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Abstract: In this study, we verified the effectiveness of the parametric model to estimate the surface RMS 
due to the mirror deflection. The parametric model based on the 4 empirical equations was derived from the 
FEA simulations. We can effectively estimate the surface RMS (‘total’ and ‘after power removed’) within 
8% accuracy using the parametric model.  
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1. Introduction 
 
In the early stage of designing opto-mechanical system including flat mirrors quick first-order estimation of the 
system performance can provide a good starting point. For the efficient estimation of the system performance (i.e. 
surface RMS), simple analytical model can be used. Nelson[1] developed the simple closed-form formula based on 
the classical thin plate model[2] in 1982. However, due to neglecting shear effect, the Nelson model does not behave 
well in the range of small aspect ratio cases. Modern FEA(Finite Element Analysis) tools can simulate more realistic 
cases with arbitrary mirror geometry and materials at the cost of time. Parametric model based on carefully designed 
series of simulation runs can fill this gap between the accuracy and time.  
 
2. Simple analytic model for the mirror deflection 
 
One of the most common analytic model is known as Nelson’s model. Nelson’s theory predicts the surface RMS due 
to the mirror deflection as below 

                        δ γ 1 2                     (1) 
 

,where γ  is the support efficiency with N support points, q is the applied force per unit area, D is the flexural 
rigidity defined as /12 1 , A is the mirror area, h is the thickness of mirror and u is an effective 
length between support points. 

In this paper, we choose the simple three axial point support case (N=3). Then, the mirror deflection is simply 
governed by 5 parameters: young’s modulus(E), Poisson ratio(ν  and density(ρ , aspect ratio(α) and mirror 
diameter. This model is derived from the shell (thin plate) model, so that it works only for relatively large aspect 
ratio cases.  
 
3. FEA simulations for the empirical model 
 
Because the Nelson model is only for the thin plate, more realistic deflection calculation can be done using FEA. We 
used SolidWorks and CosmosWorks to perform series of FEA simulations for various cases. All simulations were 
carefully designed to explorer a reasonable range of most opto-mechanical systems. 

We set 5 independent parameters (Aspect ratio, Mirror diameter, Density, Young’s modulus, and Poisson ratio) 
based on the Nelson model. Each 5 parameters were changed in the FEA model as shown in Table 1. 

 
Table 1. Five independent parameters and its range 

Parameter Unit Range 
Aspect ratio N/A 3 ~ 30 

Diameter m 0.25 ~ 2 
Young’s modulus GPa 10 ~ 100 
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Poisson ratio N/A 0.1 ~ 0.35 
Density kg/m  1000 ~ 3000 

The simulated surface RMS results were fitted using polynomial functions to get empirical equations. 
 
3.1 Aspect ratio V.S surface RMS 
The effect of the aspect ratio on the surface RMS was investigated. The aspect ratio was changed from 3 to 30 in the 
FEA model. The surface RMS due to the mirror deflection was calculated. The total surface RMS(  and the 
surface RMS after removing power  can be expressed as a function of the aspect ratio as below. 
 
                        α 0.79909 /10 0.18122 /10 0.00637           (2) 
                        α 0.78881 /10 0.21445 /10 0.01510           (3) 
 
3.2 Mirror diameter V.S surface RMS 
The effect of the mirror diameter was simulated. The mirror diameter was changed from 0.25m to 2m in the FEA 
model. The surface RMS due to the mirror deflection was calculated. The total surface RMS(  and the surface 
RMS after removing power can be expressed as a function of the mirror diameter as below. 
 

1           4  ,                               1.00025 1          5  
 
3.3 Material density V.S surface RMS 
The effect of the mirror material density was simulated. The material density was changed from 1000 kg/  to 
3000kg/ in the FEA model. The surface RMS due to the mirror deflection was calculated. The total surface 
RMS  and the the surface RMS after reomving power  can be expressed as a function of the material 
density as below. 
                                   

 /
                      (6) 

 
3.4 Young’s modulus and Poisson ratio V.S surface RMS 
The effect of the Young’s modulus and Poisson ratio was simulated. Because these two parameters are coupled we 
performed series of simulation for various combinations. The Young’s modulus was changed from 10GPa to 
100GPa. The Poisson ratio was varied from 0.1 to 0.3. The surface RMS as a function of these two parameters was 
calculated. The total surface RMS( ) and the surface RMS after removing power( ) can be expressed as a function 
of the Young’s modulus and Poisson ratio as below. 
 
                , 0.0036 1.0065  GP 0.0037

.
0.000015  GP

.
                   (7) 

   , 0.0053 0.9914  GP 0.0056
.

0.0005  GP 0.0013
.

0.0115  GP
.

    (8) 
 
We get the 8 empirical equations (4: original surface RMS, 4: surface RMS after power removed) for the surface 
RMS due to the mirror deflection of a flat mirror with three axial supports. 
 
4. Parametric model for mirror deflection 
The surface RMS for an arbitrary set of parameters will be expressed as  
 

Total surface RMS: , , , , α · · ρ · , ·        (9) 
Surface RMS after power removed: Χ , , , , α · · ρ · , · Χ        (10) 

 
,where 5.160  and Χ 0.481  is the reference point for the surface RMS when α 10

1 ρ 1000 10GPa, 0.1 α 10 1 ρ 1000
10GPa, 0.1 1.  

Equation (9) and (10) assume that the total surface RMS is a product of the four f-functions. This assumption is 
valid, at least for the first order estimation. However, these functions may need correction in complicate non-linear 
fashion, so that regression analysis may result in better parametric model. This will be studied in other papers in the 
future. 
We performed 17 case studies for various sets of 5 parameters (Aspect ratio, Mirror diameter, Density, Young’s 
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