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ABSTRACT

The performance of optical imaging systems relies on control of aberrations that

can arise from limitations in the design, manufacture, or alignment. This disserta-

tion addresses the form of aberrations that occur for misaligned reflective systems,

such as telescopes. The relationship between a characteristic set of field-dependent

aberrations and the misalignments that cause them is systematically explored. A

comprehensive technique that quantifies field performance for a 5-mirror system is

given, using Monte Carlo analysis to provide confidence levels of image quality as

functions of manufacturing and alignment errors. This analysis is an example of

the “forward problem”—determining optical performance of a system if the errors

are assumed. The inverse problem—determining the state of alignment based on

measurements of performance—is more difficult. The solution to the inverse prob-

lem for a multiple mirror system requires an understanding of the complex coupling

between many degrees of freedom (tilt, decenter, despace, shape error) of the optical

elements and field-dependent aberrations.

This work builds on previous treatment of field dependent optical aberrations

from Tessieres, Thompson, Shack, Buchroeder and others. A basis set of field-

dependent aberrations orthogonal over both field and pupil are developed here and

used to describe systems with misaligned and misshapen optics. This description

allows complete representation of high order and non-linear effects. The functional



23

form of aberrations that are characteristic of mirror tilt, shift, and deformation show

some useful patterns that provide insight to the fundamental effects of misalignment.

The use of singular value decomposition to create orthogonal combinations of the

field dependent aberrations provides a powerful tool for evaluating a system and for

estimating the state of alignment using wavefront measurements. The following op-

tical systems are evaluated to investigate the linear coupling between misalignment

and the resulting field dependent aberrations:

• Two-mirror telescopes, evaluating well-understood effects for an axisymmetric

system and developing the relationships for an unobscured system.

• Four-mirror correctors for a spherical primary telescope.

The tools and methods are applied to reflective optical systems for astronomical

telescopes, but the methods are general and can be useful for any optical imaging

system.
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CHAPTER 1

INTRODUCTION, MOTIVATION AND BACKGROUND

This chapter contains a brief review of the historical background of the analysis of

aberrations in optical systems for alignment and outlines the contents of the entire

dissertation.

1.1 INTRODUCTION - ABERRATIONS DEGRADE IMAGE QUALITY

The image quality of an optical system depends on the errors, called optical aber-

rations in the system. The aberrations from a variety of sources sum together to

determine the total aberrations in the system. Optical components that are poorly

mounted, incorrectly placed, or incorrectly made, and the residual design aberra-

tions can all contribute to the total optical aberration in the system. Atmospheric

turbulence and diffraction are other effects that can also add to the aberrations

which degrade the image quality.

Optical engineers strive to minimize all sources of aberrations in order to achieve

the highest optical quality possible. Minimizing aberrations in a computer model

while designing a new optical system is just the first step. Often (unless the design

is revolutionary), it is a routine procedure for a lens designer to modify an old

design to meet new specifications. After an optical system is designed, before it

is built, the engineer must specify all the fabrication and alignment tolerances for

the optical components and related systems so that the final system can meet its
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performance specifications. For example in a telescope, the allowed deviation in the

radius of curvature and conic constant of the mirrors must be specified in addition

to the mirror positions in order to achieve a given spot size at the detector. In

addition, opto-mechanical engineers design mounts to prevent the optical elements

from warping or sagging (especially important for large optics), and for telescopes,

adaptive optics systems may be designed to minimize the effects of atmospheric

turbulence.

1.2 MOTIVATION - MINIMIZING ALIGNMENT ABERRATIONS

For some optical designs, it is straightforward to assemble a system that meets the

performance specifications. Other systems with tight specifications require careful

planning to ensure that the built system is satisfactory. For these systems, tolerances

must be chosen for all of the individual elements for fabrication and alignment.

