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ABSTRACT

The alignment process of an optical system can be more complicated than its original
design. For example a misaligned multi-element system will suffer from imaging
aberrations that vary in a complex way over the field of view. Aberration fields for
this kind of system have been well described by perturbing the well known aberrations
for axisymmetric systems. These have been written in terms of polynomial expansions
in pupil and field space, which are useful for understanding the phenomena, but are
difficult to apply. This thesis will show how to express these relations in terms of
Zernike polynomials. It will be seen that they are convenient to decompose each
aberrations in terms of their field dependencies. And that they can be easily used to
perform a least squares fit on the data coming from a wavefront sensor or a raytracing
program to retrieve the perturbations present in a system. It is shown on two different
systems, that the relations are an efficient tool that give insight during the alignment

process. They allow to minimize the noise and to get faster to the solution.
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Chapter 1

INTRODUCTION

The computation of aberrations in a misaligned optical system has been well
described in the past. These aberrations can be used to analyze the effects of tilt and
decenter in terms of aberration fields in aligned systems and to perform a tolerancing
analysis [1, 2, 3, 4, 5].

Also, some specific publications on astronomical optics [6, 7, 8,9, 10, 11, 12, 13, 14]
describe for two-mirror telescopes the effects of misalignments on the image quality
and present a way to align such a telescope by relating aberration coefficients (Zernike
coefficients for some of them) and the tilts and decenters in the system.

The publications [1, 2, 3, 4, 5] can be generally used in all systems to evaluate
the image degradation due to misalignments but are not easy to use to align an
optical system by relating aberration coefficients and perturbations. On the other
hand the publications such as [9, 10, 12] on telescope alignment have useful relations
between Zernike coefficients and field dependencies which can be used to retrieve
the misalignments in a two-mirror telescope. But these publications are only valid
for this type of system and to align a given optical system with several degrees of
freedom, general relations valid for any system and developed at least for fifth order
aberrations are needed.

The purpose of this thesis is to give general equations which are valid for any
type of system and which relate Zernike coefficients (they can be easily computed
with any optical software) with their field dependencies. And to use these relations
for two different systems that are modelled with optical software so as to find the
relationships between the Zernike coefficients and the tilts and decenters of each

element in the system. Then by measuring the Zernike coefficients at different field



13

|Simu|ation on a raytracing program |

[ Perturb model ]

Calculate Zemnike coefficients C(x,y)
at different field positions

Fit data to field
dependent functions

Expression of the reconstructor —
\

Real system

at different field positions

I

Measure Zernike coefficients C(x,y) J

Least squares fit data by
using the reconstructor

Values of the misalignments

FiGURE 1.1. Block diagram of the general procedure

positions it will be possible to retrieve the misalignments present in the system. The
general procedure that will be followed in this thesis to find the perturbations in a
system is represented by a block diagram in figure 1.1.

This thesis will be based on the theory of misaligned system developed at the
university of Arizona. The development of aberrations for third order was first devel-
oped by R.A. Buchroeder in his PhD dissertation by using the vector formulation of
the wavefront expansion introduced by R.V. Shack. Then his work was carried on by
K.P. Thompson who extended the theory of R.A. Buchroeder to the fifth order. After
that, several people including J.R. Rogers used this theory to design unobstructed
telescopes.

In chapter 2, the theory of aberrations in misaligned systems through fifth order
developed at the University of Arizona will be introduced. The important results
needed for the thesis will be underlined.

In chapter 3, the relations shown in chapter 2 will be transformed so as to get ex-
pressions of the Zernike coefficients in misaligned systems which are more convenient

to use with raytracing programs and wavefront sensors.
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In chapter 4, the expressions in terms of Zernike coefficients and field dependencies
will be used on a two element telescope so as to find the relations between the Zernike
coefficients and the perturbations of the system.

In chapter 5, the same procedure that was applied in chapter 4 will used. But a
more complicated telescope (the LSST) will be considered which has a lot of degrees

of freedom.
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Chapter 2

BACKGROUND

The analysis of the perturbations in this thesis is based on the vector formulation
of the wavefront expansion developed by R.V. Shack in the 1970’s. It will be seen that
this is a convenient way to express the aberrations and to account for perturbations.
And it can be applied to any type of system. It does not depend on the number or
on the type of surfaces.

In a first section, the vector formulation of the wavefront expansion will be in-
troduced for an aligned system. A second section, will show how to account for the
perturbations in the expression of the wavefront expansion. Finally a third section
will analyze the effects of perturbations such as decenter and tilt on the expressions

of the aberrations.

2.1 Development of the wavefront expansion
2.1.1 Conventions

Before starting to express the wavefront expansion, the conventions which will be
used need to be defined. The conventions used to express the wavefront expansion
will be the same as the ones used in the dissertation of K.P. Thompson [3] and are
represented in figure 2.1.

H represents the field position in the image plane with x and y its components
along ¥ and ¥ respectively as shown in figure 2.1. p'represents the pupil position with
psin¢ and pcos ¢ its components along ¥ and i as shown on figure 2.1. Therefore

they are expressed by:
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Image A

) . plane ¥ ol
Ezit pupil Py
plane 3

4y

=l

FiGURE 2.1. Conventions

Where the left-handed convention is used whereas most optical software use a
right handed convention. Thus the equations that will be developed in section 3 with

optical softwares will have to be used with some precautions.

2.1.2 Scalar formulation of the wavefront expansion

A common way to describe aberrations in a centered, rotationally symmetric op-

tical system is to use the wave aberration expansion shown in equation 2.1.

— k1 m
W = Ej Ep En gm (Whim); HYp' cos™ ¢, where {l _ontm (2.1)

The total wave aberration at the image plane of a rotational symmetric optical system

is simply the sum of the surfaces contributions:
W=> "W,
J

The development through fifth order excluding the first order terms of equation 2.1

1s:
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W = Z W040jp4 + Z nglepS COS ¢ + Z WQQQjH2p2 + Z W222jH2p2 COS2 ¢
J J

J J

+ > Wi Hopeos ¢+ Wagojo® + > Wi Hp cosd+ Wi Hp?
: j j /

J J

+ Z W422jH4/)2 cos® ¢ + Z W511jH5P cos ¢ + Z VV240jH2/)4
- - -

J J

+ Z W242jH2p4 cos® ¢ + Z ngle3p3 cos ¢ + Z W333jH3p3 cos® ¢
J J J

(2.2)

Since piston represents a constant phase change that does not degrade the image,

it has been left over in equation 2.2.

2.1.3 Vector formulation of the wavefront expansion

When it is necessary to consider tilts and decenters in a system it is more conve-
nient to express the wavefront expansion with a vector formulation rather than the

scalar one. The vector formulation of equation 2.1 is:

W =WI((H - H),(H-p), (5" 7
=SS Wiy (A - HY (7 5)" (A -5)” (2.3)

Equation 2.3 can be developed as:

(o o lEENe o lNe 9]

W = Z Z Z Z(Wklm)j H? p*" H™p™ cos (6 — ¢) (2.4)

Thus for a rotational symmetric system equation 2.4 is the same as equation 2.1

by taking 6 = 0.
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The development through fifth order for equation 2.3, excluding first order terms,

becomes:

W =ZWo4oj(ﬁ-,5)2 +ZW131j(ﬁ'ﬁ)(ﬁ'ﬁ) + > Wasn,,, (H - H) (5 7)
J

Note that the astigmatism is defined relative to the medial focus and not to the
sagittal focus as it is usually done. Therefore, there is a factor % for the astigmatism
and to show that the field curvature is defined for the medial plane, the subscript
"7 is used. The details of the calculations which lead to these results can be found
in Appendix A.

For W3, the subscript 5 is used to account for the conversion of cos®( — @)
to cos (3(0 — ¢)) for the elliptical coma, Ws33. This is done by using Wisy,, =
Waa1 + %W333 and the trigonometric identity cos30 = icos 30 + %cos 0.

Some quick comments will be done on these aberrations to have a better un-

derstanding later on the effects of misalignments. But the aberrations will not be
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explained in detail because it is beyond the scope of this thesis. For more complete
discussion on aberration theory see [17, 18, 19, 20]. Only the useful comments for

later will be underlined.

2.1.4 Comments on third order aberrations

The third order aberrations represent the main contribution to an aberrated image
for an optical system. They are a good approximation for systems which contain a
limited number of elements. Note that third order aberrations refer to third order in

transverse ray aberration which corresponds to fourth order in wavefront aberration.

e Spherical aberration
Woso represents spherical aberration. As it can be seen in figure 2.2 it is in-
dependent of the field H. Thus, it will be constant over the field at the image

plane.

e Coma
Wi31 represents coma. It has a comatic shape which increases linearly in the
field. This can be seen in figure 2.3 where a 2D view of the image plane is

shown.

e Field curvature
Waoo represents field curvature. It has a quadratic dependence with the field
representing the shape of the Petzval curvature. See figure 2.4 for its represen-

tation.

e Astigmatism
Waoo represents astigmatism. It has a quadratic dependence with the field as

shown in figure 2.5 where a 2D view is represented.

e Distortion

W311 represents distortion. It has a cubic dependence with the field.



FIGURE 2.2. Representation of the third order spherical aberration
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F1GURE 2.3. Representation of the third order coma
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FIGURE 2.4. Representation of the third order field curvature

FI1GURE 2.5. Representation of the third order astigmatism
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2.1.5 Comments on fifth order aberrations

When the number of elements in a system increases, the third order aberrations
are not always enough to represent a system correctly. Then, the development of the

wavefront expansion is to be carried out through the fifth order.

e Fifth order spherical aberration
Woeo represents fifth order spherical aberration. Like Wy,g it is independent of

the field and will be constant over the field as shown in figure 2.6.

e Coma
Wis1 represents fifth order coma. It has the same field dependence as third

order coma. The linear dependence can be seen in figure 2.7.

e Field curvature for fifth order astigmatism
W represents field curvature for fifth order astigmatism. It behaves as third
order field curvature except that it has a quartic dependence instead of a

quadratic one as shown in figure 2.8.

e Fifth order astigmatism
W9 represents fifth order astigmatism. It behaves as third order astigmatism

except that its dependence is quartic instead of quadratic as shown in figure

2.9.

e Distortion
W11 represents distortion. It is like third order distortion except that it grows

as a power of five with the field.

e Field curvature for oblique spherical aberration
Waao represents the field curvature for oblique spherical aberration. Like for
third order field curvature it has a quadratic field dependence as shown in

figure 2.10.
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e Oblique spherical aberration
Wy represents oblique spherical aberration. It is a combination of spherical
aberration and astigmatism. The field dependence is also quadratic as shown

in figure 2.11.

e Field cubed coma
W31 represents field cubed coma. It behaves as third order coma except that
the field dependence is cubic. Its spot diagram representation in the field is

shown in figure 2.12.

e Elliptical coma (Trefoil)
W33 represents elliptical coma. It can be compared to third order coma except
that the field dependence is cubic and that the end of the comatic shape is

elliptic instead of round. It is represented in figure 2.13.

FIGURE 2.6. Representation of the fifth order spherical aberration
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FIGURE 2.9. Representation of the fifth order astigmatism
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FI1GURE 2.10. Representation of the field curvature for oblique spherical aberration
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FIGURE 2.13. Representation of trefoil
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2.2 Wavefront expansion in a misaligned system

The behavior of the aberration field in a misaligned system is based on two prop-
erties. First, the aberration field at the image plane is still the sum of individual
surface contributions. Secondly, the aberration field contribution of a surface is cen-
tered along the line connecting the centers of the pupils for the surface and the center
of curvature of the surface. When a system is perturbed, no new aberration will be
created but the behavior of the aberration field at the image plane will be modified.
The aberrations expected will still be the same (spherical aberration, coma,...) but
they will have different field dependencies compared to a centered system.

The vector formulation is convenient to express this situation. It allows the treat-
ment of nonmeridional and noncoplanar tilts and decenters by introducing a vector
7; which represents the decentration of the center of the aberration field W, with
respect to the unperturbed field center (center of the Gaussian image plane which
is located by the optical axis ray (OAR)'). Thus, a new vector is to be defined to
represent a position in the field. This is done by introducing the effective height H Aj
which is defined in figure 2.14 as:

Therefore, the expression of the wavefront expansion in a perturbed system is
defined by replacing H by H 4; in equation 2.3:

W= 232303 W) (Hay - )" (7-7)" (Hay - 7)"
o (2.7)

oo o o0

=333 W) (= &) - (H =) (7 5)" ((H ) - )"

IThe OAR is the ray connecting the centers of the pupils with the object and the images created
by all the surfaces.
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- Image plane

H,

FIGURE 2.14. Representation of the effective field height

The use of the vector formulation for the wavefront expansion for a misaligned
system was made possible by the multiplication of vectors. It is different from a dot
or a cross product as will be shown in chapter 3. This formulation accounts for tilts

and decenters.

2.3 Expressions of the third and fifth order aberrations in a
perturbed system

The following sections will give the expressions of the wavefront expansion in a
perturbed system for the third and the fifth order aberrations. The expressions come
from the derivation of equation 2.7 for each aberration. The full derivations from
equation 2.7 to the equations presented in this section will not be done since it is
not the purpose of this thesis and they can be found in the dissertation of Kevin P.
Thompson [3].

The equations which will be presented in this section use vectors and scalars that
have been introduced in the dissertation of K.P. Thompson and can be found in table

2.1 at the end of this section.
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2.3.1 Third order aberrations

e Spherical aberration
Since spherical aberration is independent of the field, it is unchanged when the

system is perturbed. Its expression remains the same.

e Third order astigmatism

The Wavefront expansion for the astigmatism using equation 2.7 is:

W = (W222ﬁ2 - 2]—7/{’222 + §§22> : 52 = unadratic + I/Vlineafr‘ + Wconstant (28)

N | —

Where /ngg and §222 are defined in Table 2.1. Again all the steps between

equation 2.7 and equation 2.8 can be found in [3].

The first term, Wiyadratic, represents the term that is present in an aligned
system. It is the conventional quadratic field dependence which was present in

equation 2.5 and represented in figure 2.15.

Besides the quadratic dependence with the field, there is now a linear and a
constant dependencies. So even if a system is corrected for astigmatism, when
it is misaligned some linear and/or constant astigmatism can appear in the
system. The graphical representation of the different type of astigmatism are

shown in figures 2.15, 2.16 and 2.17.

An interesting case arises when the system is not corrected from astigma-
tism in the nominal design and when it is misaligned. The combination of the
different types of astigmatism will produce a ”binodal astigmatism” which is
represented in figure 2.18. Roland V. Shack was the first person to discover and
understand this type of astigmatism. The name comes from the fact that the

aberration has two nodes?. As seen on figure 2.18 the aberration is not null at

2A node is the position where the aberration is equal to zero
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FIGURE 2.18. Spot diagrams of the binodal astigmatism

the center of the field as it was the case for the usual quadratic astigmatism

but now it is null in the field and for two positions.

An other way to consider binodal astigmatism is to consider a two element
system which contains astigmatism. In this case the astigmatism of each element
increases quadratically from the center of the field. But when the system is
misaligned the astigmatism contribution of each element is no longer centered
at the center of the Gaussian image plane but shifted in the field as shown in
figure 2.19. Thus the node for each aberration contribution does not longer
coincide and two nodes appear in the field. To have a better visualization of
the phenomenon a 3D representation of the astigmatism of the two surfaces is
shown in figure 2.20. Due to the fact that the astigmatism is quadratic with
field, each astigmatism contribution was represented with a paraboloid. Since
each aberration contribution is not the same, one surface will be wider than
the other one. On this figure, the nodes of each contribution do not coincide
and for two positions where the two suraces intersect to each other, the total
astigmatism will be zero. Then there will be two nodes instead of one. A
representation in 2D is also shown in figure 2.21. To get more details on the

graphical view of the aberration summation and on the position of the nodes
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Aberration contribution
from element 2

element 1 element 2

Aberration contribution
from element 1

FIGURE 2.19. Schematic view of a two element misaligned system

see [16].

It was pointed out in [16] that for a two element misaligned system, a binodal
astigmatism can exist but that is also true for a multiple element system. And
it was demonstrated in the dissertation of K.P. Thompson [3] that there can
never be more than 2 nodes for astigmatism. Moreover, it was shown in the
dissertation that the maximum number of nodes is equal to the field power of
the aberration. Here for astigmatism, the maximum number of nodes is two

because astigmatism is quadratic with field.

Third order coma

The Wavefront expansion for coma using equation 2.7 is:
W = ((Wl?)lﬁ - g131) : ﬁ)P2 - VVlinear + Wconstomt (29)

Where fflgl is defined in table 2.1.

The first term, Wi;neqr, represents the term that is present in an aligned system.

It is the conventional linear dependence with field for coma. But now when the
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FIGURE 2.20. Representation of the astigmatism contribution for each element in
3D. The node for each aberration contribution is displaced in the field (not centered
anymore on axis) because of the perturbations. Since astigmatism is quadratic with
field, each astigmatism contribution was represented with a paraboiloid.
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Reprensentation of the contirbution of each element
T T

—— Astigmatism for element 1
Astigmatism for element 2

Astigmatism value

Field position x

FIGURE 2.21. Representation of the astigmatism contribution for each element in
2D

system is misaligned, a new constant term will appear.

To have a better understanding, a centered two-element system is considered
again but now it will contain coma. In this case the coma of each element
increases linearly from the center of the Gaussian image plane (GIP). But when
the system is misaligned as shown in figure 2.19, the coma contribution of
each element is no longer centered at the center of the GIP but shifted in the
field. The representation of the coma contributions for the two element system
was done in figure 2.22. Since coma is linear with field, the shape in a three
dimensional view is a cone. As for astigmatism, the coma contribution of one
element is larger than the other one. Thus, one surface is wider than the other
one as shown in figure 2.22. There is a position on the intersection curve of the

two surfaces where the total coma is zero.
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FIGURE 2.22. Representation of the coma contribution for each element in 3D. The
perturbations shift the node of each contribution from the center of the Gaussian
image plane. Since coma is linear with field, each coma contribution was represented
with a cone.

If the nominal design of a system has some original coma and is misaligned,
coma will still increase linearly but its node will no longer be centered at the
center of the Gaussian image plane. According to 2.9, the node will be located
by fflgl /Wis1. On the other hand, if the original system is corrected for coma,
some coma can appear at the image plane if the system is misaligned. But this

time coma will be constant over the field.

Again as it was said before the maximum possible number of nodes is equal to
the field power of the aberration. Thus for coma, there can only be a maximum

of one node.

e Third order field curvature
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The Wavefront expansion for field curvature using equation 2.7 is:

W = (WQQOM(]—_I" ]—_j) - 2ﬁ'g220M +B220M) (ﬁ ﬁ) - unadratic+minear+Wconstant
(2.10)

Where XQQOM and BQQOM are defined in table 2.1.

Like for astigmatism, field curvature can exhibit a linear and a constant depen-

dence in a misaligned system.

e Third order distortion

The Wavefront expansion for third order distortion using equation 2.7 is:

—

W =Wy, (H-H)H - j (W aupic)

— Q(ﬁ . /_(311)]? : ﬁ (unadratic#l)
+ 2B311]'_j . ﬁ (VVlinear#l)
e (2.11)
— (H . H)Agn . ﬁ (unadratic#Z)
+ (Egllﬁ*) : ﬁ (VVlinear#2)
— 6311 . ﬁ (Wconstant)

Where Asyy, Bsii, Egn and Cy;; are defined in table 2.1. Wi represents
the distortion of an aligned system and the other terms are the terms that can

appear when a system is misaligned.

Note that there can be more than one term for the same field dependence.

2.3.2 Fifth order aberrations

e Fifth order spherical aberration
Like for third order spherical aberration, there is no dependence with the field.
Thus the expression of fifth order spherical aberration in a misaligned system

remains the same.
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e Field cubed coma
The Wavefront expansion for field cubed coma using equation 2.7 is:

W = W331M (I—‘_i ) ﬁ)ﬁ ) ﬁ(ﬁ ﬁ) (Wcubic)

— —

— 2(H . A331M)H . ﬁ(ﬁ ﬁ) ( quadratlc#l)
+ 2B331]v[ (H : ﬁ) (ﬁ ﬁ) (I/I/lznea'r'#l) <2 12)
— (H . H)A331M : ﬁ(ﬁ ﬁ) ( quadratzc#?)
+ (B331MH*) ﬁ(ﬁ ﬁ) (I/Vlznear#2>
— (03311\/1 . ﬁ) (ﬁ ﬁ) ( constant)
Where ggglM, B331M7 §§31NI and 6331M are defined in table 2.1.
e Elliptical coma
The Wavefront expansion for elliptical coma using equation 2.7 is:
1 -
W= ( ZW333H P ’ (Weubic)
3 o —
— 1 (H Asgz) - 7% (Wouadrasic)
: (2.13)
+ Z(HB3233) ’ ﬁg (VVlineaT)
1 = —
— 103333 Y 3) (Wconstant)

Where Asss, B2, and C3; are defined in table 2.1,

e Quartic field curvature

The Wavefront expansion for quartic field curvature using equation 2.7 is:
W = (Waon (A - H) - (H - H) ) (5 7)
—a((d - H) - (H - Apon) ) (7 7)
+ Baaou (H - H) (7 )
+2(H? - Bhow) (7 5)
—4(H - Caaon) (7 7)

+ Dagort (7 P)

quartzc)
cubzc)

(2.14)

quadratic#2 )

(

(
(Wauadratics1)
(W,

(Wiinear)

(W.

constant )
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Where g420M’ B420M7 §Z20M7 64201% and ﬁ420M are defined in table 2.1.

e Quartic astigmatism

The Wavefront expansion for quartic astigmatism using equation 2.7 is:

W= %Wm(ﬁ V2 (Waarie)
_ (ﬁ ]—7) (]:’[/_1'422) p (Weubic#1)
+ g( 1 ﬁ) éZzz - p? (Wauadratic#1)
— (H - Ayp) H? - 2 (Weubics2)
(5222ﬁ*) 52 (Wiinear#1) 21
+ 23422—7‘—7 2. o 2 (Wauadratic#2)
_ ;( G i) - (Wiinears2)
+ %5322 - P (Weonstant)

Where Ay, Bz, B, Ciaa, C3), and D2, are defined in table 2.1.

e Fifth order coma

The Wavefront expansion for fifth order coma using equation 2.7 is:
S N 2
W = ((W151H - A151) : p) (P : p) = VVl'mear + Wconstant (216>

Where ffm is defined in table 2.1.

