

%Tenth column
a110=38.35.*y(i)-0.000084.*((y(i)).^3+y(i).*(x(i)).^2);
a210=38+38.35.*x(i)-0.000084.*((x(i)).^3+x(i).*(y(i)).^2);
a310=0.02109.*x(i).*y(i);
a410=-869-0.006797.*((x(i)).^2+(y(i)).^2)+0.02109.*(x(i)).^2;
a510=-0.01218.*x(i).*y(i);
a610=0.00609.*((y(i)).^2-(x(i)).^2);
a710=1.27.*x(i);
a810=1.27.*y(i);
a910=0;
a1010=0;
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%Eleventh column
a111=-0.705.*y(i);
a211=-0.705.*x(i);
a311=-0.000635.*x(i).*y(i);
a411=160.56-0.0002345.*((x(i)).^2+(y(i)).^2)-0.000635.*(x(i)).^2;
a511=-0.00034.*x(i).*y(i);
a611=0.00017.*((y(i)).^2-(x(i)).^2);
a711=-0.0824.*x(i);
a811=-0.0824.*y(i);
a911=0;
a1011=0;

%Twelveth column
a112=-0.705.*x(i);
a212=0.705.*y(i);
a312=160.56-0.0002345.*((x(i)).^2+(y(i)).^2)-0.000635.*(y(i)).^2;
a412=-0.000635.*x(i).*y(i);
a512=0.00017.*((y(i)).^2-(x(i)).^2);
a612=0.00034.*x(i).*y(i);
a712=0.0824.*y(i);
a812=-0.0824.*x(i);
a912=0;
a1012=0;

M1=[a11 a12 a13 a14 a15 a16 a17 a18 a19 a110 a111 a112];
M2=[a21 a22 a23 a24 a25 a26 a27 a28 a29 a210 a211 a212];
M3=[a31 a32 a33 a34 a35 a36 a37 a38 a39 a310 a311 a312];
M4=[a41 a42 a43 a44 a45 a46 a47 a48 a49 a410 a411 a412];
M5=[a51 a52 a53 a54 a55 a56 a57 a58 a59 a510 a511 a512];
M6=[a61 a62 a63 a64 a65 a66 a67 a68 a69 a610 a611 a612];
M7=[a71 a72 a73 a74 a75 a76 a77 a78 a79 a710 a711 a712];
M8=[a81 a82 a83 a84 a85 a86 a87 a88 a89 a810 a811 a812];
M9=[a91 a92 a93 a94 a95 a96 a97 a98 a99 a910 a911 a912];
M10=[a101 a102 a103 a104 a105 a106 a107 a108 a109 a1010 a1011 a1012];
A=[M1;M2;M3;M4;M5;M6;M7;M8;M9;M10];
B((1+10*(i-1)):(10+10*(i-1)),:)=[M1;M2;M3;M4;M5;M6;M7;M8;M9;M10];
M=[M;A];

end

Rlsf=M\Z;
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