Parametric model for mirror deflection with axial support

Won Hyun Park, Dae Wook Kim and James H. Burge
College of Optical Sciences, The University of Arizona, Tucson AZ 85721
whpark@optics.arizona.edu,
Sug-Whan Kim
Space Optics Laboratory, Dept. of Astronomy, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea
skim@csa.yonsei.ac.kr

Abstract

In this study, we verified the effectiveness of the parametric model to estimate the surface RMS due to the mirror deflection. The parametric model based on the 4 empirical equations was derived from the FEA simulations. We can effectively estimate the surface RMS ('total' and 'after power removed') within 8\% accuracy using the parametric model. ©2008 Optical Society of America OCIS codes: (120.4880) Optomechanics; (120.6650) Surface measurements;

1. Introduction

In the early stage of designing opto-mechanical system including flat mirrors quick first-order estimation of the system performance can provide a good starting point. For the efficient estimation of the system performance (i.e. surface RMS), simple analytical model can be used. Nelson[1] developed the simple closed-form formula based on the classical thin plate model[2] in 1982. However, due to neglecting shear effect, the Nelson model does not behave well in the range of small aspect ratio cases. Modern FEA(Finite Element Analysis) tools can simulate more realistic cases with arbitrary mirror geometry and materials at the cost of time. Parametric model based on carefully designed series of simulation runs can fill this gap between the accuracy and time.

2. Simple analytic model for the mirror deflection

One of the most common analytic model is known as Nelson's model. Nelson's theory predicts the surface RMS due to the mirror deflection as below

$$
\begin{equation*}
\delta_{\mathrm{rms}}=\gamma_{N} \frac{q}{D}\left(\frac{A}{N}\right)^{2}\left[1+2\left(\frac{h}{u}\right)^{2}\right] \tag{1}
\end{equation*}
$$

,where γ_{N} is the support efficiency with N support points, q is the applied force per unit area, D is the flexural rigidity defined as $D=E h^{3} / 12\left(1-v^{2}\right), A$ is the mirror area, h is the thickness of mirror and u is an effective length between support points.

In this paper, we choose the simple three axial point support case ($\mathrm{N}=3$). Then, the mirror deflection is simply governed by 5 parameters: young's modulus(E), Poisson ratio(v) and density(ρ), aspect ratio(α) and mirror diameter. This model is derived from the shell (thin plate) model, so that it works only for relatively large aspect ratio cases.

3. FEA simulations for the empirical model

Because the Nelson model is only for the thin plate, more realistic deflection calculation can be done using FEA. We used SolidWorks and CosmosWorks to perform series of FEA simulations for various cases. All simulations were carefully designed to explorer a reasonable range of most opto-mechanical systems.

We set 5 independent parameters (Aspect ratio, Mirror diameter, Density, Young's modulus, and Poisson ratio) based on the Nelson model. Each 5 parameters were changed in the FEA model as shown in Table 1.

Table 1. Five independent parameters and its range

Parameter	Unit	Range
Aspect ratio	N/A	$3 \sim 30$
Diameter	m	$0.25 \sim 2$
Young's modulus	GPa	$10 \sim 100$

OWD7.pdf

Poisson ratio	N/A	$0.1 \sim 0.35$
Density	$\mathrm{kg} / \mathrm{m}^{3}$	$1000 \sim 3000$

The simulated surface RMS results were fitted using polynomial functions to get empirical equations.

3.1 Aspect ratio V.S surface RMS

The effect of the aspect ratio on the surface RMS was investigated. The aspect ratio was changed from 3 to 30 in the FEA model. The surface RMS due to the mirror deflection was calculated. The total surface $\operatorname{RMS}\left(f_{1}\right)$ and the surface RMS after removing power $\left(g_{1}\right)$ can be expressed as a function of the aspect ratio as below.

$$
\begin{align*}
& f_{1}(\alpha)=0.79909(\alpha / 10)^{2}+0.18122(\alpha / 10)-0.00637 \tag{2}\\
& g_{1}(\alpha)=0.78881(\alpha / 10)^{2}+0.21445(\alpha / 10)-0.01510 \tag{3}
\end{align*}
$$

3.2 Mirror diameter V.S surface RMS

The effect of the mirror diameter was simulated. The mirror diameter was changed from 0.25 m to 2 m in the FEA model. The surface RMS due to the mirror deflection was calculated. The total surface $\operatorname{RMS}\left(f_{2}\right)$ and the surface RMS after removing power $\left(g_{2}\right)$ can be expressed as a function of the mirror diameter as below.