There is a linear and a constant part as third order coma.

e Oblique spherical aberration

The Wavefront expansion for oblique spherical aberration using equation 2.7 is:

1 T T o —
W=3 ((W242H2 — 2H Agyp + 32242) P 2)/)2 = unadratic + Wiinear + Weonstant

2
(2.17)
Where Ays and B2, are defined in table 2.1.
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e Field curvature for oblique spherical aberration
The Wavefront expansion for field curvature for oblique spherical aberration

using equation 2.7 is:

W= (W240M(ﬁ'ﬁ)_Qﬁ'g240M+BQ4OM) (ﬁﬁ)Q = unadratic+minear+Wconstant
(2.18)
Where ffg40M and By are defined in table 2.1.

e Fifth order distortion

The Wavefront expansion for fifth order distortion using equation 2.7 is:

—

W =Wsy(H-H)Y(H-HYH -7 (Wtitm)

—A(H-H)(H - A51)H - 7 (Wauartic#1)
+ 63511(]:7 . ﬁ)ﬁ g (W eubics1)
+2(H? - B2)H - p (Weubic#2)
—4(H - Cs)H - § (Wauadratic#1)
+3Ds11H - (Wiinear#1)
—(H-H)(H - H) A5y - p (Wguartics2) (2.19)
+2(H - H)(B3,, H*) (Weubicss)
—4(H-H)Cs1y - 7 (Wouadratic#2)
— (H*C3yy) - (Wouadratic#3)
(ConH*) - p (Wouadraticsa)
+2(D3,H) - (Wiinear#2)
— Espy - ) (Weonstant)
Where Asy, Bsii, Egn, 5;11, Ci11, 6§11, D511, ﬁgn and Es;; are defined in

table 2.1.

At this point, the expressions and the behavior of the aberrations in a misaligned

system are known. But the wavefront expansion used for these theoretical derivations
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will not be convenient to use with optical software or with wavefront sensors during
the process of alignment. The Zernike polynomials would be more convenient. Thus
the next chapter will show how to relate the wavefront expansion of the different

aberrations to the Zernike polynomials and their field dependencies.

Wklm = § Wk:lmj
J
Apim = E Wk:lmj aj
J
By = E Wklmj<0j : Uj)
J
2 Z =2
J
Cklm == E Wk:lmj<0-j . O'j) g
J
~3 2 : -3
Cklm — Wklmj U]
J
— - \2
Dy, = E Wklmj(Uj : Uj)
J
Dy = § Wiim, (G - 3;) 75
J

Eyim = Z Wiim, (0 - ;)* d;
J

TABLE 2.1. Vectors and scalars used in the expression of the wavefront expansion



42

Chapter 3

EXPRESSIONS OF THE FIELD DEPENDENCIES OF THE
ZERNIKE POLYNOMIALS IN A PERTURBED OPTICAL
SYSTEM

Chapter 2 has proved that the common aberrations in a misaligned system can be
expressed. It was shown that no new aberrations were created but the field dependen-
cies of each aberration were modified. Moreover, it has been seen that the new field
dependencies were always a power smaller than the original aberration. For example,
third order astigmatism which has a quadratic field dependence was exhibiting linear
and constant dependencies in a misaligned system.

The results shown in chapter 2 and which were derived in great detail in the dis-
sertation of K.P. Thompson give an insight in the behavior of a misaligned system. It
is a convenient tool to make a sensitivity analysis for example. But it would be easier
to retrieve the perturbations in a misaligned system using Zernike polynomials which
are more familar functions than the formulation in terms of wavefront expansions.
The reason is that the wavefront at the exit of an optical system is generally fitted
with the Zernike coefficients. Also, they are commonly used in optical software.

The issue with Zernike polynomials is that they do not explicitly give the infor-
mation about the field dependencies. They are expressed in terms of p and ¢ and the
information on the field dependencies is contained in the Zernike coefficients. Thus,
distortion will be represented like tilt with Z, and Zs' since distortion behaves like
tilt except that its field dependence is cubic instead of being linear. It is the same
thing for third order field curvature and defocus, they are both represented by Z4!

since field curvature is no more than defocus with a quadratic dependence.

1For the standard Zernike polynomials: Zy = v/4pcos ¢, Z3 = \/Apsin ¢ and Z, = \/5(2,02 -1)
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The previous chapter has shown that tilts and decenters will modify the field
dependencies of the aberrations. Thus, the information on the field for the Zernike
polynomials is necessary to decompose the aberrations in terms of centered and mis-
aligned aberrations.

In this chapter, it will be shown how the equations of chapter 2 relate to the
Zernike polynomials. The Zernike coefficients will be explicitly expressed in terms of
the field dependencies so as to use them to fit the data from a ray tracing program or a
wavefront sensor. Therefore, the equations in this section will appear complicated but
they will be convenient for fit purposes. This set of equations represents a powerful
tool to align an optical system because they are general and work for any type of
system as it will be shown in chapter 4 and 5.

First, the wavefront expansion and the Zernike coefficients will be related using
the vector multiplication. Then, the equations which give the field dependencies for
the Zernike polynomials for the third and fifth order will be given. And finally, the

useful equations will be compiled to summarize this chapter.

3.1 Relations between the wavefront expansion and the Zernike
polynomials by using the vector multiplication

To relate the vectorial form of the wavefront expansion to the Zernike polynomials,
the vector multiplication will be used. Thus in this section, the vector multiplica-
tion will be explained in detail and the required equations to express the Zernike
coefficients in the following sections will be underlined.

A multiplication between vectors gives an other vector coplanar with the other
two. To be able to multiply two vectors, a vector needs to be considered as a phasor.

If we consider two vectors A and B and express them as:
A =ae"™ = azt + ayj a, = asino, a, = acos o

B =06 =b,i+b,j by =bsing, b, =bcosf
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Then the multiplication between these two vectors is defined as:

fYB) =ab ei(a+6) - (aybx + aa:by) i + (ayby - azbﬂf)j

R A (3.1)
= absin(a + 3)1 + abcos(a+ ()7
By contrast to the dot product which is defined as follows:
A B =abcos(a — ) = aby + ayb, (3.2)

The multiplication produces an other vector and the dot product a scalar. Thus,
when a vector is squared or cubed, the results is not simply the magnitude of the

vector squared or cubed as shown in equations 3.3 and 3.4.

A2 — 20020 _ 2axayi + (af/ - ai)j (33)
= a’sin20i + a®cos 2a}'
A3 = gBeide — (3a§a$ —ad)i + (az —3a%ay,) ]
(3.4)

= a’sin3ai + a’cos3a
The dissertation of Kevin P. Thompson also introduces conjugate vectors to preserve
pupil dependence. In the expression of the vector, this implies a sign change in the

exponent. The conjugate of Ais expressed as:
A* = ae™ = —a,0 + ay) (3.5)

Thus, the vector product with vector conjugate is defined as:

—

AB* = ab e P = (a,b, — ayby) i + (ayby + azby) (3.6)

Based on equations 3.3 through 3.5, the subsequent equations for H and p are
derived.

For H , the derivations are:

~

H?> = 2zyi+ (y* — 2?)j (3.7)
H = (By’r—a*) i+ (y° —32%y)j (3.8)

H* = —zi+yj (3.9)
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For p. the derivations are:

52 = p*sin2¢ i+ p’cos2d (3.10)
52 = psin3¢ i+ p’cos3o ) (3.11)

= —psing i+ pcose (3.12)

Then by using equations 3.2, 3.1, 3.6, 3.7-3.12 in 2.8-2.19 the equations of the

Zernike coefficients in the following sections 3.2 and 3.3 will be derived.

3.2 Field dependencies of the Zernike polynomials for the
third order aberrations

In this section, only the third order aberrations for the Zernike polynomials will
be considered. In this thesis, the standard Zernike polynomials are used and the ones

which are considered in this section are represented in table 3.1.

Term Orthonormal Zernike Polynomial ~Aberration name

Z(p.9)
2 \/é_lp cos @ Tilt X
3 VApsin ¢ Tilt Y
4 V3(2p7 — 1) Defocus
5 V6(p?sin 2¢) 45° 3™ order astigmatism
6 V6(p? cos 2¢) 0° 3" order astigmatism
7 V8(3p® — 2p) sin ¢ 90° 3" order coma
8 V8(3p® — 2p) cos ¢ 0° 37 order coma

TABLE 3.1. Zernike polynomials for the third order aberrations

As it was said before, the Zernike polynomials do not explicitly include the infor-
mation on the field dependencies, they are only expressed with p and ¢. This section
and the following one will show how to express explicitly the Zernike coefficients in

terms of the field components x and y. It will be shown that the wavefront expansion
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can be decomposed as:

Z; are the Zernike polynomials

Cij are the Zernike coefficients which

W = Z ((Z C/(x, y)) - Zi(p, qS)) where < contain the field dependencies of the Z;
J

? 7 is the number of a zernike term

| j is the power of the field dependence
(3.13)

By having the expressions of the coefficients C? for the different zernike terms,
it will be possible to fit the zernike coefficients coming from a raytracing program
or a wavefront sensor for different field positions. The purpose of this section and
the following one, is to find the expressions of these C?(z,y) for all the aberrations
from third to fifth order. Note that sometimes in the literature the Z; represent the

coefficients instead of the polynomials.

e Third order astigmatism
The different components of equation 2.8 can be expressed in terms of the field
components. Again, the components of H along # and g/ are x and y respectively.
And for g the components are psin ¢ and pcos¢. This is emphasized, because
in the literature x and y sometimes represent the pupil components instead of

the field components.

For the quadratic component, the derivations are:

1 —
2 =2
unadratic = _W222H P

2 (3.14)

1
= §W222 (2 ryp?sin2¢ + (y* — 2?)p? cos 2¢)

Since %WQQQ is constant, the constant oy which is equal to this term is intro-

duced, then equation 3.14 becomes:

unadratic = (2 Qo y) 02 sin 2¢ + (040(@/2 — 1'2)) p2 COS 2¢ (315)



47

V6p? sin 2¢ and v/6p? cos 2¢ represent the standard Zernike terms Z5 and Zg as

shown in table 3.1. Thus, equation 3.15 can be rewritten as:

2 qpx ap(y? — x?
Wf]uadratic = % : Z5 + % ' ZG

(3.16)

Then, the constant « can be redefined (by including V6 in it) so as to get the

simplified terms:

{Cg =2apTy (3.17)

C§ = ao(y® — 2°)
As it was said before, this quadratic part represents the astigmatism of a cen-
tered system. The subscript ¢ for the constant was used to express this aberra-
tion. For the following aberrations the subscript o will be used again to express

the aberrations of a centered system.

For the linear component, the derivations are:

Wiinear = _(ﬁA‘222) : 52
(3.18)
= - ((A222xy + A222y13)ﬂ2 sin 2¢ + (— AT + Azzzyy)/)2 cos 2¢)
Equation 3.18 represents the linear part of the astigmatism, where Asgy, and
Aggy are the ¥ and § components of /ngg. Since these two components are

constant, an expression of the linear astigmatism with two new constants ay

and as can be found as it was done before for the quadratic term:

Ci = ay+asr (3.19)
Cé = -1z + azy '
For the constant part the derivations are:
W, fant = 152 . p—*2
constan 9 29292 (320)

= (2Ba22: Bagoyp? sin 2¢ + (B3, — B3y, )p? c0s 20)
Equation 3.20 represents the constant part of the astigmatism, where Bass, and

Bsgo, are the x and y components of 5222. As for the linear component, an
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expression of the constant astigmatism with Z5 and Zz with two new constants
a3 and ay can be found since Bagg, and Bagg, are two constants:

{050 - (3.21)

0 _

Considering all the components of the astigmatism in a misaligned system, Cs

and Cg can be defined as:

Cs = ch =2qpry + a1y + T + ag
| (3.22)
Cs = ZC@ = ag(y® — 2%) — a1x + gy + oy
The same technique is used to find the subsequent expressions for the other
aberrations with the conventions defined in figure 2.1. The independent con-
stants 55, &, ii, Xj» Kjr V4> 05, V4, G, m; (Vj) are used to express the other
aberrations. The subscript o for the constants will be used to express the aber-
rations of a centered system and the following numbers will be used to express

the aberrations that can possibly arise in a misaligned system.

Third order coma

As it has been shown for astigmatism, the different components of coma in
equation 2.9 can be expressed in terms of the field components x and y as shown
in equation 3.23 and 3.25. And then the expressions of the field dependencies

of the Zernike coefficients can be derived.

Wiinear = W131(ﬁ : ﬁ)ﬂ2 = W131($03 sin ¢ + ?JP3 COs Cb) (3'23)
ct =
— ’ bo (3.24)
Cg = 60y

Weonstant = —(14'131 : ﬁ) = _(A13lacp3 sin ¢ + A131yp3 COS ¢) (3-25)
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C? =5
= {cg _ 5, (3.26)

Considering all the components of coma in a misaligned system, C; and Cg can

be defined as:
Cr = ZC% = Box + B4

| (3.27)
Cs =Y CL=poy+ b

e Third order field curvature
Cy can be derived using the same method as before: express the different com-
ponents of third order field curvature in equation 2.10 in terms of the field

components x and y and then derive C}.

unadratic = VVYQQOM(m2 + yz)pQ (328)
= Ci=(*+v?) (3.29)
Wiinear = —2(Aa20pm22 + A220Myy>p2 (3.30)
= Ci=mz+ny (3.31)
Wconstant = B220Mp2 (332)

— O] =13 (3.33)

Considering all the components of field curvature in a misaligned system, Cy

can be expressed as:

Cy= =@ + %) + Nz + 720 + (3.34)
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e Third order distortion
The different components of third order distortion in equation 2.11 can be ex-
press in terms of the field components x and y and then the expressions of Cs

and C3 can be derived.

Weupic = Wapn (2° + yQ)F[ “(p sin ¢7 + pcos ¢j) : )
3.35
= W1 ((«° + zy?)psin g + (2%y + y*)p cos ¢)

3 (2 3
— & mnlyty) (3.36)
C3 = yy(a® + xy?)

unadratic#l = _2(-77/431132 + yA311y)(37,0 sin ¢ + yp cos ¢)

= _2((3721431195 + 2y Asiny)psin ¢ + (zyAsiie + ygAsny)P cos gb)

(3.37)
02 — 2
. { 2 = Ay (3.38)
C5 =z’ + 1y
VVlinear#l = 23311(5Ep sin QS + ypcos ¢) (339)
Cci =
— { 2T (3.40)
C; =z

Since third order distortion has two quadratic and two linear dependencies, the

prime sign will be used to differentiate the components.

unadratic#2 = _(I2 + y2>(A311:vp sin (b + A311y)0 COS (b) (341>
2/ _ 2 2

— CZ;, - ”4(x2 + y2) (3.42)
Cy  =uvs(2® +y°)

I/‘/vlineow“:;é;/:Q = (égllﬁ*) : (p sinqﬁ% + pcos ¢§)
= ((—(B311, — B311,)x + 2Bs11, Bai1yy) psin ¢ (3.43)

+ (B, — B3112)y + 2Bs110Bs11,2) p cos ¢)
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1/ _
— {Cﬁ, = vey t+ e (3.44)
C’3 = —UgX + V7Y
Wconstant = _(CSpr sin ¢ + CBllyp COS ¢) (345>
Y =
— { 2 T (3.46)

Considering all the components of third order distortion in a misaligned system,

C5 and C'5 can be defined as:

Cr = Z C) = wo(@®y + y°) + vizy + voy® + vsy + va(@® + %) + vey + vrz + v

Cs = Z C) = vo(2® + 29?) + 112® + vxy + sz + vs (2 + y?) — vz + vy + 1y
(3.47)

3.3 Field dependencies of the Zernike polynomials for the
fifth order aberrations

Fifth order aberrations will introduce some new Zernike coefficients but will also
reintroduce the Zernike coefficients that were seen for third order. That means that
there can be some coupling between third and fifth order aberrations. This section
will consider only the Zernike coefficients of table 3.2. The derivations of the CY
for this section are found by following the same procedure as for the third order

aberrations.

e Field cubed coma
The different components of field cubed coma in equation 2.12 can be expressed
in terms of the field components x and y which leads to the expressions of C5
and Cg. To differentiate the components that have the same field dependence,

the prime sign will be used.
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Term Orthonormal Zernike Polynomial

Aberration name

Z(p,9)
2 V4pcos ¢ Tilt X
3 Vapsin ¢ Tilt Y
4 V3(20% — 1) Defocus
5 V6(p? sin 2¢) 45° 3 order astigmatism
6 V6(p? cos 2¢) 0° 37 order astigmatism
7 V8(3p® — 2p) sin ¢ 90° 37 order coma
8 V8 (3p — 2p)cos ¢ 0° 3" order coma
9 V/8p? sin 3¢ 30° trefoil
10 V/8p? cos 3¢ 0° trefoil
11 V5(6p* — 6p% + 1) 374 order spherical aberration
12 \/E(le 3p ) cos 2¢ 0° 5" order astigmatism
13 V10(4p* — 3p?) sin 2¢ 45° 5 order astigmatism
16 \/_(10p 12p + 3p) cos ¢ 0° 5" order coma
17 V12(10p° — 12p° + 3p) sin ¢ 90°5t" order coma

TABLE 3.2. Zernike polynomials for the fifth order aberrations

Wcubic =

= 2Bs31,, (zp’ sin ¢ + yp® cos ¢)

Wiz, (2% + y*) H - p) p*
(3.48)
= Wis1,, <(x3 + xyz),o3 sin ¢ + (y3 + 932y) p? cos gb)
3 — 3 2
— ’ 50(”@3 ey ) (3.49)
Gy =&ly” +27%y)
unadratic#l - 2((1:14331]\“ + yA331My)ﬁ : ,025)
=- 2((143311”1952 + Agz,y, 2y) p° sin ¢ (3.50)
+ (A331M137y + Ass1,,, QQ)PS oS ¢)
02 — 2
— U =arihw (3.51)
C; =&ry+&y
VVlinea’r#l == 23331Mﬁ . pQﬁ
(3.52)
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. G =G (3.53)
C% =83y

unadratic#2 = - <(flf2 + y2)A331M . p2ﬁ>

= — <A331Mx (1'2 + yz)p3 sin ¢ + A331My (332 + yZ)pS COS ¢>

— {og’ =& +y7) (3.55)

(3.54)

CZ =& (2 +9?)

VVlinear#2 = (B)gglMﬁ*) : pQﬁ
= <((B§31Mx — B3y, )% + (2B, Bsai,y, )y) i

+ ((B§SIA4y o B§31Mz>y + (2B331]v1xB331My)x) j p3 sin ¢£ + 103 COos ¢3)

= <23331MI Bssi,, Y + (B, — B§31My)x> P’ sin ¢
+ (233311\“ Bss1,,, — (B§31Mz — B§31My)y> 0 cos ¢
(3.56)
oy =
T A L (3.57)
Cs =& —&y
Wconstant = - C_1?331 : ﬁ P2
(ot 7) (3.58)
= —Ca31,,,p°sin ¢ — 0331Myp3 cos ¢
cY =
— v s (3.59)
Cs =&

Considering all the components of field cubed coma in a misaligned system, C';

and Cg can be defined as:
Cr = ZC% =&(2° +ay?) + &2’ + Say + G
+& (@ + )+ &y +&ra+ &
Cs =) Cl=t(y’+2°y) +&ay+ &y’ + &y

+& @+ )+ — Gyt &

(3.60)
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e Elliptical coma (Trefoil)
The derivations of Cy and (g is done with the same method as before by
expressing the different components of elliptical coma in equation 2.13 in terms

of the field components x and y.

1
Weuvic = 1W333 ((3y21’ — %) p*sin3¢ + (y° — 32°y)p” cos 3¢> (3.61)
3 = ua(302r — 23
— ; Hol g ) (3.62)
Cio = po(y’ — 32%y)
3 ;
unadratic - _Z_l ((A333x(_$2 + y2) + 2A333yxy)7'
+ ((A333x(—2$y) + A333y(92 - 332))3) : (P3 sin 3(15% + PS Cos 3¢j)
(3.63)
2 — 2 _ .2 9
. ; pi(y® —a*) + llz2 xy2 (3.64)
Clo = =2y + po(y” — 2°)
3 2 2 o
Wiinear = Z ((x(B333y - B333x> + y2333333B333y)Z
+ (y(Bissy — Bisse) — xQB333acB333y)j> - (p*sin3¢i + p’ cos 3¢ 7)
(3.65)
S ——
— si H3T + f1aY (3.66)
Cilo = M3y — 4z

1 .
Weonstant = =7 ((30:33@033% —C33,) p° sin 3¢+ (C33, — 30355, Caay ) p° cos 3925)
(3.67)

0 =
— oo (3.68)
Cly = e
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Considering all the components of elliptical coma in a misaligned system, Cy

and Co can be defined as:

Co =Y _CFf = po(3y’r — 2®) + p(y® — 2°) + pa2xy + psx + pay + pis
Cio =Y Cly= oy’ — 32°y) — 2may + pa(y® — &%) + sy — pa + pig
(3.69)
e Quartic field curvature
Cy can be derived using the same method as before: express the different compo-
nents of quartic field curvature in equation 2.14 in terms of the field components

x and y and then derive Cj.

unartic = W420M((L’2 + 92)@2 + y2>p2 (37())
= Cy = Yola* +y* + 22°y%) (3.71)
Weubic = —4($2 + ?JZ)(A@OMNU + A420Myy)p2 (3.72)
—  OF = i (2® + 2y?) + oy + 1) (3.73)
unad’/‘atic#l = B420M<l’2 + 92)02 (374)

— G =d@® ) (3.75)

Wouadraticsz = 2(2BaontaBazonry - 22y + (Biyonry — Bioonsa) (y° — 3°)) p° (3.76)

— Cf/ = yxy + Y5y — 2°) (3.77)

Wiinear = —4(Cugop2 + C420My?/)ﬂ2 (3.78)
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= Ci = Per + Py (3.79)
Wconsmnt — D420M/)2 (380)
= Cy =g (3.81)

Considering all the components of quartic field curvature in a misaligned system,

Cy can be expressed as:
Ci =) Cf =to(z* +y* +20%%) + ¢ (a® + 29%) + va(a®y + o)

+ ¢s(2% + 7)) + azy + s (y° — 2°) + Yoz + Y7y + Us

(3.82)

e Quartic astigmatism
The different components of quartic astigmatism in equation 2.15 can be ex-
pressed in terms of the field components x and y and then the expressions of Cj
and Cg can be derived. Again, to differentiate the components that have the

same field dependence, the prime sign will be used.