Inevitably, tighter tolerances increase the cost to build a system, so tolerances must

be chosen sensibly, specifying tolerances only as tight as necessary. For example,

mid-spatial frequency figure errors on the mirrors in a telescope may cause the same

sort of image degradation as atmospheric turbulence. If the mirror figure tolerance

is set to be far better than the best atmosphere that the telescope will see, then

the fabrication costs will be unnecessarily high because the final image would be no

better than if lower quality optics were used.

Predicting the optical performance of a system before it is built from a list of

expected errors with tolerances can be done by a perturbation analysis. Monte

Carlo simulations can help predict the performance of a unknown system where
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Figure 1.1: The optical alignment problem.

many errors can couple together in a complex way. This is considered a “forward

problem.” The confidence level for achieving a given performance can be found,

which helps with the process of assigning reasonable tolerances. Only statistics on

what might be exist before a system is built.

When a system is built, the performance will never be as good as the optical

model. Some of the causes of image degradation might not be able to be further

improved, such as the quality of the optics. However, the alignment errors can

be adjusted if one can somehow infer what is wrong. Inferring the details of a

particular system from measured data is known as an “inverse problem,” which is

much harder to solve than a forward problem. Although the sensitivities to errors

in the system are the same for both the forward problem and inverse problem, it

is close to impossible to infer exactly everything that is wrong in an optical system

from a fuzzy image. Measured wavefront data across the field gives more complete

information about what is wrong in the system. This dissertation is concerned with

the relation between alignment errors and optical aberrations, and how to determine

one given the other. A diagram showing the forward vs. inverse problem is shown

in Figure 1.1.
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Alignment of an optical system begins when an optical element is first placed in

the system. Usually the element is placed in approximately the correct place using

measurements of physical dimensions. This “rough alignment” involves measuring

the distances prescribed in the optical design carefully in order to put everything to-

gether as closely as possible. In a system with only a few elements or loose tolerances,

methodically making small adjustments to the positions of the optical elements will

eventually sufficiently align the system. In a system with more elements and/or

tighter tolerances, more precise tools for physical measurements, such as alignment

telescopes or metering rods, can be used for alignment.

If the previous technique does not sufficiently align the system to meet the per-

formance specifications, then optical measurements of wavefront aberrations may

need to be made and the inverse problem must be solved to calculate the misalign-

ments. Since the misalignment determines the specific aberrations present and their

amount, then measurements of the wavefront can be used to determine the mis-

alignment to do the “fine alignment.” For example, in a two-element system, there

are analytic solutions that describe the mirror adjustments necessary to minimize

particular aberrations measured. In a typical Cassegrain (two-mirror reflecting)

telescope, moving the secondary mirror in certain ways can correct aberrations, in-

cluding constant coma or linear astigmatism. For a more complicated system with

many degrees of freedom, the effect of each of the degrees of freedom of the optical

elements on the aberrations has previously not been well-understood analytically.

In such cases, numerical methods such as Singular Value Decomposition (SVD) have

been used instead to make a maximum likelihood estimate (MLE) of the correction,
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based on a model of the aberrations. This dissertation will expand on the work that

has been done previously in both analytic solutions and numerical solutions. Nu-

merical solutions will be especially useful for reflective systems with three or more

optical elements.

1.3 BACKGROUND

Misaligned multi-element optical systems usually have no axis of symmetry and

suffer from imaging aberrations that vary in a complex (but deterministic) way over

the field of view, even if a system is designed to be aberration-free. An optical

system designed to be aberration-free is a careful balance of elements that each add

positive or negative amounts of different aberrations that are minimized over the

image plane when the system is aligned. But when the system is misaligned, the

perturbations move the aberration field centers associated with the various surfaces,

and the net aberrations are no longer minimized throughout the field.

The aberrations resulting from tilting and decentering elements in a rotation-

ally symmetric optical system have been studied by a variety of authors, including

Buchroeder (1976), Shack & Thompson (1980); Shack (2005), Thompson (1980,

2005, 2009) and others (Rimmer, 1970; Turner Jr., 1992; Moore et al., 2008) and

are well-described. Aberration fields for these kinds of axisymmetric systems have

been derived by modifying the well known wave aberrations of Hopkins (1950) for

axisymmetric systems using polynomial expansions in pupil and field space. The

result is a set of general equations describing the field dependence of various aber-

rations that can be used to evaluate the image degradation due to misalignments.
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Unfortunately, these equations are limited for use in aligning a telescope or other

optical system because they do not express the aberrations in terms of an orthogonal

set of functions, such as Zernike polynomials, which causes coupling between low

and high order effects.