$$
\begin{equation*}
f_{2}(D)=\left(\frac{D}{1 m}\right)^{2} \quad(4), \quad g_{2}(D)=1.00025\left(\frac{D}{1 m}\right)^{2} \tag{5}
\end{equation*}
$$

3.3 Material density V.S surface RMS

The effect of the mirror material density was simulated. The material density was changed from $1000 \mathrm{~kg} / \mathrm{m}^{3}$ to $3000 \mathrm{~kg} / \mathrm{m}^{3}$ in the FEA model. The surface RMS due to the mirror deflection was calculated. The total surface $\operatorname{RMS}\left(f_{3}\right)$ and the the surface RMS after reomving power $\left(g_{3}\right)$ can be expressed as a function of the material density as below.

$$
\begin{equation*}
f_{3}(\rho)=g_{3}(\rho)=\frac{\rho}{1000 \mathrm{~kg} / m^{3}} \tag{6}
\end{equation*}
$$

3.4 Young's modulus and Poisson ratio V.S surface RMS

The effect of the Young's modulus and Poisson ratio was simulated. Because these two parameters are coupled we performed series of simulation for various combinations. The Young's modulus was changed from 10GPa to 100 GPa . The Poisson ratio was varied from 0.1 to 0.3 . The surface RMS as a function of these two parameters was calculated. The total surface $\operatorname{RMS}\left(f_{4}\right)$ and the surface RMS after removing power $\left(g_{4}\right)$ can be expressed as a function of the Young's modulus and Poisson ratio as below.

$$
\begin{gather*}
f_{4}(E, v)=-0.0036+1.0065\left(\frac{10 \mathrm{GPa}}{E}\right)+0.0037\left(\frac{v}{0.1}\right)-0.000015\left(\frac{10 \mathrm{GPa}}{E}\right)\left(\frac{v}{0.1}\right) \tag{7}\\
g_{4}(E, v)=-0.0053+0.9914\left(\frac{10 \mathrm{GPa}}{E}\right)+0.0056\left(\frac{v}{0.1}\right)+0.0005\left(\frac{10 \mathrm{GPa}}{E}\right)^{2}-0.0013\left(\frac{v}{0.1}\right)^{2}-0.0115\left(\frac{10 \mathrm{GPa}}{E}\right)\left(\frac{v}{0.1}\right) \tag{8}
\end{gather*}
$$

We get the 8 empirical equations (4: original surface RMS, 4: surface RMS after power removed) for the surface RMS due to the mirror deflection of a flat mirror with three axial supports.

4. Parametric model for mirror deflection

The surface RMS for an arbitrary set of parameters will be expressed as

$$
\begin{equation*}
\text { Total surface RMS: } w(\alpha, D, \rho, E, v)=f_{1}(\alpha) \cdot f_{2}(D) \cdot f_{3}(\rho) \cdot f_{4}(E, v) \cdot w_{0} \tag{9}
\end{equation*}
$$

Surface RMS after power removed: X $(\alpha, D, \rho, E, v)=g_{1}(\alpha) \cdot g_{2}(D) \cdot g_{3}(\rho) \cdot g_{4}(E, v) \cdot \mathrm{X}_{0}$
, where $w_{0}(=5.160 \mu \mathrm{~m})$ and $\mathrm{X}_{0}(=0.481 \mu \mathrm{~m})$ is the reference point for the surface RMS when $f_{1}(\alpha=10)=$ $f_{2}(D=1 m)=f_{3}(\rho=1000)=f_{4}(E=10 \mathrm{GPa}, v=0.1)=g_{1}(\alpha=10)=g_{2}(D=1 m)=g_{3}(\rho=1000)=$ $g_{4}(E=10 \mathrm{GPa}, v=0.1) \cong 1$.

Equation (9) and (10) assume that the total surface RMS is a product of the four f-functions. This assumption is valid, at least for the first order estimation. However, these functions may need correction in complicate non-linear fashion, so that regression analysis may result in better parametric model. This will be studied in other papers in the future.
We performed 17 case studies for various sets of 5 parameters (Aspect ratio, Mirror diameter, Density, Young’s

OWD7.pdf

modulus, and Poisson ratio) to verify the parametric model, equation (9) and (10). The simulation sets and results are shown in Table 2.