1 .
unartic = §W422 (:UQ + yz) (2xyp2 S 2¢ + (y2 - 1'2)[)2 COS 2¢) ( )
3.83

1
= §W422 ((22%y + 22y°)p” sin 2¢ + (y* — 2*)p? cos 2¢)

[ J— 2 3 3

Cs =xoly* — ")

Weubics1 = — (:E2 + y2) (($A422y + yA422x)p2 sin 2¢ + (yA4so, — $A422x)P2 oS 2¢)
- (A422$(x2y + %) + Aggy (2® + xy2))p2 sin 2¢

+ (Asazy (2% + 4*) — Aszoa(2® + 29%)) p” cos 2¢
(3.85)

3 2 3 3 2

Cs = —xa(@® +2y®) + x2(2%y + ¢°)
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3 .
Wouadratics1 = 3 ((2*+y?)2Buig2s Buoayp” sin 20+ (2% +y°) (Biyg, — Biag, ) p° €0s 20)
(3.87)
2 _ 2 2
— G =l ty) (3.88)
Cs =xa(2? +97)

Wcubic#2 = - ((A422x($y2 - 9133) + A422y(295y?))l?2 sin 2¢ (3 89)

+ ( — Aupos (28°y) + Aoy (y® — $2?J))PQ cos 2¢>
:> Cg/ = X5 (‘TyQ - 'CE3) + X6(2$y2> (3 90)

CY = —xs(22%y) + xs(y® — 2%y)

1 )
Wiinear#1 = 5 ((3Ciz2yc422r - 0222:)3)y - (Ci)my - 30222x0422y>x) Pz sin 2¢

+ ((304222yc422z — Clop,) T + (02223/ - 304222mc422y)y) p’ cos 2¢>

(3.91)
ct = —
— 51 X7Y — Xs8T (3'92)
Cs = XrT + Xsy
3 .
unadratic#Z = 58422 (233y P2 S111 2¢ + (y2 - $2)p2 COS 2¢) (393)
C? =2
— (s T (3.94)
C§ = xo(=2+y%)

3 .
I/Vlinear#Q = —5 ((0422yl’ + C422zy)02 sin 2¢ + (0422yy - C422xl')/32 COSs 2¢) (395)

Ci = +
— i, X10T X11Y (396)
Cs = X0y — X1z

(2D4290 Dagayp® sin 2¢) + (Dim — D3yy,)p” c0829) (3.97)

Wconstant =

N —
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CcY =
— % X12 (3.98)
Cs = X3

Considering all the components of quartic astigmatism in a misaligned system,
(5 and Cg can be defined as:
Cs =Y Cl =2xo(2"y + 29®) + xa(@®y + 4°) + x2(2® + 20°) + xs5(2” + 1)
+ x5(xy® — 2%) + x6(22y%) + X7y — X582 + X022y
+ X107 + X11¥ + X12
Co =Y Ch=xoy" — ) = xa(@® + %) + x2(a®y + v°) + xa(a” + ¢°)
—x5(22°y) + X6(y° — 2°y) + x72 + X3y + Xo(—2” +¢)

+ X10Y — X11T + X13
(3.99)

e Fifth order coma
As before, the expression of the different components of fifth order coma in

equation 2.16 in terms of the field components x and y leads to the derivation

of Z16 and Z17.

VVlinear = Z Wl51j (513'05 sin ¢ + yp5 Ccos ¢) (3100)
J
cly =
— 16 = oY (3.101)
Wconstant = - (A151:pp5 sin <Z> + A151y,05 COS (Z5) (3102)
9 =
— 6 T (3.103)

Considering all the components of fifth order coma in a misaligned system, C'g
and C7 can be defined as:
016 = ZO{G = KoYy + K1

. (3.104)
017 = 20{7 = Ko¥ + K2
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e Oblique spherical aberration
The different components of oblique spherical aberration in equation 2.17 can
be expressed in terms of the field components x and y and then the expressions

of (5 and (3 can be derived.

1

unadratic = §W242 (FIZ : ﬁQ)pQ (3 105)
1 :
= §W242 (2xyp4 sin 2¢ + (y* — 2?)p* cos 2¢)
— G =ml - (3.106)
C% = mno2xy

I/Vlz'near = - ((I—_’[A)QALZ) : 52)/)2
=— <(A242xy + Agazyx) ptsin2¢ + (= Agaze + Azazyy) p* cos 2¢>

(3.107)
cl, = —
12 Mt Y (3.108)
Ciz = my+mr
1 = e
Weonstant = §(B§42 P 2)p2
2 (3.109)
=3 (2Bau2. Boazyp" sin 2¢ + (B, — By, )p' cos 20)
o, =
— e (3.110)
Cly =m

Considering all the components of oblique spherical aberration in a misaligned

system, C'5 and (43 can be defined as:

Cia =Y Cly=no(y® = 2%) — ma + nay + 13

| (3.111)
Cis =Y Cly=no2zy + my+ oz + m
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e Field curvature for oblique spherical aberration
The different components of field curvature for oblique spherical aberration in
equation 2.18 can be expressed in terms of the field components x and y which

leads to the expressions of (.

unadratic = VV240M<5(72 + y2)p4 (3112)
—  C} =0+ ) (3.113)
VVlinear = _2<A240sz + A240Myy)p4 (3114)
= Cl, = 61z + by (3.115)
Wconstant = BQ4OMp4 (3116)

— () =6 (3.117)

Considering all the components of field curvature for oblique spherical aberra-

tion in a misaligned system, C}; can be defined as:

Cii = Ol =82 +y°) + 612 + G2y + b3 (3.118)

e Fifth order distortion
The different components of fifth order distortion in equation 2.19 can be ex-
pressed in terms of the field components x and y and then the expressions of
C5 and (3 can be derived. To differentiate the components that have the same

field dependence, the primes superscript will be used.

Wfifth = W511<372 + y2)2(3§p sin(b + yp cos gb) ( )
3.119
= Wsn ((¢° + 2y* 4 22°y?) psin ¢ + (2'y + y° + 22%y°) p cos )



]G =Gty 7+ 2y
CS = (o(2° + zy* + 223y?)
Wouartic1 = —4(562 + yz)(ZBAE)llx + yAs11y) (xpsin ¢ + yp cos ¢)
= —4((A511x($4 +2°y%) + Asiny (2°y + 2y%)) psin g
+ (As112(2y + 2y®) + Az (2y* + y*)) p cos ng)

. ]G =alEytay’) + Gty )
Cy =Gt + %% + G2y + 2yP)

Weubies1 = 6Bs11(2* + QQ)ﬁ - (psin ¢ i+ pcos ¢§)

— 6Bs11 (e + ay?)psin 6 + (2% + y*)pcos o)

3 2 3
. C; = Grry +9°)
C3 = G(23 + 2y?)
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(3.120)

(3.121)

(3.122)

(3.123)

(3.124)

Weuiepz = 2(4Bs112 Bsiywy + (BSh1, — Bayy,) (¥ — 2%)) (zpsin é + yp cos ¢)

= 2((43511963511145”29 + (Bglly - B§11z)(y2$ - x3))psin¢

+ ((4Bs112 Bsnyay” + (B, — Bein,)(y° — 2°y)) pcos ¢>>

8 = a6l - 2%)
C3 = G2y + Gyl — 1)

unadratic#l = _4($C511x + yCSHy)(:L‘,O sin Qb + yp cos ¢)

(3.125)

(3.126)

= _4((9520511z + xyc%ny)/@ sin ¢ + (vyCs11e + y20511y);0 COs ¢)

02 — 2
. 3 Cery + Cry
C3 = (e + Gy

(3.127)

(3.128)
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VVlinear#l = 3D511(!L‘P sin ¢ + ypcos gb) (3129)
cl =
— 6 =W (3.130)

unartic#2 = _(IQ + y2)2(A511$p sin ¢ + A511yp CO8S ¢)
= — (A511x(x4 +y* 4+ 22%9)psin ¢ + A511y(x4 + y* 4 22%y?) p cos <b)
(3.131)

/ 3.132
Cgl = <10($4 + y4 + 2$2y2> ( )

{Céll = Co(z* + y* + 22%9?)
Weubic#s = 2(1'2 + 92)(§§11H*) (p singb% + pcos ¢j)
= 2(( - (Bglly — B21,) (@ + 2y®) + 2Bs11.Bs11y (y2” + %)) psin ¢

+ ((Bglly — B21,)(@%y + 9°) + 2Bs112.Bs11y (2 + 2y?)) p cos <;S>

(3.133)
C3 = @y + %) + CGa(2® + 2y?) (3.134)
3" = —Cu(@® + 2y?) + Caya® + 3%)
unadratic#2 = _4(1:2 + yQ)(lez,O sin ¢ —+ Cg,nyp COS ¢) (3135)
c? - 2 2
— 22, Cl3(x2 + y2) (3136)
Cy = Cu(r® +y%)

unad’r‘atic#?) = - (ﬁQ(_CxE)llx% + 05111/-;)) ) (ﬁ)
- << — Cs1a(y? — 2°) + 2C511y) psin ¢ (3.137)

+ (20511x$y + CSlly(y2 - $2))PCOS ¢)

{022// = 2C57y + Ci6(y? — 22) (3.138)

C??N = —Ci5(y* — 2?) + 2Ci6y



Wauadraticsta = _(égllﬁ 2*) P
- ( - 2<CS311y — 3C51,Cs11y) 1y
+ (3C211,Cs110 — C211,) (y* — *)) psin ¢
+ ((Cglly — 3C311,C511y) (v — 2°)
+ 2(305?111;0511% - Cgllz)xy)pcos ¢

— C3" = Gir(y? — 2%) + 2(iszy
C2" = =20y + Cis(y? — 2?)

Wiinear#2 = 2(5§11]:7*) - (psin i + pcos ¢y)

= 2((_(D52>11y — D3 1,)x + 2D511,Ds11y) psin ¢

+ ((Dglly — D211,)y + 2Ds11, Dsny ) p cos ¢)

C2ll = Cioy + Coox
C§/ = —(Ci97 + Co0Y

Wconstant = _(E511xp sin ¢ + ESllyp COs ¢)

— C% = G
C’3 :C22
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(3.139)

(3.140)

(3.141)

(3.142)

(3.143)

(3.144)

Considering all the components of fifth order distortion in a misaligned system,
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C5 and C'5 can be defined as:

ZCJ = Go(z'y + y° + 22°9°) + G (2%y + 29°) + G(a®y? + )
+ G2y + %) + CGry® + G — 2%y) + Gery + Gry? 4 Gy
+Go(at +yt + 2277 + Cu(a®y +7) + Ga(a® + 2y7)
+ Cus(2® + 4%) + 2Cis2y + Cue(y® — %) + Qe (y® — 2?)
+ 2C187y + Croy + a0 + (21
Z CF = (o(a® + wy* 4+ 22%%) + G (2" + 2%y?) + G(2Py + xy®)
+ G2 4+ 2y?) + Gty + GPr — 2°) + G + Gy + G
+ Gl + '+ 22%%) — Cu(® + 2y®) + Galya® +4°)
+ Cu(@® +°) — Gis(y® — 2°) + 2Ciewy — 2Ci72y

+ CGis(y® — %) — Ciox + Caoy + oz
(3.145)

3.4 Summary of the results

This section summarizes the results found in sections 3.2 and 3.3 for the field
dependencies of the Zernike polynomials except that the equations shown here are
expressed with the usual conventions used by optical software instead of the ones used
in the dissertation of K.P. Thompson. Thus, a right-handed convention is considered
here and that will lead to replace x by —x. But optical softwares usually "look” at the
image plane from behind and therefore x is unchanged. Also, here ¢ is now defined
from the ¥ axis which will imply to replace cos ¢ by sin¢ and vice versa. Thus to
summarize, the only modification will be to exchange the expression of the cosine and
the sine components for each aberration.

Again, the terms «;, 55, &, 1, Xjs Kj, Vi, 05, V4, G, m; (V7) are independent
constants. The subscript ( for these constants is used to express the aberrations of a

centered system and the following numbers are used to express the aberrations that
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can possibly arise in a misaligned system.

A two-element system is well described with third order aberrations. In this case
the following equations are used:

Third order astigmatism: Wog
Cs = ap(y? — %) — gz + oy + ay
Co =209y + 0y + aox + a3
Third order coma: W3

Cr = Boy + B2
Cs = Box + (4

Third order field curvature: Wy,

Cy= 70(372 + yz) + 71T+ Y2y + 3

Third order distortion: Wy
Cy = vo(2® + 2y?) + 112® + voxy + 132 + vs(2? + y?) — vex + 17y + 1

Cy = vo(2%y + ¥°) + vizy + ay® + 3y + va(2® + ¥*) + vey + vrw + 18

Fifth order aberrations give better results for systems with multiple degrees of

freedom. Thus the following equations are used:

Field cubed coma: Ws3;
Cr=&W + 2%y +&ay+ &Y + &Y+ & @+ ) o —&Gy+&
Cs =& +ay?) + & + Gay+&r+ (" +y*) + &y + & o + &
Elliptical coma (trefoil): W33
Co = po(y® — 32%y) — 2may + po(y® — 2°) + psy — paw + g

010 = M0(3y2l’ — ZE3) + ul(yz — JI2> + ,u22xy + U3 —+ Hay + 1953



66

Quartic field curvature: W
Ca =to(z" +y* + 20%y%) + i (a® + 2y”) + o2y + ¢°)
+g(a® 4 y?) + azy + ds(y — %) + e + Pry + s
Quartic astigmatism: W9
Cs = xo(y" — ) — xa(2® + 2?) + xa(=%y + ) + xa(e® + )
— x5(22%y) + x6(y® — 2°y) + X7 + X8y + xo (=27 +¥*) + x10y — X117 + X13
Co = 2xo(2’y + 2y°) + xa(2%y +y°) + xo(2® + 29°) + xa(2* + ¢°)

+ x5(zy? — 2°) + x6(2297) + X7y — XsT + X022y + X107 + X11Y + X12
Fifth order coma: W5

Cig = Kox + Ko

Cir = Koy + K1
Oblique spherical aberration: Wy,

Cha = Mo2xy + My + 1022 + N
Cis = no(y* — &%) — ma + n2y + 13
Fifth order field curvature: Wy,
Cii = 6o(2® + y°) + 612 + doy + 3
Fifth order distortion: Wi,
Cy = Go(@” + oy +22%%) + (" + 2%y%) + G’y + 2y’) + G(2° +ay?)
+ Gty + Gy*e — %) + Gr® + Gy + Gso + Cuo(a® +y* + 22%y7)
— G (2® + 2?) + Ga(ye® + %) + Gu(@® + ) — Qs (v — 2?)
+ 2016wy — 2Ci7zy + Cis(y® — 2°) — Gox + Gy + Caz
Cy = Go(a'y +y° +22°9°) + G2y + 2y°) + Gy + y') + Gla®y +y7)
+ Gy’ + Gy — 2%y) + Gy + Gy® 4 Gy + Go(a + yt + 22%%)
+ Cu(@®y + 7)) + Cua(@® + 2®) + Cus(2® + y°) + 2G5y + Ge(y” — 27)

+ Gr(y® — 2°) + 287y + Coy + CooT + Con
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These equations will be used in Chapter 4 and 5 to align two different telescopes.
The first one is a two element telescope, so only the equations for third order aber-
rations will be used. And the second one is a four element telescope with a lot of

degrees of freedom, thus the equations including the fifth order will be useful.
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Chapter 4

APPLICATION ON THE 90” TELESCOPE

Now that the field dependencies of the Zernike polynomials in a misaligned system
are known, it will be possible to develop a process to align an optical system.

To show the different steps, the process for the alignment will be shown on a real
system. The optical system used in this chapter is a two-element telescope located
on Kitt Peak.

In [6, 7, 8,9, 10, 11, 12, 13, 14] it is claimed and proved that for a generic two-
mirror telescope (Cassegrain, Ritchey Chretien. .. ), a decenter of the secondary will
introduce some constant coma over the whole field and a tilt about the "free coma
point”! will generate mostly astigmatism linear with the field.

In this chapter, it will be shown how the results of the previous chapters apply for
the particular case of the 90” telescope which is not a generic two-mirror telescope.
It will be seen that the same type of relations found in [9, 10, 12] can be obtained.
Since the process to align this type of telescope is not really complicated, it is a good
way to verify the method by using the new set of Zernike. The method used in this
chapter will follow the block diagram represented in figure 4.1

This system contains only two elements, so only the third order aberrations will
be considered.

In a first section, the design of the telescope will be presented. Then, the different
steps to get the relations between the Zernike coefficients and the perturbations will
be studied. Finally, the results of the alignment process from the real system will be

shown.

I This is the location for a two-mirror system where a rotation about it will not introduce coma,
see [11] for more explanations.
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[Simulation on a raytracing program |

Perturb model

at different field positions

T

Measure Zernike coefficients C(x,y) j

Calculate Zernike coefficients C(x,y)
at different field positions

Fit data to field
dependent functions

Expression of the reconstructor ~ —————
|

using the reconstructor

4

Values of the misalignments

Least squares fit data by J

FIGURE 4.1. Block diagram of the method

4.1 Design of the 90”

The 90-inch telescope is a two element mirror-system with a primary mirror which
has a diameter of 2286 mm and a radius of curvature of 12159 mm. The second
element is a corrector; it is composed of four lenses and one filter made of Fused
Silica. The group of lenses, the filter and the detector are already aligned in a box
which can be moved relative to the primary. Thus the alignment of this telescope
will consist of aligning this box relative to the primary mirror by using a wavefront
measurement at the image plane. The actual system is equipped with a curvature
sensor which fits the standard Zernike coefficients to the aberrated wavefront at the
exit of the system. The design of the telescope is represented in figure 4.2 in three
dimensions. Note that a hole is present in the primary because the original telescope
was a Cassegrain-type design. And the box with the refractive elements was placed to
replace the secondary mirror in order to have a wider field of view. The prescriptions

of the design of the telescope can be found in Appendix B.
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FIGURE 4.2. 3D view of the optical design

4.2 Procedure to find the alignment equations on Code V®

To align the telescope, first the alignment equations have to be found with an
optical software. This corresponds to find the expression of the reconstructor in
figure 4.1. The software chosen to show the results will be Code V®. But the same
results were found using Zemax®. And what will be done in this section could also
be done with a different software.

The alignment process with Code V® will be done in four steps:
1. Find the free coma point position

2. Perturb the corrector about the free coma point

3. Get the zernike coefficients at different field positions

4. Fit the zernike coefficients with a least-squares fit method to relate the pertur-

bations, the zernike coefficients and the field coordinates
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The general principle is to find the 4x4 matrix M which relates the Zernike co-
efficients to the perturbations as shown in equation 4.1. By knowing this matrix it
will be possible to inverse it by a least-squares fit to get the perturbations when the
Zernike coefficients are known which represents the last block in figure 4.1.

To find the matrix the Zernike values will be calculated for one perturbation at a
time. Thus, each perturbation will allow to calculate one column of M. For instance,

if the system is only tilted around Z, the first column of the matrix can be calculated.

C(5 mi1 Mia2 M3z M4 TiltX

Cs _ |™M21 Moz Moz Mg | TiltY (4.1)
Cr mg1 Mgz M3z M3y DecX :
Csg Ma1 My My3 My DecY

Where m;; (1 <i<4, 1<j <4) are the components of the matrix M.

This section consists in finding this Matrix M which represents the reconstructor

in figure 4.1.

4.2.1 First step: Find the free coma point position

In a two-mirror system, it can be shown that there is a point where it is possible
to rotate the secondary about without introducing any coma. It is called the "neutral
point” or the ”free coma point”. In [11, 12, 13] the position of this point is derived by
calculating the amount of coma introduced by a tilt and a decenter of the secondary
about its vertex. It is shown that the coma introduced by a decenter can be cancelled
by the coma introduced by a tilt. Then this combination of tilt and decenter can
be reduced by only one tilt about a new axis of rotation which is located at the free
coma point.

The alignment of the telescope will be done by choosing this point as the reference
point for tilt and decenter. It is a convenient choice to decouple the effects of astigma-

tism and coma since a rotation about this point will introduce only astigmatism and
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it will be shown later that a decenter of the secondary will introduce mostly constant
coma.

Here the calculations to find the position of this free coma point will not be derived
since the second element is not simply a mirror but it is made of four lenses. The
calculations to find this point would have been long and complicated. Instead of
doing all the calculations, Code V® will be used to realize this step.

This is done by introducing a coordinate break before the group of lenses and by
setting the thickness of this coordinate break as a variable. Then, the right thickness
can be found to get no coma on axis when a tilt is introduced at the coordinate break

by using the optimization function in Code V®.

4.2.2 Second step: Perturbed the corrector about the free coma point

The second step in the process to find the equations which relate the Zernike
coefficients to the perturbations is to perturb the secondary by a significant amount

of tilt and decenter. One perturbation at a time will be done.

e Secondary tilted around the ¥ axis
When the secondary is tilted around & by .1 degree the spot diagram in the

xy plane? in figure 4.3 is obtained?.

Figure 4.3 shows that linear astigmatism is dominant, it is almost the same
pattern that was shown in figure 2.16 except that is not composed of straight

segments since the centered system has aberrations.

Thus the conclusion is that a tilt around & about the free coma point introduces

mainly linear astigmatism.

2Plane perpendicular to the optical axis

3This corresponds to an alpha tilt of .1 degree in Code V®. This alpha should not be taken for
the a; defined previously for the astigmatism. The sign conventions used by Code V® for the angle
can be found in Appendix C.



90 inches prine focus correcto

65.0 A O L O G O™
52.0 O OH & 0OV

LK -2
o

rd

Real |Inmage Height (nmm)
T9% Y
LR R RN

P @ W@ W N\
g v oW wm Y\

9
4
4
H

) v »> » O O
- e - > OO

7

%

B 0 o o g f

39.0 .ﬂ””““‘“
26.0 ””"‘\\“

NN

- P R
D0 0 0 p
2.0 0 0

-65.0-52.0-39.0-26.0-13.0 0.0 13.0 26.0 39.0 52.0 65.0

Real |mage Height (nm)

(a) Inside focus

0.100 nm

Real |mage Height (mm)

73

90 inches prine focus correcto

7,7 LS

VP

VA Al el aa
O P P e g e

’ 77

A N IR N
\\\\s
N ™ W e

N o o o e
TR W, WD AR @ S G G

T I, T A LB G

@ o e e G

l
l
!
/

-65.0-52.0-39.0-26.0-13.0 0.0 13.0 26.0 39.0 52.0 65.0
Real |mage Height (mm)

(b) Outside focus

0.100 mMm
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e Secondary tilted around the ¥ axis

When the secondary is tilted around ¢ by .1 degree* the spot diagram of

figure 4.4 is obtained.

This perturbation introduces again mostly linear astigmatism as it can be seen

in figure 4.4. It is the same spot diagram that was shown in figure 4.3 except

that here the pattern is rotated by 90 degrees.

e Secondary decentered along the ¥ axis

When the secondary is decentered along 7 by 1 mm the spot diagram of

figure 4.5 is observed.

This perturbation introduces mostly constant coma along Z as it can be seen

in figure 4.5. It is not exactly constant coma due to the fact that the original

centered design had a small amount of coma. So it is more linear coma with

4This corresponds to a beta tilt of .1 degree in Code V®. This beta should not be taken for the

B; defined previously for coma.
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FIGURE 4.4. 2D spot diagram in the xy plane for beta tilt=.1 degree

its node shifted from the center of the Gaussian image plane. But since the
constant part is much larger than the linear one, the spot diagram shows mostly

a constant coma.

e Secondary decentered along the 3 axis
When the secondary is decentered along ¢ by 1 mm, the spot diagram of figure

4.6 is observed.

This perturbation introduces mostly constant coma along ¢ as it can be seen
in figure 4.6. It is the same spot diagram that was shown on figure 4.5 for the

decenter in the Z direction except that here, the coma is oriented along /.

4.2.3 Third step: Get the Zernike coefficients for different positions in
the field

For each perturbation, the Zernike coefficients are calculated for different field

positions with a Code V® macro which is given in appendix D. The equivalent macro
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for Zemax® can be found in appendix F (it is the macro for the LSST but the macro
is similar for the 90”).
A grid of field points inside the field of view is created where the Zernike coefficients

are calculated. The 50 field points which are considered are represented in figure 4.7.

4.2.4 Fourth step: Least squares fit

To get the equations which relate the Zernike coefficients to the perturbations
and the field positions, a least-squares fit is used in a Matlab® program which can be
found in Appendix E. Basically, the Matlab® program fits the values of the Zernike
coefficients calculated in the previous step with the help of the equations found in
chapter 3 for each perturbation independently. In this process, the equations of
chapter 3 with the field dependencies are necessary.

To have a better visualization, some graphics were generated for each fit. For the
astigmatism for example, three graphics are generated for the constant, the linear and

the quadratic parts. Also, two other graphics are generated, one for the representa-
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tion of the total amount of astigmatism and one for the residual astigmatism which
represents the amount of astigmatism when the constant, the linear and the quadratic
parts have been removed from the original data. Thus, the residual represents mostly
the noise.

For the graphic representation of each aberration, the magnitude and the orien-
tation of the Zernike coefficients are used. The expressions of the amplitude and the
orientation are calculated by using the results of Appendix F.

For astigmatism, the magnitude and the orientation are represented by:

{M = 2V6 - \/(C5)? + (Co)? 42)

_ 1 “1Cs
A—Qtan o

For coma, the amplitude and the orientation are represented by:

{M =38 /(C-)2 + (Cs)? 43)

_ e
A = tan e

When the system is aligned, the amount of astigmatism and coma is small as
shown on figure 4.8 and 4.9.
The effects of each perturbation on the coma and the astigmatism are studied

here.

e Tilt of .1 degree around 7
A tilt of .1 degree around & produces mainly linear astigmatism as it was

pointed out on the 2D spot diagram of figure 4.3.

By fitting the Zernike coefficients calculated in the previous step with the matrix
formulation of C5 and Cj in a perturbed system which is shown in equation 4.4,
the values of ag, oy, as, ag and a4 are calculated. Here, only the linear part
is significant. The program returns: «; ~ —5.767, where x and y are in mm
and the Zernike coefficients in nm. Thus by considering that the secondary was
tilted by .1 degree, the general equation is: a; = —57.67 - Tult X, where TultX

represents the amount of tilt for the secondary around ¥ in degrees.
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The fact that linear astigmatism is the most important component can be seen
in figure 4.10 and 4.11. The coma present is only the linear coma from the
nominal centered system represented in figure 4.9 and the total astigmatism is

almost similar to the linear part.

e Tilt of .1 degree around ¥
It was seen in the second step that a tilt around ¢ will also produce only
linear astigmatism but with a pattern tilted by 90 degrees compared to figure

4.10. This is confirmed in figure 4.12 and 4.13.

Here the program returns: oy, ~ —5.767, where x and y are in mm and the
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Zernike coefficients in nm. Thus by considering that the secondary was tilted by
.1 degree, the general equation is: ap = —57.67 - T%[tY , where T%[tY represents
the amount of tilt for the secondary around 3 in degrees. The other terms are

negligible.

Decenter of 1mm along &

It was seen previously that a decenter along 7 was producing constant coma
along 7. This is confirmed with the graphics from Matlab® in figure 4.14 and
4.15.

By fitting the Zernike coefficients calculated in the previous step with the matrix
formulation of C'; and Cjy in a perturbed system which is shown in equation 4.5,
the values of 3y, # and (3, are calculated. Here, only the constant part is
significant. The program returns: B, ~ —199.8, where x and y are in mm and

the Zernike coefficients in nm. Thus by considering that the secondary was
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FI1GURE 4.13. Coma representation when secondary tilted .1 degree around ¥
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FIGURE 4.14. Astigmatism representation when secondary decentered 1mm along &

decentered by 1mm, the general equation is: 5 = —199.8 - DecX, where DecX

represents the amount of decenter for the secondary in the 7 direction in mm.

e Decenter of lmm along 1/

Bo
0 1
}:[i 1 0]' o

B

(4.5)

It was seen previously that a decenter along ¢ will also produce only constant

coma but orientated along ¢ instead of Z. This is confirmed in figure 4.16 and

4.17.

Here the program returns: [; ~ —199.8, where x and y are in mm and the

Zernike coefficients in nm. Thus by considering that the secondary was de-

centered by 1mm, the general equation is: (; = —199.8 - DecY, where DecY

represents the amount of decenter for the secondary in the ¢ direction in mm.
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F1GURE 4.15. Coma representation when secondary decentered 1mm along ¥

The other terms are negligible.

Finally, the Zernike coefficients can be expressed in terms of the perturbations

and the field positions in a matrix form as shown in equation 4.6.

Cs 57.67Tx —57.67y 0 0 TaltX

Cs _ | 9767y 5767z 0 0 | Tty (4.6)
C7 0 0 0 —199.78 DecX )
Cs 0 0 —199.78 0 DecY

Where x and y are in mm, the Zernike coefficients in nm, the tilts in degrees and
the decenters in mm.

Then, it is possible to invert the matrix which was just derived in equation 4.6
so as to retrieve the perturbations by having the values of the Zernike coefficients for
one position in the field. Of course, in the real system one measure in the field will

not be enough to get accurate values of the perturbations due to the noise. Thus, a
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FIGURE 4.16. Astigmatism representation when secondary decentered 1mm along ¢/

FIGURE 4.17. Coma representation when secondary decentered 1mm along ¢
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FIGURE 4.18. Aberration representations when the secondary is tilted by .1 degree

around 7

least-squares fit with multiple measurements in the field will be used to minimize the

effects of the noise.

The same kind of representation that was done with Matlab® for the total amount

can be done in Code V® as shown in figure 4.18 and 4.19 where astigmatism and coma

have been represented for a tilt of 0.1 degree around Z and a decenter of Imm along

Z. It is a good way to get a fast representation of the aberrations at the image plane

but there is no possibility to have a decomposition of the different field dependencies

of each aberration. It is only a representation of the total amount of each aberration

and there is no text output of the data that were fitted.
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4.3 A graphical method to verify the results from the previ-
ous procedure

The previous results can be verified by using a graphical analysis. This is done

by following these steps:

1. Remove the aberrations of the nominal centered system
2. Find the "Free coma point”
3. Analyze each degree of freedom

4. Find the relation between the Zernike coefficients and the perturbations graph-

ically

4.3.1 Aberrations removed from the nominal centered system

To see only the effects of misalignments in the system, it is possible to simplify
the analysis by removing the aberrations present in the centered system. In the real
system this can be done by subtracting the values of the Zernike coefficients calculated
in Code V® from the wavefront measurement that will be made with the wavefront
sensor of the real system.

In Code V®, instead of a subtraction, the aberrations can be removed by using
aspherizations on the surfaces of the lenses. This will not greatly affect the results
if the coefficients are not too large, it will only affect higher orders. This way, the
direct effects of the misalignments of the corrector can be observed. This optimized
system is a diffraction limited system as it can be seen on the spot diagram in figure
4.20 where all the rays are contained in the Airy disk represented by the black circle.

Since the way to find the "free coma point” was already discussed in the previous

section, it will not be done here.
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F1GURE 4.20. Spot diagram for different field positions for the optimized system
4.3.2 Analyzis of each degree of freedom

As it was done before, the system is perturbed for each degree of freedom. A tilt
of the secondary around Z or ¢ will introduce only linear astigmatism as shown in
figure 4.21 and 4.22. Due to the fact that the aberrations have been removed from the
original design, only the linear astigmatism appears. This is confirmed by fitting the
data into its different components as shown in figure 4.23. Only the representation
of the astigmatism for the tilt around & is shown here since it is the same for the tilt
around g except that there is a 90 degrees rotation.

By decentering the secondary along ¥ and ¢, constant coma orientated along

and ¢/ is introduced respectively as shown in figure 4.24.

4.3.3 Graphical analysis of the spot diagrams

Even if the relations found in chapter 3 are not known, the Zernike coefficients
and the perturbations can still be found by using a graphical analysis.

The linear astigmatism of figure 4.21, where the secondary is tilted around Z, is
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considered for the inside focus image. For y=0 (& axis) for the positive x values,
only the sin2¢ component is present which represents Z5. Thus, for the case y=0,
Cs =z - TiltX - Constant,. This is shown in figure 4.25.

For x=0 (¢ axis) for the positive values of y, there is only the — cos 2¢ component
which represents —Zg. Thus, for the case x=0, Cs = —y - Tilt X - Constant;. This is
shown in figure 4.25.

The same analysis is performed when the secondary is tilted around the g axis.
The equations are then: C5 = —y-TultY -Constant, and Cy = —x-TiltY - Constants.

Therefore, a linear combination of tilts around ¥ and ¢ will generate astigmatism

which is represented by:

C5 =Constanty - (—x - TiltX + y - TiltY')
(4.7)
Cs =Constants - (y - TiltX + x - TiltY)

Note that the minus sign has been included in the constants. Thus, the equations
of chapter 3 have been retrieved graphically. To get the exact coeflicients, a least-
squares fit can be used as it was done previously. The calculations with Matlab®
give: Constant, = Constanty = —58.3.

For the coma, the analysis is even easier since the amplitude and the orientation

are constant.
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By including the decentrations, the final equation becomes:

Cs 28.3x —583y 0 0 Tilt X

Cs _ | =983y 583w 0 0 | Tty (4.8)
C7 0 0 0 —199.88 DecX ’
Cs 0 0 —199.88 0 DecY

Which is really close to the previous results. The small differences come from the

introduction of the aspherizations on the lenses.

4.4 Results from the real system

During the first attempt to align the 90”, the assumption was made that the
system did not have a lot of initial aberrations referring to the nominal design in
Code V®. Thus, only constant coma and linear astigmatism were expected. But the
alignment based only on the linear astigmatism and the constant coma did not worked
because the aberrations observed were not coming only from the misalignments.

Therefore, to understand the behavior of the aberrations, the data coming from
the wavefront sensor of the telescope were fitted with all the components of the
astigmatism and the coma and it was then possible to align the telescope as well as
it can be for the tilts and almost for the decenters ®.

The results of the last run to align the telescope are shown in this section. They
are important in the sense that they validate the equations and the method developed

in this thesis.

4.4.1 Analysis of the astigmatism

The astigmatism representation of the system in figure 4.26 shows that the linear

part is not significant, meaning that the secondary is aligned in terms of tilts.

5Not possible to fully aligned the telescope because a fixed amount of time was allowed for the
alignment of this telescope
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Also, it can be seen in figure 4.26 that an important quadratic astigmatism which
was not expected is present. By comparing the total amount of astigmatism and this
quadratic part, it can be seen that it is the main contribution. More quantitative
results are shown in table 4.1 where the average and the maximum® values have been

considered for each component.

Average value Maximum value
Type of | RMS wavefront RMS spot size | RMS wavefront RMS spot size
astigmatism | error (nm) diameters (7) | error (nm) diameter ()
Constant 46 0.06 46 0.006
Linear 48 0.07 69 0.09
Quadratic 274 0.37 538 0.73
Quartic 2 0 7 0.01
Residual 39 0.05 227 0.31

TABLE 4.1. Results for the astigmatism for the data of the wavefront sensor from
the 90” telescope

The constant part is orientated at 41 degrees and came probably from the primary
mirror.

The residual linear part can be corrected by a tilt of 0.012 degrees around ¥ and
0.002 degrees around 3. But the values are small enough not to have to tilt the
secondary further.

Because the field dependence is mainly quadratic, this means that the astigmatism
comes from the nominal centered system and not from the misalignments. There can
be several reasons for the presence of this astigmatism. It can be due to the fact
that the spacings between the elements and/or the radius of curvature of the primary
and/or the conic constants are not as they were supposed to be. Thus, a further
analysis needs to be done to see the influence of all these parameters and see if a
solution could be found to correct for this aberration in a simple way. Note that an

acceptable spot size is .7 arseconds, thus it will maybe not be necessary to correct for

6The maximum value is located at the edge of the field due to the field dependence of the
astigmatism



Original Data of coeff22_23_3july_coma.txt

Y Position (mm)

Y Position (mm)

FIGURE 4.26. Astigmatism representation for the 90” telescope

Constant fit

Linear fit

50

-50

-100

-100

100

100

50

-50

100 100 100
— 250 nm
= = 50 = 50 <N
% E E o=
/ // - = c -
y S 0 s 0 |
/ 1) @ S
Z i 2
> =50 > -50 A "
-100 -100
0 100 -100 0 100 -100 0
X Position (mm) X Position (mm) X Position (mm)
Quadratic fit Quartic fit Residual Astigmatism
100 100
= ) £ 50 e
/4 §, é %
/ // . c - V!
., 2 0 s 0 .
v 3 2 o
= [ o 7
= > 50 > 50 L
-100 -100
0 100 -100 0 100 -100 0

-100
-100

X Position (mm)

the quadratic astigmatism.

4.4.2 Analysis of the coma

X Position (mm)

X Position (mm)

100

94

If the corrector is decentered, constant coma over the field is expected. To see if

the data are consistent, each star is represented by a green square in figure 4.27 to
show its value for the cosine and the sine coma. Since the coefficient for Zg (cosine
coma) is related to a decenter in the 7 direction and the coefficient for Z; (sine
coma) is related to a decenter in the 7 direction, the values of the decentrations are
also represented on the axes . And finally, the average value with error bars for the
standard deviations in both directions are represented.

Figure 4.27 shows that the measurements contain a large amount of noise; the
average value is in the order of the value of the standard deviation.

As it was done for astigmatism, the coma is decomposed in its different components

in figure 4.28 where the total amount of coma, the constant fit, the linear fit and the
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FIGURE 4.27. Plot of the coma values for the 90” telescope

residual coma are represented.

Figure 4.28 shows that the coma contains a constant part but there is also a lot of
noise as it was said before. Indeed on the last graphic of the residual coma, it is not
possible to discern any pattern, the directions and the amplitudes are erratic. Figure
4.28 also shows that linear coma is not significant.

Figures 4.27 and 4.28 show that there are a few points which deviate a lot from the
average value. Therefore, they increase the value of the standard deviation. These
points are located at the edge of the field and can be taken away from the data to get
a better estimation of the error in the measurements. This was done in figure 4.29.

With the new set of data shown in figure 4.29, the new average values for C; and

Cy are:

Cr; =173.6nm
(4.9)
g = —159.3nm
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Decomposition of the coma for the real data from the wavefront sensor
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And the corresponding standard deviations for C; and Cg are:

oc, = 90.7Tnm
(4.10)
ocy = 124.3nm

If gaussian distributions are assumed, the true value of C; is between C7 — 2;]%7

and O + 221 and Cg is between Cg — 20—01\;3 and Og + 22557 with a 95% confidence.

VN VN VN
Thus:

Cr;= 173.6 £27nm
(4.11)
Cy = —159.3 £ 37nm

Equations 4.11 correspond to move the prime focus corrector:
e In the ¥ direction by 0.78 + 0.18mm
e In the —y direction by 0.85 4+ 0.13mm

This section has shown that the equations developed in the previous section are
useful in the process of aligning the telescope. But they need to be used with caution
because as it was seen in this section, the system does not always behave as the model.
Here the astigmatism was to be decomposed in terms of its field dependencies so as
not to take into account the quadratic part in the alignment process.

The next chapter will use the same analysis which was performed for this system
but for a more complicated system where the theory on fifth order aberrations is to

be used.

"With N the number of measurements in the field so the number of stars
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Chapter 5

APPLICATION TO THE LSST

In this chapter a more complicated design is considered. It will be seen that
the method applied for the 90” telescope can be used in a similar way to the Large
Synoptic Survey Telescope (LSST) which presents a difficult alignment problem due
to the number of elements, the small f/# which is equal to 1.25, and the wide field
of view.

Because of the complexity of the system, it will be necessary to consider the
higher order aberrations which can not be neglected as for the 90” telescope. Thus,
the expressions of the Zernike polynomials which include the fifth order will have to
be used.

In a first section, the design of the telescope will be presented. Then a reverse
optimization alignment method which does not use the equations developed earlier
will be shown. Finally it will be underlined the efficiency of the technique used for

the 90” telescope compared to a ”brut force” method.

5.1 Design on the LSST

The optical design considered here and represented in figure 5.1 is the design
realized by LLNL under contract to NOAO in support of LSST. The starting point
of the design was a three-mirror telescope designed by Roger Angel et al. with a
centrally obscured, 3.0 degree full field of view, 8.4m aperture telescope that operates
at £/1.25. The instrument imaging assembly consists of two refractive correctors, a
group of interchangeable spectral filters and a 55cm diameter array of CCD detectors.
This instrument will be called later on: ”"the corrector”. It is placed in the shadow

of the secondary mirror obscuration. The central obscuration is about 50% by radius
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FI1GURE 5.1. Design of the LSST

which represents an effective area that is equivalent to a 7m unobstructed telescope.

For more details on the design of the system see [21].

5.2 Reverse optimization

To realize the alignment of the telescope it is not necessary to have all the tools
which were developed in the previous chapters and it is always possible to use a ”brut
force” which uses only numerical calculations. Of course this kind of approach is not
the best way to tackle the problem since no insights are gained but it allows to get
to a solution without a time consuming analysis.

This section will present how to realize this "brut force” analysis on a smaller

scaled version of the LSST by running Monte Carlo simulations.

5.2.1 Degrees of freedom considered for the analysis

The scaled version considered here is similar to the design presented in the previous

section. Thus the results shown here can be applied directly to the LSST.
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In this design, the primary mirror is considered as the reference. So, it will be
fixed and the other elements will be perturbed relative to it.

It is possible to consider a large number of degrees of freedom, but here only 19
will be considered.

For the bending modes, only the surface of the primary is considered. Since the
design here is a smaller version of the LSST, it will be necessary to account only
for the astigmatism (Z5 and Zg) and the trefoil (Z;9 and Z;1) which corresponds to
4 degrees of freedom. For the LSST it is necessary to consider 12 bending modes,
Z4-Z15, on the primary and also 6 modes, Z4-Zy on the secondary.

The other 15 degrees of freedom will be represented by the 3 decenters along each
axis and the tilts around the 7 and i axes for the other three elements. Because the

system is axially symmetric, a rotation around 2" has no effect.

5.2.2 Scheme of the analysis
The general procedure used here can be summarized into 5 steps:

1. Perturbation of each degree of freedom

2. Calculation of the wavefront of the perturbed system given by an optical soft-

ware
3. Simulation of the wavefront measurement by adding noise to the wavefront data
4. Estimation of the perturbations with optical software by using a Merit function
5. Correction of the perturbations with the previous estimation

During the first step, each degree of freedom is perturbed randomly in a rea-
sonable range in Zemax®. Then, the wavefront is calculated and a real wavefront
measurement is simulated by adding noise to the calculated wavefront. Then a merit

function is used with the unperturbed model of the telescope to get a combination of
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perturbations that will produced an identical wavefront so as to get an estimation of
the misalignments. And finally, the estimated perturbations are used to correct for
the misalignments. Since the problem is underconstrained, multiple combinations of
perturbations will produced the same wavefront. Therefore, the system will not con-
verge with one iteration considering also that some noise was added. Thus the process

will be repeated 5 times to see when the system converges to an aligned situation.