Table 2. Various set of simulations and results verifying the parametric model

Case \#	Material	Parameters					FEA model RMS($\mu \mathrm{m})$		Nelson model		Parametric model			
		D	α	ρ	E	v			RMS ($\mu \mathrm{m}$) total	Relative error to FEA total	RMS($\mu \mathrm{m}$)		Relative error to FEA	
		m	N/A	$\mathrm{kg} / \mathrm{m}^{3}$	GPa	N/A	total	$\begin{gathered} \text { power } \\ \text { removed } \end{gathered}$			total	$\begin{gathered} \text { power } \\ \text { removed } \end{gathered}$	total	$\begin{gathered} \text { power } \\ \text { removed } \end{gathered}$
1	ULE	2	3	2210	67	0.17	0.081	0.081	0.069	15\%	0.081	0.074	1\%	7.7\%
2	Fused silica	2	3	2203	72	0.16	0.075	0.075	0.065	14\%	0.075	0.069	1\%	7.6\%
3	Borosilicate	2	3	2230	63	0.2	0.088	0.087	0.074	16\%	0.086	0.080	2\%	8.7\%
4	Zerodur	2	30	2530	91	0.24	4.429	4.156	4.392	1\%	4.255	4.013	4\%	3.4\%
5	ULE	2	30	2210	67	0.17	5.288	4.902	5.370	-2\%	5.196	4.787	2\%	2.3\%
6	Fused silica	2	30	2203	72	0.16	4.908	4.542	4.998	-2\%	4.823	4.443	2\%	2.2\%
7	Borosilicate	2	30	2230	63	0.2	5.661	5.276	5.696	-1\%	5.546	5.126	2\%	2.8\%
8	ULE	2	10	2210	67	0.17	0.674	0.652	0.611	9\%	0.655	0.612	3\%	6.1\%
9	Fused silica	2	10	2203	72	0.16	0.625	0.604	0.568	9\%	0.608	0.568	3\%	5.9\%
10	Borosilicate	2	10	2230	63	0.2	0.724	0.702	0.648	10\%	0.699	0.655	3\%	6.7\%
11	ULE	1.5	3	2210	67	0.17	0.046	0.046	0.033	28\%	0.045	0.042	2\%	8.2\%
12	Fused silica	1.5	3	2203	72	0.16	0.043	0.042	0.031	28\%	0.042	0.039	1\%	7.9\%
13	Zerodur	1.5	30	2530	91	0.24	2.427	2.305	2.466	-2\%	2.393	2.257	1\%	2.1\%
14	ULE	1.5	30	2210	67	0.17	2.897	2.719	3.014	-4\%	2.923	2.693	-1\%	1.0\%
15	Fused silica	1.5	30	2203	72	0.16	2.689	2.519	2.806	-4\%	2.713	2.499	-1\%	0.8\%
16	Borosilicate	1.5	30	2230	63	0.2	3.102	2.926	3.198	-3\%	3.120	2.883	-1\%	1.5\%
17	Beryllium	1.5	30	1844	303	0.07	0.537	0.494	0.570	-6\%	0.519	0.470	3\%	4.8\%

The difference between the Nelson model and the FEA model shows more than 25% errors, especially for the small aspect ratio cases such as case 11 and 12 . On the other hand, the difference between the parametric model and FEA model shows up to 5% errors in all ranges. Also, not like the Nelson model, we were able to estimate the surface RMS after the power is removed. In this case the difference error was up to 8%, which is still pretty good for the first order estimation. (Fig. 1.)

Fig. 1. Relative error comparison between Nelson's model and parametric models. (Shade indicates $\pm 5 \%$ error)

5. Conclusion

In this study, we verified the effectiveness of the parametric model to estimate the surface RMS due to the mirror deflection. Nelson model, which is an analytic solution, was well worked for the large aspect ratio mirror cases. However, for the small aspect ratio cases, we needed to perform FEA which takes significant efforts and time. The parametric model based on the 4 empirical equations was derived from the FEA simulations. We can effectively estimate the surface RMS ('total' and 'after power removed') due to the mirror deflection within 8\% accuracy using the parametric model.

6. References

[1] J. E. Nelson, J. Lubliner, and T. S. Mast, "Telescope mirror supports: Plate deflections on point supports," Proc. Soc. Photo-Opt. Instrum. Eng. 332, p212-228.
[2] S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1959), Chap 3.

Acknowledgement

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-612-C00045)