5.2.3 Starting point

As it was said before, the first step consists in randomly perturbing the system
for each degree of freedom. The random value RV is generated from a uniform
distribution with a value PV that is set for each degree as shown in table 5.1. RV is
defined as:

PV
RV =rand(PV) — - (5.1)

Where z — rand(z) represents a function which generates a random floating point

number uniformly distributed between 0 and x.

Element Degree of freedom PV

M1 Z5 and Zg .56um
Z10 and Zq; AT pm

M2, M3, corrector | DecX and DecY 400pm
TiltX and TiltY .0ldegrees

Spacings Distance M1-M2 148 um
Distance M2-M3 936 um
Distance last lens-focal plane | 4mm

TABLE 5.1. PV values for each degree of freedom

The contribution of all the perturbations produces a certain RMS spot radius at
the image plane. The distribution of the inital RMS spot radius for all the models

are represented in the histogram of figure 5.2.



102

25

20

Number of Models
=
ol

[
o

0 100 200 300 400 500 600 700 800
Initial RMS Spot Size (um)

FI1GURE 5.2. Distribution of the initial RMS spot radius for all the models

5.2.4 Results of the analysis

The scheme presented previously has been iterated five times and at the end for
the five iterations the RMS spot radius relative to the centroid was calculated for
each model. The different iterations are represented in figure 5.3 where the RMS
spot radius of the corrected system is a function of the initial value of the model. It
shows the improvement of the spot size at the image plane compared to the original
perturbed system. Note that for the unperturbed model, the spot size is equal to
1.8um.

Figure 5.3 shows that with the first iteration a lot of the models converge to a
small RMS spot radius close to the target value of the unperturbed system. Thus, this
analysis has shown that it was possible to align the telescope with a good accuracy
even if the original spot radius was large.

The same analysis on the original design of the LSST has been done by C. Claver
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and J.H. Burge [22]. Due to the different scale, only half of the models were converging
during the first iteration to a reasonable spot size. But after 5 iterations about 91% of
the models were meeting the requirements for the image spot size as shown in figure
5.4 which was taken from [22].

But this analysis does not account for the motions of the mirrors. Some of the
solutions use large tilts and decenters for the elements which may not be acceptable
for the real system from a mechanical point of view. Also, for the LSST the alignment
process can require five iterations and sometimes never meet the requirements if the
system is in a local minimum. Therefore the technique used for the 90” by fitting the
wavefront with the equations found in chapter 3 give better insight on the behavior
of the system and will lead to a better procedure. It is worth pointing out that it is
possible to align the telescope using only a numerical method but it is more efficient

to find a structured procedure.

5.3 Relations between the perturbations and the Zernike co-
efficients

The previous section has shown the limits of a numerical based method and the
importance to have some insight in the behavior of the system. Thus this section
will follow the same procedure that was used with the 90” in order to have a better
understanding of the behavior of the system.

The goal to perform a good alignment is to find the matrix A defined in equation
5.2 . Thus, by having a wavefront measurement for the real system, it will be possible
to determine the perturbations of the system by inverting the matrix. This matrix

represents the reconstructor of figure 4.1.
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_ ti“ -
-05- -a1,1 Q12 Q13 ... Q110 a1 G1,12- tﬁ”
Cs Q21 G292 A23 ... G210 Q211 (4212 di\;n
Cq asi as2 azsz ... agip 4zl 4312 dﬁ”
Cs Qg1 Q42 Q43 ... Q410 Q411 (A412 t?/?’
Co| _|asn as2 as3 ... G510 G511 G512 | @43 (5.2)
Cho B g1 Qg2 Qg3 ... Gg10 Ag,11  dg,12 di}“ '
Cia ar1  Gr2 A7z ... Qrio Q711 4712 di\,/[?’
C13 ag) Ggp Gg3 ... Agio Ag11 (812 tGorr
Cis ag1 Gg2 Q93 ... G910 G911 (912 tgo”'
| C7 | | @101 @102 @103 --- G10,10 Q10,11 (10,12 dgor
dC’orr.
Ly J

Where a;; (1 < i < 10, 1 < j < 12) are the components of the matrix A, d
and t represent respectively the decenter and the tilt, M2, M3 and Corr. represent
respectively the secondary, the tertiary and the corrector. Note that here, only 12
degrees of freedom were considered and it will be necessary later on to account for
the spacing errors and the bending modes of the primary and the secondary which
represent the more complex part in the alignment process'. Also, note that it was
assumed in equation 5.2 that the Zernike coefficients are linear with the perturbations.

Recalling the equations through fifth order of chapter 3 and summarized in section

!This part will not be realized in this thesis.
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3.4, the components of the matrix A are (V 1 <1i < 12):
ar; = xo(y' — %) = xa(2® + 29%) + xa(2®y + v°) + xa(2? + %) — x5(22%y)
+x6(y° = 2%Y) + x77 + x5y + Xo(—2 + ¥%) + X10¥ — X117 + X13
azs = 2x0(2%y + 29%) + x1(z%y + 1) + x2(2® + 27) + xs(2® + )
+ x5(xy? — 2%) + x6(22y%) + X7y — X5 + X022y + X102 + X11Y + X2
as; =& +2%Y) + G ay+ LY+ &y + & @+ Y) b — Gyt &

ag; =& +ay’) + G’ + ay+ G+ & (P +H YY) + Gyt S+ és 53

as; = po(y’ — 32°y) — 2may + pa(y® — 2%) + pzy — paz + i

ag; = po(3y°x — 2°) + i (y° — 2°) 4 po2zy + ps + pay + s

Q75 = N02TY + Y + N2T + 1y

as; = 1m0(y* — %) — M + 1y + 13

a9; = Ko + Ko

a10,; = KoY + K1

To create the matrix A, each degree of freedom has to be perturbed independently
and the corresponding Zernike coefficients has to be calculated. Here, the fifth order
aberrations have been considered with the third order terms since the system is a fast
wide field angle telescope with multiple elements.

Basically, the same procedure that was followed for the 90” will be used except
that each element will be perturbed about its vertex instead of the no coma point.
The reason for that is that there may not exist a single point where all the elements
can be perturbed about and introducing only one aberration.

The scheme will contain three major steps and will be done into Zemax® this

time but the same analysis has been done in Code V® (the macro in Zemax® for the

LSST can be found in Appendix G):

1. Perturb each element with two tilts around ¥ and ¢ and two decenters along ¥

and ¥
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FIGURE 5.5. Spot diagrams when the secondary is decentered by 1mm

2. Get the Zernike coefficients at different field positions

3. Fit the Zernike coefficients with a least-squares fit to find the reconstructor A

5.3.1 First step: Perturbation of each degree of freedom

To find the values of the reconstructor, each degree of freedom is perturbed inde-
pendently. As said before only the tilts and decenters of the mirrors and the corrector
are considered. For the decenters a value of 1mm is chosen and for the tilts, .1 degree

will be considered.

e Secondary mirror
Decentering the secondary by 1mm along & or i/ produces mostly constant coma
as shown in figure 5.5. The same cubic shape of the OPD plot in Zemax® for

all field points confirms this assessment.

Now if the mirror is tilted by .1 degree about its vertex around Z and ¥/, the spot

diagram of figure 5.6 will be observed. Again constant coma along ¥ and ¥ is
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FIGURE 5.6. Spot diagrams when the secondary is tilted by .1 degree
observed but here there is a factor 10 of difference in the spot radius compared
to the decenters and the patterns are rotated by 90°.
e Tertiary mirror
The same kind of spot diagrams for the decenters and the tilts are observed for
the tertiary (compared to the secondary). It is the same conclusion, coma is
the main contribution to the aberrated image.
e Corrector

For the corrector the effects of the perturbations are different. The decenters
will produce mainly a combination of astigmatism and coma as shown on the
spot diagram of figure 5.7. And the tilts will produce mainly field curvature

and astigmatism as shown on the spot diagram of figure 5.8.

The observations made here were really general. The effects of the higher order

were

tions

hidden by the large amount of the third order aberrations. And their contribu-
will be underlined in the third step by fitting the Zernike coefficients with the
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F1GURE 5.9. Positions of the field points in the image plane for the LSST

equations found in chapter 3.

5.3.2 Second step: Calculations of the Zernike coefficients for different

field positions

The focal length of the telescope is 10496.4mm and its field of view is equal to
+1.5°. Thus, the equivalent size of the image plane is defined by a circle with a radius
of 274.9mm.

Therefore, to account for a different variety of rays contained in this field of view,
the grid of field points represented in figure 5.9 is considered. The Zernike coefficients
are calculated at these field positions? so as to be fitted in the third step with their
field dependencies.

248 field points are considered here
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5.3.3 Third step: Least-squares fit to get the reconstructor

To find the coefficients a;; defined in equations 5.3 of the reconstructor, each
degree of freedom is perturbed independently so as to find one column at a time by
doing a least-squares fit with the Zernike coefficients calculated in the previous step
for the different field positions. To calculate the coefficients, a Matlab® program,
which can be found in Appendix H, was used.

Each element is tilted around Z and ¢ by .1 degree and decentered along z and ¥

by 1mm.

e Secondary mirror perturbed
When the secondary mirror is tilted around Z the following coefficients can be
calculated:
a1 =4164 - x
as; = 2069 —416.4 - y
asy = —177507 4 0.165 - y — 0.0119 - (2% + 4/?) + 0.466 - y
as; = —0.165 - v + 0.466 - x
asy = —0.181 -y + 0.0054 - (y* — 2?)
(5.4)
asy = —0.181 -z 4+ 0.0108 - zy
ar; =313+21-y
agp = —2.1-x
agy =0

10,1 = 2364.25
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The second column is given by tilting the secondary about ¥:
a12 = —416.4 - Y
A29 = —2069 — 4164 - x
(49 = 177507 + 0.165 - & + 0.0119 - (2® + y*) + 0.466 - x
aso = 0.181 -y + 0.0108 - 2y
(5.5)
aga = 0.181 - x — 0.0054 - (y* — 2?)

CL772 = —313 —f- 2]_ -

ago = 2.1- Yy
Qg2 = —2364.25
a102 =0

Then the third and fourth columns of A represented by equations 5.6 and 5.7

are calculated by decentering the secondary mirror along z and i respectively.

a3 =3.793 -y
azs = 3.793 - x
ags =0
as3 = —1755.24
assz =0
(5.6)
assz =0
a7z =0.054-x
agz = 0.054 -y
ag 3 = 60.64

a3 =0
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al4 = 3.793 -z

azy = —3.793 -y

a3 4 = —1755.24
(1474 =0
(15’4 = O
(5.7)
aga =0

Q74 = —0.054 - Yy

ag 4 = 0.054 - x
a9,4 = O
Q104 = 60.64

These coefficients correspond to the field dependencies of the Zernike coefficients
when the secondary is perturbed. Some examples of the graphical representation

of the fitted coefficients can be found at the end of this section.

Tertiary mirror perturbed

As it was done for the secondary mirror, the fifth and the sixth columns are
calculated by tilting the tertiary mirror around Z and ¢ respectively and the
seventh and eighth columns are found by decentering the tertiary along z and

i/ respectively. Their values are given in equations 5.8 through 5.11.
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ar5 = —130.6 - z — 0.000083 - (z* + zy?)

g5 = —5164 +130.6 - y + 0.0036 - (22 + y*) + 0.000083 - (z%y + y*)
azs = —186150 — 0.454 - y + 0.0277 - (v* + y*) — 1.12 - y + 0.0464 - ¢*
ag5 = 0.454 -2 —1.12 -z + 0.0464 - xy

ass = 0.545 - y — 0.0065 - (y* — 2?)

(5.8)
ass = 0.545 - v — 0.013 - zy
ars = —229+0.62 -y
ags = —0.62 -z
ags =0
a0 = —4315
a6 = 130.6 - y + 0.000083 - (y* + 2%y)
a6 = 5164 + 130.6 -  — 0.0036 - (2% + y*) + 0.000083 - (zy* + z°)
ase = 0.454 -y —1.12 -y — 0.0464 - zy
as6 = 186150 — 0.454 - & — 0.0277 - (z* + y*) — 1.12 - = — 0.0464 - 2
ase = —0.545 -y — 0.013 - zy
(5.9)

age = —0.545 - 2 4+ 0.0065 - (y* — 2?)
are =229+ 0.62 - x

age = 0.62 -y

ag = 4315

a10,6 = 0
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ar7 = —0.8997 - y

az7; = —0.8997 - x

ag7 = 0.00053 - zy

47 = —1237.7 4 0.0002936 - (2% + ?) + 0.00053 - 2.2

as7; = —0.000298 - zy

(5.10)
ag7 = 0.000149 - (y* — z?)
a77; =0.025-x
ag7 = 0.025 -y
ag7 = —25.88
a7 =0
arg = —0.8997 - x
agg = 0.8997 - y
azg = —1237.7 4 0.0002936 - (2 + y*) + 0.00053 - y*
ass = 0.00053 - 2y
asg = —0.000149 - (y* — 2?)
(5.11)

agg = —0.000298 - xy

arg = —0.025 - Yy

agg = 0.025 -z
g8 = 0
10,8 = —25.88

The coefficients calculated in this subsection correspond to the field dependen-

cies of the Zernike coefficients when the tertiary is perturbed.
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e Corrector perturbed
Finally, to find the values for the last four columns of A, the corrector is tilted
and decentered like it was done for the mirrors. The expressions of the last

columns are given in equations 5.12 through 5.15.

a19 = —38.35 - x + 0.000084 - (z* + xy?)

—38 +38.35 - y — 0.000084 - (z%y + )

2.9
aso = 869 + 0.006797 - (z* + y*) — 0.02109 - y
Qg9 = —0.02109 - Ty

asg = —0.00609 - (y* — 2?)

(5.12)
ago = —0.01218 - zy
a79 =127y
agg = —1.27-x
ago =0
Q10,9 = 0
ar10 = +38.35 -y — 0.000084 - (z%y + y*)
az10 = 38 + 38.35 -  — 0.000084 - (z* + zy?)
as 0 = 0.02109 - zy
as10 = —869 — 0.006797 - (z* + y*) + 0.02109 - 2*
as 10 = —0.01218 - zy
(5.13)

a.10 = 0.00609 - (y* — z?)
ario =127 -2

agqo = 1.27-y

ag 10 =0

10,10 = 0
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ayq1 = —0.705 - y

as11 = —0.705 - x

a1 = —0.000635 - zy

as11 = 160.56 — 0.0002345 - (2 + y*) — 0.000635 - 2>

511 = —0.00034 - Ty

(5.14)
a1 = 0.00017 - (y* — 2?)
ari1 = —0.0824 -y
agq11 = 0.0824 - x
ag11 =0
aipnn =0
ay2 = —0.705 -
a2 = 0.705 - y
az12 = 160.56 — 0.0002345 - (z* + y*) — 0.000635 - y*
as,12 = —0.000635 - zy
as12 = 0.00017 - (y* — 2?)
(5.15)

ag12 = 0.00034 - zy
azi2 = 0.0824 - x
ag2 = 0.0824 -y
ag12 = 0
a10,12 = 0
The coefficients calculated and shown here for the four last columns of the re-

constructor correspond to the field dependencies of the Zernike coefficients when the

corrector is perturbed.
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The coefficients a; ; introduced earlier correspond to the field dependencies of the
different aberrations. Some examples of their representations are shown in the follow-
ing pages where the original aberrations of the centered system have been removed
by subtraction. They have been represented with their magnitude and orientation by
using the results of Appendix F as it was done for the 90” telescope. Except for the
third order astigmatism and coma where the representation in polar coordinates is
used instead of the cartesian representation with the sine and cosine. It is different
for these two cases because there is some coupling between the fifth order and the
third order. The fifth order aberrations modify the expressions of the third order.
Since the important idea was to get a visual representation of the amount of each
field component, the simple polar representation was used. The Matlab® program
used for the graphical representation is the same that was used to have the numerical
values of the Zernike coefficients and can be found in Appendix H.

Since there is no point to show the representations for all the coefficients seen

previously, only some significant ones are presented here in figures 5.10 through 5.14.
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5.4 Simulation of the real system

To test the alignment process with the reconstructor calculated in the previous
section 5.3, wavefront measurements are simulated as if they were coming from the
real system. To realize this task, Zemax® is used.

The design in Zemax® is randomly perturbed for the 12 degrees of freedom con-
sidered in the previous section to simulate the perturbed system. Then, the Zernike
coefficients and the reconstructor are calculated at different field positions (48 points
are considered) which were represented earlier in figure 5.9. After that, the pertur-
bations can be calculated with the values of the Zernike coefficients by using a least
squares fit because the expressions of the matrix A (the reconstructor) is known.
Then to test if the calculated perturbations are right, the design is corrected with
these predicted misalignments and the RMS spot size at the image plane is compared
with its original value before the correction. The procedure can be summarized with

the following four steps:

1. Randomly perturb the model
2. Calculate the Zernike coefficients for 48 field positions
3. Calculate the perturbations with a least squares fit

4. Evaluate the image quality with the ”corrected” system

It was not done here but to simulate a real wavefront measurement from the
system, some noise needs to be added to the values of the Zernike coefficients as it
was done for the "reverse optimization” technique.

The first, second and fourth steps have been done with Zemax®’s macros and they
can be found in Appendix I. The third step has been done with a Matlab® program
and can be found in Appendix J.
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5.4.1 Original models considered for the alignment procedure

To evaluate the performance of the perturbed models which will be considered for
the simulation, a merit function, which contains the RMS spot size for different field
points, is created. The field points used to create the merit function are shown in
table 5.2 where Hx represents the field position in the ¥ direction and Hy the field

position in the ¢ direction.

Point number | Hx | Hy
1 010
2 0 |02
3 0 (04
4 0 0.6
) 0 (0.8
6 0 1
7 02] 0
8 041 0
9 06| 0
10 081 0
11 1 0

TABLE 5.2. Field positions considered for the merit function

For the simulation, 100 models are generated and their merit function values in

pum are represented in the histogram of figure 5.15.

5.4.2 Results after the correction

After the perturbations have been calculated with a least squares fit by using the
values of the Zernike coefficients, they are entered in the perturbed models and the
merit function is calculated so as to see if the misalignments have been well predicted.
The results are shown in figure 5.16 were the initial merit function is represented
as a function of the solved merit function. The solved merit function is the merit
function that is calculated for the perturbed model after it has been corrected with

the predicted perturbations. If a model is under the solid line of figure 5.16 the
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F1GURE 5.15. Histogram representation of the values of the initial merit functions
for the 100 perturbed models.

system has improved and if it is above it has degraded. The dashed horizontal line
corresponds to the unperturbed merit function target.

Figure 5.16 shows with one implementation of the procedure that the models
converge to the target value. But they do not converge enough. Thus, a second
iteration of the process was realized and represented in figure 5.17. On this last
figure, it is shown that the results have improved but not enough, they still do not
converge exactly to the target value. By looking at the remaining aberrations in
the ”"corrected” models, the field curvature was dominant. Therefore the fact that
the values do not converge exactly it is due to the field curvature that has not been
consider in the expression of the reconstructor. Thus for the alignment process it will
be necessary to consider Z, by using its expression in a perturbed system which was

developed in Chapter 3.
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FIGURE 5.17. Results of the alignment process for the LSST for the second iteration
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Chapter 6

CONCLUSION

This thesis has shown that it was possible to develop the expressions of field
dependencies for the Zernike polynomials to fully describe misaligned system. And
that it was possible to use them as a tool to retrieve the perturbations present in a
given system.

Also, it was shown that this procedure to analyze a misaligned system gives a
good insight and ease the procedure to align a system. It allows to detect immediately
possible sources of error during an alignment procedure compared to a ”brut force”
method where only numerical calculations are considered. Moreover, as it was shown
with the 907, it allows to minimize the effects of the noise and to make an alignment
analysis even if a centered system contains original aberrations.

Some future work need to be done to fully describe the alignment process of the
LSST by including the field curvature. Also, the errors in the spacings have not been
included in the process. That should be straightforward to investigate by considering
the expressions of Cy (Zernike coefficient for the defocus). Then, it could be interesting
to analyze the bending modes of the mirrors by developing a new set of equations that
were not developed in this thesis. Furthermore, the effects of the different degrees of
freedom can be analyzed more clearly by doing a single value decomposition of the
reconstructor. Then to really test the procedure an analysis which consider the noise
in the measurements should be performed. But this last part should not really affect
the results since the method applied in this thesis already accounts for the noise.

To conclude, the equations developed in this thesis in terms of field dependencies
have shown their convenience in an alignment process to get insight. But they can

also be applied in a tolerance analysis or during the design of unobstructed systems.
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Appendix A

DERIVATIONS OF THE WAVEFRONT EXPANSION AT THE
MEDIAL FOCUS

The wavefront expansion at the sagittal focal surface when only field curvature and

astigmatism are considered is:
W = W220H2p2 + W222H2p2 COS2 gb (Al)

The medial surface is obtained from the coefficient Wasg,, = Wago + %WQQQ. Thus to
express the wavefront relative to the medial focal plane, the trigonometric relation
cos? ¢ = 5 + 3 cos 2¢ is used in equation A.1:
2 2 2 of1 1
W = WQQ()H 1% + WQQQH 1% 5 + 5 COS 2@5
1
= Waso,, H*p* + §W222H2P2 cos 2¢

In the vector notation, the wavefront is expressed as:

Lo 1 .
W = WQQOM (H . H) (ﬁ ﬁ) + §W222(H2 52) (AS)
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Appendix B

DESIGN OF THE 90” TELESCOPE

SURFACE DATRE STMMARY:

Surf Type Conmemnt Radius Thickness Glass Diamster Conic
0BT STANDARD Infinity Infinity u] u]
1 ZTANDARD Infinity u] MIRROR u] u]

Z ZTANDARD Infinity -400 2461 4F u]

3 ZTANDARD Infinity -g00 2450003 u]

4 BTANDARD Infinity —-5000 z4z27 171 u]
ST0 STANDARD PRIMARY 1zZ1E3 4954422 MIRROR ZZ8E -1l.0&4¢8
& ETANDARD DUMMY L Infinity o E71l.8458 o

7 COORDERK - o - -

2 ETANDARD DUMMY 2 Infinity o E71l.8458 o

9 ETANDALRD LENS 1 SZl.88c 4267 EILICA EZ0 o
10 STANDARD g13.0%9 4739 Eoo u]
11 STANDARD Infinity u] 354 _9686 u]
1Z ETANDARD LENE Z 112e._38 12.1 SILICRE 2E0 u]
12 ETANDARD F1E_EZ 441 63 210 —0.z249087
14 ETANDARD Infinity u] E93_ 32061 u]
15 ETANDARD LENE 32 478 _E3 30021 SILICRE Zel u]
lé ETANDARD Infinity 137 _17E8 Zel u]
17 ETANDARD Infinity =0.131&008 Z13_4136 u]
12 ETANDARD FILTER Infinity g SILICRE E13_dEdE u]
1% STANDARD Infinity 12 Z11.3761 u]
£0 STANDARD LENS 4 Z370.5 ZE. 5 SILICRE Z5E u]
£1 STANDARD Infinity 5 Z5E u]
IMA STANDALERD Infinity 195 _ZE1z u]
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CopE V® CONVENTIONS FOR TILTS

+y'

Aty .

+z

Positive alpha (o)
Tilt in ¥-Z plane
(Raotate about X axis)
(most common)

Motes:

Tilis are in degrees

+x

+y

Positive beta (B)
Tilt in X-Z plane
(Rotate about Y axis)

.Y and 7 decenters are 1n lens units

Decentrations are pertormed first, then ADE, then BDE, then CDE, then

refract/reflect

For REY surface first refract/reflect. then tilt -CDE, then -BDE, then -ADE, then
decenter with reversed signs (-XDE, -YDE, -ZDE})

+z

+X

Ful
+y'

+z

Positive gamma ()
Tilt in X-Y plane
(Rotate about Z axis)

Ficure C.1. Tilt definitions for tilt(ADE), tilt(BDE) and tilt(CDE).
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Appendix D

MACRO IN CODE V® FOR THE ALIGNMENT OF THE 90”

'Purpose of the macro:

]

!The general goal of this macro is to perturb the corrector of the 90" telescope
!for all its degrees of freedom and calculate the Zernike coefficients for

150 different field positions when the system is perturbed.

!The values of the Zernike coefficients are then stored

lin 4 different ASCII files (extension .dat) so as to be

lused later on with Matlab. The 4 files correspond to the 2 tilts and the 2
!decenters. Note the use of the GOTO statements. It is never suitable to use them
'in a program but they were used here as a subroutine. After the execution of the
lpart of the macro that goes with the GOTO, the macro comes back to the point
!where the GOTO was called.

]

! Regis Tessieres - September 24th 2003
RN NN NN RN NN RN NN RN NN N RN NN RN NN RN RN RN RN AN NN NN RN

'Definitions of the field points!
RN ERRR RN RN RN RN RN R RE RN

“FIELD==0 !Iniatialization of the variable "“FIELD which will be used as a counter

IThe first set of 25 field points are entered (Code V can only defines 25

Ipoints at a time)

XRI 0 O -40 -20 O 20 40 -30 ~-10 10 30 -40 -20 0 20
40 50 -30 -1010 30 -60 -50 -40 -20

YRI 60 50 40 40 40 40 40 30 30 30 30 20 20 20 20 20

10 10 10 10 10 0 O O O

“FIELD==

!The variable "“Field is increment to keep track that the first set of field

!points have been defined

GOT MAIN

'After the definition of the first points, the macro goes to the main

!part of the program

LBL FIELD_2 !'After the main part of the program has been executed
'the macro comes back to this point
“FIELD==2 !The variable “Field is increment to keep track
'that the second set of field points have been defined
!The last set of 25 field points are entered
XRI 0 20 40 50 60 -30 -10 10 30 -40 -20 O 20 40 -30
-10 10 30 -40 -20 O 20 40 O O
YL 0 0 0 o o0 -10 -10 -10 -10 -20 -20 -20 -20 -20 -30
-30 -30 -30 -40 -40 -40 -40 -40 -50 -60
GOT MAIN !After the definition of the last set of points,
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'the macro goes to the main part of the program again

IMain part of the macro: the correcto is perturbed with tilts and decenters!
RN R R R R R RN RN RN RN R R R R RN RN RN R RN NN R R R RN RN RN NN NE]

LBL MAIN

"STEP==0 !Initialization of the counter ~STEP
ADE s7 O;BDE s7 0;XDE s7 O;YDE s7 O

!The decenters and tilts are initialized to O

ADE s7 .1 !'Alpha tilt of .1 degree at the no coma point

“STEP==

GOT ANALYSIS !Go to the subroutine analysis which allows
'to calculate the Zernike coefficients for coma
'and astigmatism and store them into an ASCII file

LBL STEP_1 'After the Zernike coefficients have been calculated
'and stored the macro comes back here

ADE s7 0 'Put back the alpha tilt to zero

BDE s7 .1 !Beta tilt of .1 degree

~“STEP==2

GOT ANALYSIS !Go to the subroutine analysis which allows
'to calculate the Zernike coefficients for coma and astigmatism
! and store them into an ASCII file

LBL STEP_2 'After the Zernike coefficients have been calculated and
Istored the macro comes back here

BDE s7 O IPut back the beta tilt to zero

XDE s7 1 !'Decenter of 1 mm in the x direction

“STEP==3

GOT ANALYSIS !Go to the subroutine analysis which allows
'to calculate the Zernike coefficients for coma
'and astigmatism and store them into an ASCII file

LBL STEP_3 I'After the Zernike coefficients have been calculated
land stored the macro comes back here

XDE s7 O 'Put back the decenter in the x direction to zero

YDE s7 1 !Decenter of 1mm in the y direction

“STEP==4

GOT ANALYSIS !'Go to the subroutine analysis which allows
'to calculate the Zernike coefficients for coma and astigmatism
'and store them into an ASCII file

LBL STEP_4 'After the Zernike coefficients have been calculated
'and stored the macro comes back here

YDE s7 0 'Put back the decenter in the y direction to zero

ILittle loop to know which field set have been defined so as to know
lof the macro needs to redo the analysis for
'the second set or of it is the end of the program



IF "“FIELD=1
GOT FIELD_2
ELSE
GOT END
END IF

ISubroutine ANALYSIS!
NEENERRERRERERRERERE

IThis subroutine allows to calculate and store the zernike
lcoefficients for coma and astigmatism
LBL ANALYSIS

FOR ~“field_num 1 25 1
ICalculation of the Zernike coefficients
~Z_5==ZFRCOEF(1, “field_num, 1, 5, 121, 37, ’ENP’)
~Z_6==ZFRCOEF (1, “field_num, 1, 6, 121, 37, ’ENP’)
~Z_7==ZFRCOEF(1, ~“field_num, 1, 7, 121, 37, ’ENP’)
~Z_8==ZFRCOEF (1, “field_num, 1, 8, 121, 37, ’ENP’)
'Loop to store the data into ASCII files
IF ~STEP=1

!'The data for the alpha tilt

OPE APP U”unit_align AlignPFC_TiltX_0Opt

134

WRI UTunit_align (XRI F~field_num) (YRI F"field_num) ~Z_5%550/sqrt(6)

~Z_6%x550/sqrt (6) ~Z_7*550/sqrt (8) ~Z_8%*550/sqrt (8)
CLO Utunit_align

ELSE IF ~“STEP=2
IThe data for the beta tilt
OPE APP Uunit_align AlignPFC_TiltY_Opt

WRI Utunit_align (XRI F"field_num) (YRI F"field_num) ~Z_5%550/sqrt(6)

~Z_6%550/sqrt (6) ~Z_7*550/sqrt (8) ~Z_8*550/sqrt (8)
CLO UTunit_align

ELSE IF "STEP=3
!The data for the decenter along the x direction
OPE APP UTunit_align AlignPFC_DecX_Opt

WRI Utunit_align (XRI F"field_num) (YRI F"field_num) ~Z_5%550/sqrt(6)

"Z_6%550/sqrt (6) ~Z_T7%550/sqrt(8) ~Z_8%550/sqrt (8)
CLO UTunit_align

ELSE IF ~STEP=4
!'The data for the decenter along the y direction
OPE APP UTunit_align AlignPFC_DecY_Opt

WRI U unit_align (XRI F~field_num) (YRI F field_num)  ~Z_5%550/sqrt(6)

~Z_6%x550/sqrt (6) ~Z_7*550/sqrt (8) ~Z_8x550/sqrt (8)
CLO Utunit_align



ELSE

END IF
END FOR

'Loop to know which perturbation is studied

IF ~STEP=1

GOT STEP_1

ELSE IF
GOT
ELSE IF
GOT
ELSE IF
GOT
ELSE

END IF

LBL END !End of the program

“STEP=2
STEP_2
“STEP=3
STEP_3
“STEP=4
STEP_4

135
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Appendix E

MATLAB® PROGRAM FOR THE 90” TELESCOPE
ALIGNMENT

% pfc: Program to fit the data from a ray tracing program or a wavefront

% sensor by using a least squares fit with the equations of the Zernike

% coefficients in misaligned systems.

)

%0utput: Coefficients of each field dependence for coma and astigmatism and
%graphical representation of each field dependence.

b

% Regis Tessieres - September 24th 2003

format long %Double precision
clear all

%Load file selected by the user
[filename, pathname] = uigetfile( ... {’*.txt;*.dat;*.xls’,’ASCII
Files (*.txt;*.dat;*.xls)’;

Y% .txt’, ’Text files (*.txt)’;

’x.dat’,’Data files (*.dat)’;

’x.x1s’,’Excel files (*.x1ls)’;

Yx.%7,  2A11 Files (*.*)’},

’Select an ASCII file’);

%Store the values of the file into a matrix D
D= importdata(filename,’\t’);

%Get the number of points

nbpoints=size(D); nbpoints=nbpoints(1);

Y%read the data in the fileJ,
Tototo fotoTo 1o o To foTo Tod oo To fo o Yot oo o o o o

%initialization of the variables
zZ56=[1; z5=[1; z6=[1; Z78=[1; Z7=I[1; Z8=I[1;

for i=1:nbpoints

%Store the values of astigmatism

z5(i)=D(i,3);

z6(i)=D(i,4);

#Calculation of the amplitude and the orientation for astigmatism
amplZ56(i)=sqrt(z5(i)."2+z6(i)."2);
phiZ66(i)=1./2.*atan2(z6(i),z5(i));

Z5=[25;2z5(1)];
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76=[26;z6(i)];
Z56=[256;25(i) ;z6(i)]1;

%Store the values of coma

z7(i)=D(i,5);

z8(i)=D(i,6);

%Calculation of the amplitude and the orientation for coma
amplZ78(i)=sqrt(z7(i)."2+z8(i)."2);
phiZ78(i)=atan2(z8(i),z7(i));

Z7=[Z7;z7(i)];

z8=[28;28(1)];

Z278=[Z78;z7(1) ;28(1)];

x(1)=D(i,1);
y(i)=D(i,2);
end
%Conversion to vector
x=x’; y=y’; amplZ56=amplZ56’; phiZ56=phiZ56’; amplZ78=amplZ78’;
phiZ78=phiZ78’;

ToloTototo o oo ToToToo to o o To ToTo o o o o o To To oo o oo o o To T o o o o o o To oo oo o o o To o o oo o o o To o o oo o o To T o o oo o o To T o o oo o o o

/%Creation of the matrix and Least-squares fit (LSF) for the zernike coefficients}

%Matrix for the LSF for Astig3 (third order astigmatism)
MAstig3=[]; %initialization of the matrix for Astig3 (z5 and z6)

for i=1:nbpoints
M1=[0 1 x(i) y(i) 2.*x(i).*y(i)];
M2=[1 0 y(1) -x(i) ((y(1))."2-(x(i))."2)];

A=[M1;M2];
MAstig3=[MAstig3;A];
end

%least-squares fit for z5 and z6 (Output of the program)
RAstig3=MAstig3\Z56

%Matrix for the LSF for Coma3 (third order coma)Y
MComa3=[]; %initialization of the matrix for Coma3 (z7 and z8)
for i=1:nbpoints

Mi1=[1 0 x(i)];
M2=[0 1 y(i)];

A=[M1;M2];
MComa3=[MComa3;A] ;

end
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%least-squares fit for z7 and z8 (Output of the program)
RComa3=MComa3\Z78

To1oTototo o oo ToToTo o o o o ToTo oo o oo o ToTo oo o o o T ToTo oo oo o o To oo o oo o o To o oo o o To To o o oo o T To T o o oo o o Fo o o o
To1oToto o o oo ToTo oo o o o o ToToTo o o o o fo o Too o o oo oo To o fo o o o o ToTo o fo o o o o To oo fo o o o ToTo oo o o o o ToFo o fo oo o o Fo oo o

%Graphic representation of the 5 aberrations with their fit for astigmatism
%Astig3

%Constant part

B=ones(nbpoints); B=B(:,1); Zbcst=RAstig3(2).%*B;
Z6cst=RAstig3(1) .*B;

%Amplitude of the constant part
amplcst=((Z5cst) . 2+(Z6cst) ."2) . " (1./2);
%0rientation of the constant part
phicst=1./2.*atan2(Z6cst,Zbcst) ;

%Linear part 1
Z51in1=RAstig3(3) . *x+RAstig3(4) . *y;
Z61in1=RAstig3(3) .*y-RAstig3(4) .*x;
%Amplitude of the linear part
ampllini=((Z61linl)."2+(Z51in1).~2).~(1./2);
%0rientation of the linear part
philinil=1./2.*atan2(Z61in1,Z51inl);

%Quadratic part 1

Zbquad1=RAstig3(5) .*2.*x.*y; Z6quadl=RAstig3(5).*(y."2-x.72);
%Amplitude of the quadratic part
amplquadl=((Z6quadl) .~ 2+(Z5bquadl)."2) . (1./2);

%0rientation of the quadratic part
phiquadl=1./2.*atan2(Z6quadl,Z5quadl) ;

%Residual part

Z5res=75-7Z5cst-251inl-Z5quadl; Z6res=7Z6-Z6cst-Z61linl-Z6quadl;
%Amplitude of the residual astigmatism
amplres=((Z6res) . 2+(Zbres)."2).7(1./2);

%0rientation of the residual astigmatism
phires=1./2.*atan2(Z6res,Zbres) ;

%Creation of the plot with the 5 graphs

figure subplot(2,3,1)

quiv(x,y,1./10.%amplZ56.*cos (phiZ56),1./10.*amplZ56.*sin (phiZ56),0) ;
axis square title([’Original data for Astig3 of ’,filename]);
xlabel(°X position (mm)’); ylabel(’Y position (mm)’); axis([-100
100 -100 100]);

subplot(2,3,2)
quiv(x,y,1./10.*amplcst.*cos(phicst),1./10.*amplcst.*sin(phicst),0);
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axis square title(’Constant fit’); xlabel(’X position (mm)’);
ylabel(’Y position (mm)’); axis([-100 100 -100 100]);

subplot(2,3,3)
quiv(x,y,1./10.*ampllinl.*cos(philinl),1./10.*ampllinl.*sin(philinl),0);
axis square title(’Linear fit’); xlabel(’X position (mm)’);

ylabel(’Y position (mm)’); axis([-100 100 -100 100]1);

subplot(2,3,4)
quiv(x,y,1./10.*amplquadl.*cos(phiquadl),1./10.*amplquadl.*sin(phiquadl),0);
axis square title(’Quadratic fit’); xlabel(’X position (mm)’);

ylabel(’Y position (mm)’); axis([-100 100 -100 100]1);

subplot(2,3,5)
quiv(x,y,1./10.*amplres.*cos(phires),1./10.*amplres.*sin(phires),0);
axis square title(’Residual Astig3’); xlabel(’X position (mm)’);
ylabel(’Y position (mm)’); axis([-100 100 -100 100]1);

Tototo fotoTo To o To foTo To o Fo o To Vo To FoFo Fodto T o To fo o Voo oo o o o o Fo Foto o o o fo o Foto oo o Yoo fo o Foto o o o fo o Fo o Fo o o oo Fo o Fo o o
%Coma3

%Constant part
Z7cst=RComa3(1) .*B; Z8cst=RComa3(2) .*B;

%Linear part 1
Z71in1=RComa3(3) .*x; Z8linl=RComa3(3).x*y;

%Residual part
ZT7res=727-Z7cst-Z271inl; Z8res=728-Z8cst-Z8linl;

%Creation of the plot with the 4 graphs

figure subplot(2,2,1) quiv(x,y,1./10.%Z7,1./10.%Z8,0); axis square
title([’Original data for Coma3 of ’,filename]); xlabel(’X
position (mm)’); ylabel(’Y position (mm)’); axis([-100 100 -100
1001) ;

subplot(2,2,2) quiv(x,y,1./10.*Z7cst,1./10.*Z8cst,0); axis square
title(’Constant fit’); xlabel(’X position (mm)’); ylabel(’Y
position (mm)’); axis([-100 100 -100 100]);

subplot(2,2,3) quiv(x,y,1./10.%Z71in1,1./10.%Z81in1,0); axis
square title(’Linear fit’); xlabel(’X position (mm)’); ylabel(’Y
position (mm)’); axis([-100 100 -100 100]);

subplot(2,2,4) quiv(x,y,1./10.*%Z7res,1./10.%Z8res,0); axis square
title(’Residual Coma3’); xlabel(’X position (mm)’); ylabel(’Y
position (mm)’); axis([-100 100 -100 100]);
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Appendix F

CALCULATIONS OF THE AMPLITUDE AND THE
ORIENTATION WITH THE ZERNIKE COEFFICIENTS

F.1 Third order aberrations

Since only third order coma and astigmatism are analyzed for the alignment of the
90” telescope, the calculations to find the amplitude and the orientation will be done

only for these two aberrations.

F.1.1 Third order astigmatism

The expression of the wavefront error in terms of Zernike considering only third order
astigmatism is:
AW = Cs - V6p? sin 2¢ + Cg - V6p? cos 2¢
= V6p?% - (05 sin 2¢ + C cos 2gz§)
By using the relation acosz + bsinz = v/a? + b2 - cos (z — tan~'(2))! equation F.1

(F.1)

can be rewritten as:

AW = p*V/64/(C5)2 + (Cg)? - cos (2(¢ — %tan1 %Z)) (F.2)

Then by using the trigonometric relation cos 2¢ = 2 cos? ¢ — 1, equation F.2 becomes:

1 C
AW = p'V6y/[Co + (G - 2c0s” (¢ — S tan™" 22 ) = p*V6/ (G5 + (Co)? (F-3)
6
The second term in equation F.3 is for defocus, thus only the first is considered for
astigmatism. From equation F.3 the magnitude and the orientation for third order
astigmatism can be derived:

{M =26 \/(C5)% + (Co)? (.4

o 1...-1Cs
A—Ztan o

IThis equation will also be used in the expressions of the next aberrations for simplification
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F.1.2 Third order coma

The expression of the wavefront error in terms of Zernike considering only third order

coma is:
AW = C7 - V8(3p® — 2p) sin ¢ + Cs - V8(3p® — 2p) cos ¢

= V/8(3p" — 2p)(Cr sin ¢ + Cs cos ¢)
= VB(3p" — 200/ ()7 ¥ (Co)Pcos (6 — tan™ O

Cs (F.5)
= V8- 3p>\/(C7)% + (Cs)? cos <<b — tan~! %)
— V8- 2p\/(C7)? + (Cs)? cos ((b — tan™! %)

The last term of equation F.5 is tilt. Thus only the first term is considered to get
the magnitude and the orientation of third order coma:

{M g e (F.6)

_ 10y
A = tan o

F.2 Fifth order aberrations

When the fifth order is considered, it is more complicated in the sense that fifth
order aberrations will also create third order aberrations as it will be seen in the
calculations.

Here only third order astigmatism and coma, trefoil and fifth order astigmatism
and coma will be considered since they are the only aberrations considered for the

alignment of the LSST.
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F.2.1 Third order astigmatism

By considering the contributions of third order and fifth order astigmatism, the wave-

front error can be written as:

AW = Cs - V6p? sin 26 + Cs - V6p? cos 2¢ — 3v/10 - Cap? cos 26 — 3v/10 - Cy3p? sin 2¢
= p2 [(\/6 C5 — 3\/1_0 013) sin 2¢ + (\/6 CG - 3\/1_0 012) COS 2¢]
= 1 (VB Cs = 3VI0 i) + (V6 Gy — 3VI0 Ca)?

V605 = 3V10C3
- cos | 2¢ — tan
V6 Cs — 310 Cyy
(F.7)
By considering only the components for third order astigmatism:
AW =202/ (V6 C5 — 3V10 C1s)” + (VB g — 3VI0 1)
9 1 1 \/605 — 3\/% 013 (F8>
-cos” | ¢ — = tan
2 V6 Cs = 3v10 Gz
Thus, the magnitude and the orientation of third order astigmatism are:
M =2\/(VBC5 — 3VI0Chs)’ + (VB Co — 30 Cr)” F9)

1 -1 V6C5—-3vV10C13
A= 2 tan V6 Cs—3v/10C12

F.2.2 Third order coma

By considering the contributions of third order and fifth order coma, the wavefront
error can be written as:

AW = C7V8(3p® — 2p) sin ¢ + Cs V8(3p* — 2p) cos ¢
—12V12 016p3 cos ¢ — 12v12 C’17p3 sin ¢

By considering only the components for third order coma, the wavefront error can be

(F.10)

rewritten as:

AW = p*|(3v/8 Cr — 12V12Cr) sin 6 + (3vB Cs — 1212 Cy) cos |

_ ,03\/(3\/§ C, — 12\/ﬁ017)2 + (3\/508 —12V12 016>2 (F.11)
( L 3VEC; — 1212 017>
-cos | ¢ — tan

3vV8 (s — 1212 Cyg
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Thus the magnitude and the orientation of third order coma are:

— \/(3\/§C7 —12V12Cy7)* + (3VR Cs — 12¢/12 Cyg)°

_ —1 3v/8C7—12V/12C17
A = tan 3v8Cs—12v/12Ci6

(F.12)

F.2.3 Trefoil

The expression of the wavefront error in terms of Zernike considering only trefoil is:

AW = p? \/g(Cg sin 3¢ + C'g cos 3¢)

=p’ V8- (\/(09)2 + (C19)? - cos {3 (gb — %tan—l ﬁ)}) (F.13)

Cho

By using the trigonometric relation cos3x = 4cos®z — 3cosz and considering only

the components for trefoil, the wavefront error can be expressed as:

AW = p?8v2+/(Cy)2 4 (C1)? - cos® ((b — étan_l g—g) (F.14)
10

Thus the magnitude and the orientation of trefoil are:

{ =8v2/(Cy)2 + (Ch9)? (F.15)
A

_ 1 —1 CQ
== tan Cro

F.2.4 Fifth order astigmatism

The expression of the wavefront error in terms of Zernike considering only fifth order

astigmatism is:
AW = 4V10 p4 cos2¢ Cho + 4v/10 p4 sin 2¢ C'3
= 4V10p" - (C13 cos2¢ + Cy38in 20) (F.16)

V1 1 C
= 4v10p \/ C12)% + (C13)? - cos{ (¢—§tan_1 C_li%ﬂ
12

By using the trigonometric relation cos2¢ = 2cos?¢ — 1 and considering only fifth

order astigmatism, the wavefront error can be expressed as:

1
AW = 8v10p \/ C12)? + (C43)?% - cos <gb — —tan~! %> (F.17)
2 Cho
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Thus the magnitude and the orientation of fifth order astigmatism are:

—8\/_\/ Ch2)? + (Ci3)?
A

Vew (F.18)

1
—2tan Cra

F.2.5 Fifth order coma

The expression of the wavefront error in terms of Zernike considering only fifth order

coma is:
AW = 10V12p° - (Ci6 cos ¢ 4 Cy7 sin ¢)
= 10V12p° V(C16)2 + (C17)? - cos (¢—tan

Cie

According to equation F.19, the magnitude and orientation of fifth order coma are:

{ —10\/_\/016 + (Ci7)?

(F.20)

-1 Ci7
A = tan o
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MACRO IN ZEMAX® FOR THE LSST
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!This macro defines 48 points, calculate the Zernike coefficients for these points
'and store the data

linto an
1

ASCII file defined by the user.

! Regis Tessieres - September 24th 2003

path$ = "c:\LSST\analysis\"

'Define the path where the file is going to be stored

REWIND

INPUT "Enter the name of the output file:" , filename$

'Pop up window to ask for the file name

outfile$

= path$ + filename$ + ".dat"

PRINT outfile$
pi=4*ATAN(1)
Definition of pi to use it later on

IFirst set of field points (Only 12 field points can be defined at a time)

NUMFIELD
1fix the

FTYP=0
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY

NN OO0 OO P OWWNNDNRE R
1

12
number of field and define each field



FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT

!Optimize the system to have the best focus

© © ©W 0 0 0 N

10
10
11

11 =

11

12 =
12 =

12

OPTIMIZE 5

!Update the windows

UPDATE ALL
GOSUB ZERN

1Go to the subroutine Zern to calulate and store the zernike coefficients

FTYP=
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT

0
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
8
8
8

= O |
- O
[¢2 I
(2]

|
o

o .
N
o

P OFRRPLPOOFRPROOFrR OO OO O
(¢}

= O |
-
o
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FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT

© © ©

10 =
10 =

11
11

11 =
12 =
12 =
12 =

!Update
UPDATE ALL
GOSUB ZERN
1Go to the subroutine Zern to calulate and store the zernike coefficients

FTYP=
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT

© ©O© O© 00000 NN D PWWWNNNERE, R~~~ O

=
o O

10

the windows

.25

.75

]
OFrRrPr OFRr P OOFrF OOFr OO OO

I
|
—
o
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FLDX
FLDY
FWGT
FLDX
FLDY
FWGT

11
11
11
12
12
12

I'Update
UPDATE ALL
GOSUB ZERN

1Go to the subroutine Zern to calulate and store the zernike coefficients

FTYP=
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT

© ©O© O© 00000 NN OO PP WWWNNNERE, =P~ O

=
o O

10
11
11
11
12
12
12

the windows

-0.25
-0.5

-0.5

0.25
-0.5

0.5
-0.5

0.75

-0.75

-0.25
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!Update the windows
UPDATE ALL

GOSUB ZERN
1Go to the subroutine Zern to calulate and store the zernike coefficients

END

!Subroutine to get the Zernike polynomial and store them into a file

SUB ZERN
OUTPUT outfile$ APPEND

FOR j=1,12,1
GETZERNIKE 17,1,3,3,1,0
PRINT TANG(FLDX(j)*pi/180)*10496.5," ", TANG(FLDY(j)*pi/180)*10496.5,
" " VEC1(12)*550/sqrt(3)

NEXT

OUTPUT screen
RETURN



Appendix H

MATLAB® PROGRAM FOR THE LSST ALIGNMENT

% lsstC: Program to fit the data from a raytracing program or a wavefront
% sensor by using a least squares fit with the equations of the Zernike

% coefficients in misaligned systems.

h

%0utput: Coefficients of each field dependence for each aberration and
%graphical representation of each field dependence.

)

% Regis Tessieres - September 24th 2003

format long
clear all

%Load file selected by the user
[filename, pathname] = uigetfile(
{’*.txt;*.dat;*.x1s’,’ASCII Files (*.txt;*.dat;*.xls)’;
Yx . txt’, ’Text files (*x.txt)’;
’x.dat’,’Data files (*.dat)’;
’x.x1s’,’Excel files (*.x1ls)’;
>x.%7 2A11 Files (*.*)’},
’Select an ASCII file’);

%Store the values of the file into a matrix D when the system is perturbed
D= importdata(filename,’\t’);

nbpoints=size(D);

nbpoints=nbpoints(1);

%Load file of the centered system
[filenameO, pathname0] = uigetfile(
{’*.txt;*.dat;*.x1s’,’ASCII Files (*.txt;*.dat;*.x1ls)’;
Y% .txt’, ’Text files (*.txt)’;
’x.dat’,’Data files (*.dat)’;
’x.x1s’,’Excel files (*.x1ls)’;
Yx.%7,  A1]1 Files (*.*)’},
’Select the file for centered sys’);
%The values of the Zernike
%coefficients of the centered system willl be subtracted from the Zernike
%hcoefficients when the system is perturbed.
DO= importdata(filenameO,’\t’); %Store the values of the centered system.

Y%read the data in the file}
Tototo toto To o To o To T Fo To o To o To fo Fo Vot oo o o o o

%initialization
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z56=[];
zZ5=[1;
z6=[1;
Z78=[1;
zZ7=[1;
zZ8=[1;
Z910=[1;
Z9=[1;
Z10=[1;
Z1213=[];
z12=[];
Z13=[];
Z1617=[1;
Z16=[1;
Z17=[];

for i=1:nbpoints

%#Store the values for third order astigmatism and calculate its
%amplitude and orientation

z5(1)=D(i,3)-D0(4,3);

z6(1)=D(i,4)-D0(1,4);

amplZ56(i)=sqrt(z5(i) . 2+26(i)."2);
phiZb6(i)=1./2.*atan2(z6(i),z5(i));

25=[25;2z5(i)];

Z6=[26;26(i)]1;

756=[Z56;z5(i);z6(i)];

%Store the values for third order coma and calculate its
%amplitude and orientation

z7(i)=D(i,5)-D0(i,5);

z8(i)=D(i,6)-D0(i,6);
amplZ78(i)=sqrt(z7(i)."2+28(i)."2);
phiZ78(i)=atan2(z8(i),z7(i));

Z27=[27;z7(1)];

Z8=[78;z8(i)];

Z78=[278;z7(i);z8(i)];

%Store the values for trefoil and calculate its
%hamplitude and orientation
z9(i)=D(i,7)-D0(i,7);

z10(i)=D(i,8)-D0(i,8);

29=[29;z9(i)];

Z10=[Z10;z10(i)];
amplZ910(i)=sqrt(z9(i) . 2+z10(i)."2);
phiz910(i)=1./3.*atan2(z10(i),z9(i));
7910=[Z910;z9(i) ;z10(1)];

%Store the values for fifth order astigmatism and calculate its
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%amplitude and orientation
z12(i)=D(i,10)-D0(i,10);
z13(i)=D(i,9)-D0(i,9);
Z12=[Z12;2z12(i)];

Z13=[Z13;z13(i)];
amplZ1213(i)=sqrt(z12(i) . 2+z13(i)."2);
phiZ1213(i)=1./2.*atan2(z12(i),z13(i));
71213=[Z1213;z12(i) ;z13(i)];

%Store the values for fifth order coma and calculate its
%amplitude and orientation

z16(i)=D(i,12)-D0(i,12);

z17(i)=D(i,11)-D0(i,11);

Z16=[216;z16(i)];

Z17=[Z217;z17(i)];

amplZ1617 (i)=sqrt(z16(i) . 2+z17(i)."2);
phiZ1617(i)=atan2(z16(i),z17(i));
Z1617=[21617;216(i);z17(i)];

%Store the field positions
x(1)=D(i,1);
y(1)=D(1,2);
end
%Conversion to vector
Xx=x’;
y=y’s
amplZ56=amplZ56’ ;
phiZ56=phiZ56’ ;
amplZ78=amplZ78’ ;
phiZ78=phiZ78’;
amplZ910=amplZ910°;
phiZ910=phiZ910’;
amplZ1213=amplz1213’;
phiZ1213=phiZ1213’;
amplZ1617=amplZ1617’;
phiZ1617=phiZ1617’;
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%Creation of the matrix and Least-squares fit (LSF) for the zernike coefficients

#Matrix for the LSF for Astig3 (third order astigmatism)
MAstig3=[]; Jinitialization of the matrix for Astig3 (z5 and z6)

for i=1:nbpoints
M1=[0 1 y(i) x(i) 2.*x(i).*xy(1) -x(1) y(1) 2.*x(1).*(y(1))."2 ...
x(1) . x(y(1)).72-(x(1)) .73 0 ((x(1))."2+(y(1))."2)
((x(1)).73+x(1) . *(y (1)) .72) (x(i))."2.*xy(D+(y(1))."3 ...
2.%((x(1)) .73y (D) +x (1) . *(y(i))."3)1;
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M2=[1 0 -x(i) y(i) ((y(1))."2-(x(i))."2) y(i) x(i) ...

((y(i))."3-(x(1)) . "2.%y (1)) -2.%(x(1))."2.%y(i) ...
((x(i)).~2+(y(i))."2) 0 (x(i)). 2.%y(@)+(y(i))."3 ...
S((x(1)) . "3+x (1) .+ (y(i))."2) ((y(i)) . 4-(x(i)). 4)];

A=[M1;M2];
MAstig3=[MAstig3;A];
end

%least-squares fit for z5 and z6 (Output of the program)
RAstig3=MAstig3\Z56
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%Matrix for the LSF for Coma3 (third order coma)Y

MComa3=[]; %initialization of the matrix for Coma3 (z7 and z8)
for i=1:nbpoints
M1=[0 1 x(i) y(1) 0 ((x(i)). 2+(y(i)).~2) x(1) x(i).*xy(i) ...
(x(1)) .72 ((x(1)).73+x(1).*(y(i))."2)]1;
M2=[1 0 -y(i) x(1) ((x(1))."2+(y(i))."2) 0 y(i) (y(i))."2 ...
(x(1) .xy (1)) ((y(1)). 3+y (i) .*x(x(1))."2)];

A=[M1;M2];
MComa3=[MComa3;A];
end

%least-squares fit for z7 and z8 (Output of the program)
RComa3=MComa3\Z78
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YMatrix for the LSF for Trefoilb),

MTrefoil=[]; %initialization of the matrix for Trefoil5 (z9 and z10)
for i=1:nbpoints

M1=[0 1 y(i) x(i) 2.*x(i).*y(1) ((y(1))."2-(x(i))."2) ...
B.x(y(1)). 2. %x(1)-(x(1))."3)];

M2=[1 0 -x(1) y(i) ((y(i))."2-(x(i)).~2) -2.*x(i).*y(i) ...
(-3.%(x(i)). 2. %y (L) +(y(i))."3)];

A=[M1;M2];
MTrefoil=[MTrefoil;A];

end

%least-squares fit for z9 and z10 (Output of the program)
RTrefoil=MTrefoil\Z910
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%Matrix for the LSF for Astigb (fifth order astigmatism)?,

MAstigb=[]; %initialization of the matrix for Astigb (z12 and z13)
for i=1:nbpoints

M1=[0 1 y(i) -x(1) ((y())."2-(x(1))."2)];
M2=[1 0 x(i) y(@i) 2.*x(i).*xy(1)];

A=[M1;M2];
MAstigb=[MAstigh;A];

end

%least-squares fit for z12 and z13 (Output of the program)
RAstig5=MAstig5\Z1213
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%Matrix for the LSF for Comab (fifth order coma)y,

MComab=[]; %initialization of the matrix for Comab (z16 and z17)
for i=1:nbpoints

M1=[0 1 y(i)];
M2=[1 0 x(i)];

A=[M1;M2];
MComab5=[MComa5;A];

end

%least-squares fit for z16 and z17 (Output of the program)
RComab5=MComab\Z1617
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%Graphic representation of the 5 aberrations with their fit

%Astig3%h
YAYNNN YN

%Constant part

B=ones (nbpoints);

B=B(:,1);

Zbcst=RAstig3(2) .*B;
Z6cst=RAstig3(1) .*B;
amplcst=((Z5cst) . 2+(Z6cst) ."2) . " (1./2);
phicst=1./2.*atan2(Z6cst,Zbcst) ;
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%Linear part 1

Z51in1=RAstig3(3) .*y+RAstig3(4) .*x;
Z61in1=-RAstig3(3) .*x+RAstig3(4) .*y;
ampllini=((Z51in1)."2+(Z61in1)."2).~(1./2);
philinl=1./2.*atan2(Z61in1,Z51in1);

%Linear part 2
Z51in2=-RAstig3(6) . *x+RAstig3(7) .*y;
Z61in2=RAstig3(6) . *y+RAstig3(7) .*x;
ampllin2=((Z51in2)."2+(Z61in2)."2).7(1./2);
philin2=1./2.*atan2(Z61in2,Z51in2);

%Quadratic part 1

Zbquad1=RAstig3(5) .*2.*x.*y;
Z6quadl=RAstig3(5) .*(y."2-x.72);
amplquadl=((Z5quadl) . 2+(Z6quadl) ."2) .~ (1./2);
phiquadil=1./2.*atan2(Z6quadl,Z5quadl) ;

%Quadratic part 2

Z5quad2=RAstig3(11) .*(x."2+y."2);
Z6quad2=RAstig3(10) .*(x. 2+y."2);
amplquad2=((Z5quad2) . "2+(Z6quad2) ."2) .~ (1./2);
phiquad2=1./2.*atan2(Z6quad2,Z5quad?2) ;

%Cubic part 1
Z5cubl1=RAstig3(8) .*2.*x.*(y. 2)+RAstig3(9) .*x(x.*(y."2)-x."3);
Z6cubl=RAstig3(8) .*(y. 3-(x."2) .*y)-RAstig3(9) .*(2.*(x."2) .*y);
amplcubl=((Z5cubl) . 2+(Z6cubl) ."2)."(1./2);
phicubl=1./2.*atan2(Z6cubl,Z5cubl);

%Cubic part 2
Z5cub2=RAstig3(12) .*(x. 3+x.*(y. 2))+RAstig3(13) .*((x."2) .¥y+y."3);
Z6cub2=RAstig3(12) .*((x.~2) .*y+y. 3)-RAstig3(13).*(x. 3+x.*(y."2));
amplcub2=((Z5cub2) . 2+(Z6cub2) .~2)."(1./2);
phicub2=1./2.*atan2(Z6cub2,Z5cub2);

%Quartic part (Astig of an aligned system)
Z5quar=RAstig3(14) .*(2.*((x."3) .*y+x.*(y."3)));
Z6quar=RAstig3(14) .*((y. 4-x."4));
amplquar=((Z5quar) . 2+(Z6quar) ."2) .~ (1./2);
phiquar=1./2.*atan2(Z6quar,Z5quar) ;

%Residual part
Z5res=75-725cst-7251in1-Z51in2-Z5quad1-Z5quad2-Z5cubl-Z5cub2-Z5quar;
Z6res=726-Z6cst-261in1-Z61in2-Z6quadl-Z6quad2-Z6cubl-Z6cub2-Z6quar;
amplres=((Zbres) . 2+(Z6res)."2).7(1./2);
phires=1./2.*atan2(Z6res,Zbres) ;



%Creation of the plot with the 9 graphs for Astig3/

figure(’Position’, [1 29 1024 670],...
’PaperOrientation’,’Landscape’,...
’PaperPosition’, [0.25 0.25 11.193 7.7677])
subplot (’Position’,[.08 .69 .20 .20]1)%(3,3,1)
quiv(x,y,1./10.*amplZ56.*cos(phiZ56),1./10.*amplZ56.*sin(phiZ56),0);
axis square
title([’Original data for Astig3 of ’,filename]);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot (’Position’,[.38 .69 .20 .20]1)%(3,3,2)
quiv(x,y,1./10.*amplcst.*cos(phicst),1./10.*amplcst.*sin(phicst),0);
axis square

title(’Constant fit’);

xlabel(’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot (’Position’,[.68 .69 .20 .20]1)%(3,3,3)

quiv(x,y,1./10.*ampllinl.*cos(philini),1./10.*ampllinl.*sin(philinl),0);

axis square

title(’Linear fit #1°);
xlabel(°X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot (’Position’,[.08 .39 .20 .20]1)%(3,3,4)

quiv(x,y,1./10.*ampllin2.*cos(philin2),1./10.*ampllin2.*sin(philin2),0);

axis square

title(’Linear fit #2°);
xlabel (°X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot (’Position’,[.38 .39 .20 .20]1)%(3,3,5)

quiv(x,y,1./10.*amplquadl.*cos(phiquadl),1./10.*amplquadl.*sin(phiquadl),0);

axis square

title(’Quadratic fit #1’);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot (*Position’,[.68 .39 .20 .20])%(3,3,6)

quiv(x,y,1./10.*amplquad2.*cos(phiquad2),1./10.*amplquad2.*sin(phiquad?2),0);

axis square
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title(’Quadratic fit #27);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot (’Position’,[.08 .09 .20 .20]1)%(3,3,7)
quiv(x,y,1./10.*amplcubl.*cos(phicubl),1./10.*amplcubl.*sin(phicubl),0);
axis square

title(’Cubic fit #1°);

xlabel(’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot (’Position’,[.38 .09 .20 .20]1)%(3,3,8)
quiv(x,y,1./10.*amplcub2.*cos(phicub2),1./10.*amplcub2.*sin(phicub2),0);
axis square

title(’Cubic fit #2’);

xlabel(’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot (’Position’,[.68 .09 .20 .20]1)%(3,3,9)
quiv(x,y,1./10.*amplquar.*cos(phiquar),1./10.*amplquar.*sin(phiquar),0);
axis square

title(’Quartic fit’);

xlabel(’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

figure
quiv(x,y,1./10.*amplres.*cos(phires),1./10.*amplres.*sin(phires),0);
axis square

title(’Residual Astig3’);

xlabel(’X position (mm)’);

ylabel (Y position (mm)’);

axis([-350 350 -350 350]);

%Coma3%
YANYYANA

%Constant part
Z7cst=RComa3(2) .*B;
Z8cst=RComa3 (1) .*B;

%Linear part 1
Z71in1=RComa3(3) .*x+RComa3(4) .*y;
Z81in1=RComa3(3) . *y-RComa3 (4) . *x;

%Linear part 2
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Z71in2=RComa3(7) .*x;
Z81in2=RComa3(7) .*y;

%Quadratic part 1
Z7quad1=RComa3(6) .*(x. 2+y."2);
Z8quad1=RComa3(5) .*(x. " 2+y."2);

%Quadratic part 2
Z7quad2=RComa3(9) . *(x."2)+RComa3(8) . *x. *y;
Z8quad2=RComa3(9) . *x.*y+RComa3(8) .*(y."2);

%Cubic part
Z7cub=RComa3(10) .*((x(1)) . 3+x.*(y(1))."2);
Z8cub=RComa3(10) .*((y (1)) . 3+y.*(x(i))."2);

%Residual part
ZT7res=Z7-Z7cst-7271inl1-Z71in2-7Z7quadl-Z7quad2-Z7cub;
Z8res=78-7Z8cst-7281inl1-Z81in2-7Z8quadl-Z8quad2-Z8cub;

#%Creation of the plot with the 7 graphs for Coma3}

figure(’Position’, [1 29 1024 670],...
’PaperOrientation’,’Landscape’,...
’PaperPosition’, [0.25 0.25 11.193 7.7677])

subplot (’Position’,[.08 .69 .20 .20])%subplot(3,3,1)

quiv(x,y,1./1.xZ7,1./1.%28,0);

axis square

title([’Original data for Coma3 of ’,filename]);

xlabel(’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot (’Position’,[.38 .69 .20 .20])%subplot(3,3,2)
quiv(x,y,1./1.%Z7cst,1./1.%Z8cst,0);

axis square

title(’Constant fit’);

xlabel(°X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot (’Position’,[.68 .69 .20 .20])%subplot(3,3,3)
quiv(x,y,1./1.%Z71in1,1./1.%Z81in2,0);

axis square

title(’Linear fit #1’);

xlabel(’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot (’Position’,[.08 .39 .20 .20])%subplot(3,3,4)

158



quiv(x,y,1./1.%Z71in2,1./1.%Z81in2,0) ;
axis square

title(’Linear fit #2’);

xlabel(’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot (*Position’, [.38 .39 .20 .20])%subplot(3,3,5)
quiv(x,y,1./1.%¥Z7quadl,1./1.%Z8quadl,0);

axis square

title(’Quadratic fit #1°’);

xlabel (’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot (’Position’,[.68 .39 .20 .20])%subplot(3,3,6)
quiv(x,y,1./1.%xZ7quad2,1./1.*Z8quad2,0) ;

axis square

title(’Quadratic fit #2’);

xlabel (°X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot (*Position’,[.08 .09 .20 .20])%subplot(3,3,7)
quiv(x,y,1./1.%Z7cub,1./1.%Z8cub,0) ;

axis square

title(’Cubic fit?’);

xlabel (’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot (’Position’,[.38 .09 .20 .20])%subplot(3,3,8)
quiv(x,y,1./1.%xZ7res,1./1.%Z8res,0);

axis square

title(’Residual Coma3’);

xlabel(°X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

%TtrefoilbY,

%Constant part

clear amplcst phicst
Z9cst=RTrefoil(2) .*B;
Z10cst=RTrefoil (1) .*B;
amplcst=((Z9cst) . 2+(Z10cst) ."2) .~ (1./2);
phicst=1./3.*atan2(Z10cst,Z9cst);

%Linear part
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Z91in=RTrefoil(3) .*y+RTrefoil (4) .*x;
Z101in=-RTrefoil (3) .*x+RTrefoil(4) .*y;
ampllin=((Z91in) . 2+(Z101in)."2)."(1./2);
philin=1./3.*atan2(Z101in,Z91in);

%Quadratic part
Z9quad=RTrefoil(6) .*(y. 2-x."2)+RTrefoil(5) .*2.*x.*y;
Z10quad=-RTrefoil(6) .*2.*x.*y+RTrefoil(5) .*(y. 2-x.72);
amplquad=((Z9quad) . ~2+(Z10quad) ."2) .~ (1./2);
phiquad=1./3.*atan2(Z10quad,Z9quad) ;

%Cubic part
Z9cub=RTrefoil (7) .*(3.*y. 2.%x-x.73);
Z10cub=RTrefoil(7) .*x(-3.*x."2.*y+y."3);
amplcub=((Z9cub) . "2+(Z10cub) ."2) .~ (1./2);
phicub=1./3.*atan2(Z10cub,Z9cub) ;

%Residual part

clear amplres phires
Z9res=79-7Z9cst-7291in-Z9quad-Z9cub;
Z10res=7Z10-Z10cst-Z101in-Z10quad-Z10cub;
amplres=((Z9res) . 2+(Z10res) ."2) .7 (1./2);
phires=1./3.*atan2(Z10res,Z9res) ;

#%Creation of the plot with the 6 graphs for trefoil,

figure

subplot(2,3,1)
quiv(x,y,10./1.%amplZ910.*cos(phiZ910),10./1.*amplZ910.*sin(phiZ910),0);
axis square

title([’Original data for Trefoilb of ’,filename]);

xlabel (’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot(2,3,2)
quiv(x,y,10./1.*amplcst.*cos(phicst),10./1.*amplcst.*sin(phicst),0);
axis square

title(’Constant fit’);

xlabel (°X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot(2,3,3)
quiv(x,y,10./1.*%ampllin.*cos(philin),10./1.*ampllin.*sin(philin),0);
axis square

title(’Linear fit’);

xlabel (’X position (mm)’);

ylabel(’Y position (mm)’);



axis([-350 350 -350 350]);

subplot(2,3,4)

quiv(x,y,10./1.*amplquad.*cos(phiquad),10./1.*amplquad.*sin(phiquad),0);

axis square
title(’Quadratic fit’);
xlabel (’X position (mm)’);
ylabel(’Y position (mm)’);
axis([-350 350 -350 350]);

subplot(2,3,5)
quiv(x,y,10./1.*%amplcub.*cos(phicub),10./1.*amplcub.*sin(phicub),0);
axis square

title(’Cubic fit’);

xlabel(’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot(2,3,6)
quiv(x,y,10./1.*amplres.*cos(phires),10./1.*amplres.*sin(phires),0);
axis square

title(’Residual Trefoil5’);

xlabel (X position (mm)’);

ylabel(°Y position (mm)’);

axis([-350 350 -350 350]);

%Astighlh

%Constant part

clear amplcst phicst

Z12cst=RAstigh(2) .*B;
Z13cst=RAstigh(1) .*B;
amplcst=((Z13cst) . 2+(Z12cst) ."2) .7 (1./2);
phicst=1./2.*%atan2(Z12cst,Z13cst);

%Linear part

clear ampllin philin

Z121in=RAstigb(3) .*y-RAstigb5(4) .*x;
Z131in=RAstigh(3) .*x+RAstigb5(4) .*y;
ampllin=((Z131in) . 2+(Z121lin)."2)."(1./2);
philin=1./2.*atan2(Z121in,Z131in);

%Quadratic part

clear amplquad phiquad

Z12quad=RAstigh(5) .*(y."2-x.72);
Z13quad=RAstigb5(5) .*2.*x.*y;
amplquad=((Z13quad) . “2+(Z12quad) .~2) .~ (1./2);
phiquad=1./2.*atan2(Z12quad,Z13quad) ;
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%Residual part

clear amplres phires
Z12res=712-Z12cst-Z121in-Z12quad;
Z13res=7Z13-7Z13cst-Z2131in-Z13quad;
amplres=((Z13res) . 2+(Z12res) ."2) .7 (1./2);
phires=1./2.*atan2(Z12res,Z13res);

%Creation of the plot with the 4 graphs for astigbl

figure

subplot(2,2,1)

quiv(x,y,1./1.*amplZ1213.%cos (phiZ1213),1./1.*amplZ1213.*sin(phiZ1213),0);
axis square

title([’Original data for Astigb of ’,filename]);

xlabel(’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot(2,2,2)
quiv(x,y,1./1.*amplcst.*cos(phicst),1./1.*amplcst.*sin(phicst),0);
axis square

title(’Constant fit’);

xlabel (X position (mm)’);

ylabel(°Y position (mm)’);

axis([-350 350 -350 350]);

subplot(2,2,3)
quiv(x,y,1./1.*ampllin.*cos(philin),1./1.*ampllin.*sin(philin),0);
axis square

title(’Linear fit’);

xlabel(’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot(2,2,4)
quiv(x,y,1./1.*amplres.*cos(phires),1./1.*amplres.*sin(phires),0);
axis square

title(’Residual Astigh’);

xlabel (’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

%Comab¥
%Constant part
Z16cst=RComab(2) . *B;

Z17cst=RComa5(1) .*B;

%Linear part
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Z161lin=RComab (3) .*y;
Z171in=RComa5(3) . *x;

%Residual part
Z16res=7Z16-Z16cst-Z161in;
Z17res=7217-7Z17cst-Z171in;

%Creation of the plot with the 4 graphs for Comab’

figure

subplot(2,2,1)

quiv(x,y,1./1.%Z17,1./1.%216,0);

axis square

title([’Original data for Comab of ’,filename]);
xlabel(’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot(2,2,2)
quiv(x,y,1./1.*xZ17cst,1./1.*Z16cst,0);
axis square

title(’Constant fit’);

xlabel (X position (mm)’);

ylabel(°Y position (mm)’);

axis([-350 350 -350 350]);

subplot(2,2,3)
quiv(x,y,1./1.%Z171in,1./1.%Z161in,0);
axis square

title(’Linear fit’);

xlabel(’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);

subplot(2,2,4)
quiv(x,y,1./1.%Z17res,1./1.*%Z16res,0);
axis square

title(’Residual Coma5’);

xlabel (’X position (mm)’);

ylabel(’Y position (mm)’);

axis([-350 350 -350 350]);
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Appendix I

ZEMAX® MACRO TO SIMULATE THE LSST

LSSTperturb.zpl

Perturbs inital case of LSST design

Uses uniform distribution given by P-V variations:

Assuming Focal plane is fixed, relative misalignments with P-V :
Decenter (in mm) gives dx, dy for SM, TM, Corr.

Tilt (degrees) gives tx, ty for SM, TM, Corr.

Regis Tessieres - September 24th 2003

Decenter = 1
Tilt = 0.08

! Program start
print "Macro LSSTperturb.ZPL in progress"

path$ = "c:\LSST\MONTE"

FOR i=1,100,1
FORMAT 1.0
infile$ = path$"\LSSTperturb"i".zmx"
outfile$ = path$"\LSSTmodel"i".txt"
FORMAT 8.6
LOADLENS "C:\LSST\LSST_Monte.zmx"
GOSUB PERTURB
SAVELENS infile$
GOSUB MERIT
GOSUB CALCULATIONS

NEXT

print " All dome :)))))))))N"
END

! subroutines

éUB PERTURB

! Perturb the system

!Secondary

msurf = 5

! Decenter
PV = Decenter



GOSUB random
PARM 1,msurf,RV
GOSUB random
PARM 2,msurf,RV
I Tilt

PV = Tilt

GOSUB random
PARM 3,msurf,RV
GOSUB random
PARM 4,msurf,RV

!Tertiary

msurf = 11

! Decenter

PV = Decenter
GOSUB random
PARM 1,msurf,RV
GOSUB random
PARM 2,msurf,RV
I Tilt

PV = Tilt

GOSUB random
PARM 3,msurf,RV
GOSUB random
PARM 4,msurf,RV

!CORRECTOR

msurf = 15

! Decenter

PV = Decenter
GOSUB random
PARM 1,msurf,RV
GOSUB random
PARM 2,msurf,RV
I Tilt

PV = Tilt

GOSUB random
PARM 3,msurf,RV
GOSUB random
PARM 4,msurf,RV
return

SUB MERIT

ICalculation of the weighted RMS Spot Radius

UPDATE ALL

OUTPUT "C:\LSST\Original_ Distribution.txt" APPEND
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PRINT 1000*MFCN()
OUTPUT SCREEN

RETURN

SUB CALCULATIONS
! Calculate the zernike coefficients for 48 points in the field

Definition of pi to use it later on
pi=4*ATAN(1)

IFirst set of field points (Only 12 field points can be defined at a time)
NUMFIELD 12
Ifix the number of field and define each field

FTYP=0
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY

]
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FWGT
FLDX
FLDY
FWGT

11
12
12
12

!Update
UPDATE ALL

the windows

-0.75
0.5

GOSUB ZERN

1Go to the subroutine Zern to calulate and store the zernike coefficients

FTYP=

FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
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!Update the windows

UPDATE ALL

GOSUB ZERN

1Go to the subroutine Zern to calulate and store the zernike coefficients

FTYP=0
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT 10 = 1
FLDX 11 = -0.25
FLDY 11 = -0.5

.25

.75

]
OrRrPrORFrRrRPOORr,rR OORFr OO Fr OO0

© O O 000NN O OO P PWWWNNDNRE~ -
I

=
o O
| |
| |
o O
(S

FWGT 11 =1
FLDX 12 = 0
FLDY 12 = -0.5
FWGT 12 = 1

!Update the windows

UPDATE ALL

GOSUB ZERN

1Go to the subroutine Zern to calulate and store the zernike coefficients

FTYP=0



FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT
FLDX
FLDY
FWGT

© O© © 000NN NOOO”O O OO P PWWWNNDNRE~ -

=
o O

10
11
11
11
12
12
12

!Update
UPDATE ALL
GOSUB ZERN

1Go to the subroutine Zern to calulate and store the zernike coefficients

RETURN

0.25
-0.5

0.5
-0.5

0.75

-0.75

= -0.25

the windows

SUB random
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! returns RV

! random value from uniform distribution with P-V range PV
RV = rand(PV)-PV/2.

RETURN

!Subroutine to get the Zernike polynomial and store them into a file
SUB ZERN

OUTPUT outfile$ APPEND

FOR j=1,12,1
GETZERNIKE 17,1,3,3,1,0
PRINT TANG(FLDX(j)*pi/180)%10496.5," ", TANG(FLDY(j)*pi/180)*10496.5,"
PRINT VEC1(14)*550/sqrt(6)," ",
PRINT VEC1(13)#*550/sqrt(6)," ",VEC1(16)*550/sqrt(8)," ",
PRINT VEC1(15)*550/sqrt(8)," ",
PRINT VEC1(19)*550/sqrt(8)," ",VEC1(18)*550/sqrt(8)," ",
PRINT VEC1(20)*550/sqrt(10)," ",
PRINT VEC1(21)*550/sqrt(10)," ",VEC1(22)*550/sqrt(12)," ",
PRINT VEC1(23)*550/sqrt(12)

NEXT

OUTPUT screen
RETURN

>
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BAATLABC)ROUTHHETT)CALCULATE'THEZEXPECTED
PERTURBATIONS

function Rlsf=LSF(filename)

%Routine to calculate the expected perturbations
%Can be use in an other program to calulate the perturbations

%of several models

format long %double precision
D= importdata(filename,’\t’);

nbpoints=size(D);
nbpoints=nbpoints(1);

Y%read the data in the fileJ,
Tototo totoTo 1o o To foTo Tod oo To fo o Yot oo o oo o

%initialization
z256=[1;

zZ5=[1;

z6=[1;

Z78=[1;

zZ7=01;

zZ8=[1;

7910=[];

Z29=[1;

Z10=[1;
21213=[1;
Z12=[1;

Z13=[1;
Z1617=[1;
Z16=[1;

Z17=[1;

Z=[1;

M=[1;
B=zeros(10*nbpoints,12);

for i=1:nbpoints

%Store the values for third order astigmatism

z5(1)=D(i,3);
z6(i)=D(i,4);

Appendix J

%Store the values for third order coma

z7(1)=D(i,5);
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z8(1)=D(i,6);

%Store the values for trefoil
z9(i)=D(i,7);
z10(i)=D(i,8);

%Store the values for fifth order astigmatism
z12(1)=D(1,9);
z13(i)=D(i,10);

%Store the values for fifth order coma
z16(i)=D(i,11);
z17(i)=D(i,12);

%Store the field positions
x(1)=D(i,1);
y(1)=D(i,2);

%Vector Z with all the zernike coefficients
Y=[z5(1) z6(i) z7(i) z8(i) z9(i) z10(i) z12(i) =z13(i) z16(i) z17(i)]’;
Z=[Z;Y];

% Creation of a Matrix %

ToToToto oo oo ToToo o o o o o ToToTo o fo o o

%First column

all=416.4.*x(i);

a21=2069-416.4.*y (i) ;

a31=-177507+0.165.*y (1)-0.0119.%((x(i)) .~ 2+(y (1)) .~2)+0.466.*y (i) ;
a41=-0.165.*x(i)+0.466.*x(i) ;
ab1=-0.181.*y(1)+0.0054.*((y(i)) . "2-(x(i)).~2);
a61=-0.181.*x(i)+0.0108.*x (1) .xy(i);
a71=31.3+2.1.xy(i);

a81=-2.1.*x(i);

a91=0;

al01=2364.25;

%Second column

al2=-416.4.xy(i);

a22=-2069-416.4.*x(1);
a32=-0.165.%y(1)+0.466.*y(i);
a42=177507+0.165.*x(1)+0.0119.*((x(1)) . 2+ (y (1)) ."2)+0.466.*x(i);
ab2=0.181.*y(1)+0.0108.*x (1) .*y(1);
a62=0.181.*x(1)-0.0054.*((y(1))."2-(x(1))."2);
a72=-31.3+2.1.*x(1);

a82=2.1.xy(i);

a92=-2364.25;

al102=0;

%Third column



al3=3.793.*y(1);
a23=3.793.*x(i);
a33=0;
ad43=-1755.24;
ab3=0;

a63=0;
a73=0.054.*x(i);
a83=0.054.*y (1) ;
293=60.64;
al103=0;

%Fourth column
a14=3.793.*x(i);
a24=-3.793.*y(i);
a34=-1755.24;
a44=0;

ab4=0;

a64=0;
a74=-0.054.*y(i);
a84=0.054.*x(i);
a94=0;
al104=60.64;

%Fifth column
a15=-130.6.*x(1)-0.000083.*((x (1)) . 3+x (1) .*(y(i))."2);
a25=-5164+130.6.*y(1)+0.0036.* ((x(1)) . " 2+(y(1))."2)+...
0.000083.*((y(1)) . 3+y (i) .*x(x(1))."2);

a35=-186150-0.454.*%y(1)+0.0277 . % ((x (1)) ."2+(y (1)) ."2)-. ..

1.12.xy(1)+0.0464.x(y (1)) ."2;
a45=0.454.*x(1)-1.12.%x(i)+0.0464.*x (1) .*xy (i) ;
ab5=0.545.*y(1)-0.0065.*((y(1)). 2-(x(i))."2);
a65=0.545.%x(1)-0.013.*x(1) .*y(1);
a75=-229+0.62.xy(1i);

a85=-0.62.*x(i);

a95=0;

al105=-4315;

%Sixth column
a16=130.6.*y(i)+0.000083.* ((y(i)) . 3+y (i) .*(x(i))."2);
a26=5164+130.6.*x(1)-0.0036.*((x(i)). " 2+(y(1))."2)+...
0.000083.*((x(1)) . 3+x (1) .x(y(1))."2);
a36=0.454.*y(i)-1.12.xy(i)-0.0464.*x (i) .*y(i);

ad6=186150-0.454.*x(1)-0.0277 . x((x(1)) . 2+(y(1)) .~ 2)-...

1.12.%x(1)-0.0464.%(x(i))."2;
a56=-0.545.%y(i)-0.013.*x (i) .*y(i);
a66=-0.545.*x(1)+0.0065.*((y(i)) . "2-(x(i)).~2);
a76=229+0.62.%x (i) ;

a86=0.62.*y(i);

a96=4315;
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al1l06=0;

%Seventh column
al7=-0.8997.*y(i);
a27=-0.8997 .*x (i) ;
a37=0.00053.*x (i) .*xy (i) ;

ad7=-1273.7+0.0002936. * ((x(1)) .2+ (y (1)) ."2)+0.00053. % (x (1)) ."2;

ab7=-0.000298.*x (i) .*y(i);
a67=0.000149.*((y(1)) . 2-(x(1))."2);
a77=0.025.*x(i);

a87=0.025.*y(1);

a97=-25.88;

a107=0;

%Eighth column
a18=-0.8997.*x(i);
a28=0.8997.xy(i);

a38=-1237.7+0.0002936.* ((x (1)) ."2+(y(1i))."2)+0.00053.*(y(i))."2;

a48=0.00053.*x (1) .*y(i);
ab8=-0.000149.*((y(1))."2-(x(1))."2);
a68=-0.000298.*x (1) .xy(1);
a78=-0.025. %y (i) ;

a88=0.025.*x(1);

a98=0;

a108=-25.88;

%Nineth column
a19=-38.35.*x(i)+0.000084 . % ((x(i)). 3+x (i) .*x(y(i))."2);
a29=-38+38.35. %y (i) -0.000084.*((y(i)). 3+y (i) .*(x(i))."2);
a39=869+0.006797 . ((x(1)) . 2+(y(i))."2)-0.02109.*(y (1)) ."2;
a49=-0.02109.*x (1) .*y(1);
ab9=-0.00609.*((y(1))."2-(x(1))."2);

a69=-0.01218.*x(1) .*y(1);

a79=1.27.%y(i);

a89=-1.27.*x(i);

a99=0;

a109=0;

%Tenth column
a110=38.35.*y(i)-0.000084.*((y(i)). 3+y (i) .*(x(i))."2);
a210=38+38.35.*x(1)-0.000084 . % ((x (1)) . 3+x (i) .*(y(1))."2);
a310=0.02109.*x (1) .*y(1);

a410=-869-0.006797 . % ((x(1)) . 2+(y(1))."2)+0.02109.*(x(1)) ."2;

a510=-0.01218.*x (i) .*y(i);
a610=0.00609.*((y(i))."2-(x(1))."2);
a710=1.27.*x(i);

a810=1.27.*y(i);

a910=0;

a1010=0;
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%Eleventh column

a111=-0.705.*y(i);
a211=-0.705.*x(i);
a311=-0.000635.*x (i) .*y (i) ;
a411=160.56-0.0002345.* ((x (1)) ."2+(y (1)) ."2)-0.000635.*(x(1)) ."2;
ab11=-0.00034.*x (1) .xy(i);
a611=0.00017.*((y(i))."2-(x(1))."2);
a711=-0.0824.*x(i) ;
a811=-0.0824.xy(1i);

a911=0;

al1011=0;

%Twelveth column

al112=-0.705.*x(i);

a212=0.705.xy(1i);
a312=160.56-0.0002345.* ((x(1))."2+(y (1)) ."2)-0.000635.*(y (1)) ."2;
a412=-0.000635.*x (i) .*y(i);
ab12=0.00017.*((y(1)) . 2-(x(1))."2);
a612=0.00034.*x (1) .xy (i) ;
a712=0.0824.*y(i);
a812=-0.0824.*x(i);

a912=0;

al1012=0;

Mi=[all al2 al3 al4 alb al6 al7 al8 al9 alll0 alill all2];

M2=[a21 a22 a23 a24 a25 a26 a27 a28 a29 a210 a211 a212];

M3=[a31 a32 a33 a34 a35 a36 a37 a38 a39 a310 a311l a312];

M4=[ad1l ad42 ad43 add adb5 ad6 ad7 ad8 ad9 a410 adll adl12];

M5=[ab1 ab2 ab3 ab4 ab5 ab6 ab7 ab8 ab9 a510 ab511 ab12];

M6=[a61 a62 a63 a64 ab5 ab66 a67 a68 a69 a610 a6ll a612];

M7=[a71 a72 a73 a74 a75 a76 a77 a78 a79 a710 a711 a712];

M8=[a81 a82 a83 a84 a85 a86 a87 a88 a89 a810 a811 a812];

M9=[a91 a92 a93 a9%4 a95 a96 a97 a98 a99 a910 a911 a912];
M10=[a101 a102 al103 al04 al05 al06 al07 al08 al09 al010 al011l al012];
A=[M1;M2;M3;M4;M5;M6;M7;M8;M9;M10] ;

B((1+10%(i-1)): (10+10*(i-1)),:)=[M1;M2;M3;M4;M5;M6;M7;M8;M9;M10] ;
M=[M;A];

end

Rlsf=M\Z;
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