On the other hand, many other publications describe the effect of low order aber-

rations on image quality for a generic two-mirror telescope (such as a Cassegrain

or Ritchey-Chrétien), and quantify the amount of aberrations due to misalign-

ments. These publications on astronomical optics (Fehniger, 1980; Bhatia, 1995;

McLeod, 1996; Wilson, 1996; Wilson & Delabre, 1997; Mahajan, 1998; Schroeder,

1999; Noethe & Guisard, 2000) present a way to align the telescope by relating

aberration coefficients to the tilts and decenters in the system. It is well-known that

a decenter of the secondary will introduce coma which is constant over the field;

and a tilt about the “coma-free point” will generate mostly astigmatism that varies

linearly with the field. (A rotation about the coma-free point in a two-mirror system

does not introduce coma. See Wilson (1996) for more explanations.) Some publi-

cations (Bhatia, 1995; Wilson & Delabre, 1997; Mahajan, 1998; Schroeder, 1999)

are for specific two-mirror telescopes and relate aberration coefficients to tilts and

decenters in the system, including some with useful relations between Zernike coef-

ficients and field dependencies that can be used to retrieve the misalignments in a

two-mirror telescope (McLeod, 1996; Schroeder, 1999). Unfortunately, the equations

are for the specific systems in these publications, and do not offer general relations

valid for any system.

The general polynomial wavefront expansions were transformed by Tessieres
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(2003) into Zernike polynomial form. Knowing these field dependences allows a

system to be modeled with optical software to find the relationships between the

Zernike coefficients and the tilts and decenters of each element in the system. How-

ever, the field dependence of these functions developed by Tessieres are not orthog-

onal, meaning that the magnitude of each term depends on which other terms are

included in the analysis. Fitting nonorthogonal functions to data is not ideal when

there are lots of variables (in our case misalignment degrees of freedom) to be fit.

Using an SVD to make MLE of the current alignment state of the system is one

method that has been used to align a complicated optical system. Chapman &

Sweeney (1998) used an SVD technique to align a microlithography system with

many degrees of freedom. After this success, Code V implemented an SVD align-

ment algorithm into the code (Code V, 2009). This numerical method works well,

as long as the measurements are accurate, but it is difficult to use without an un-

derstanding of the system. Without such insight, it is difficult to determine the

number of measurements or the data quality required.

There are a variety of large telescopes newly constructed or under construction

with more than two mirrors that will need to be aligned. These include the Large

Synoptic Survey Telescope (LSST) (Claver et al., 2004) with three mirrors (and three

corrective lenses), the James Webb Space Telescope (JWST) (Clampin, 2008), also

with three mirrors, and the Southern African Large Telescope (SALT) (O’Donoghue

& Swat, 2002) and Hobby-Eberly Telescope (HET) (Booth et al., 2006), each with

a spherical primary mirror and a four-mirror corrector.

Each of these telescopes has been analyzed using SVD techniques to understand
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the aberration modes which may result from misalignment or to simulate an align-

ment process:

1. LSST: Phillion et al. (2006) (includes mirror bending modes)

2. JWST: Shiri et al. (2007) (includes primary mirror segment misalignments)

3. SALT: Hvisc & Burge (2008)

4. HET: this dissertation

1.4 OVERVIEW OF DISSERTATION

This dissertation continues in Chapter 2 with an example of looking at the effect of

mirror misalignments (among other expected errors) in an optical system to predict

system performance. This chapter is an example of the forward problem, while

the rest of the dissertation concentrates on the inverse problem: how knowledge of

the aberrations due to incorrectly placed components can aid the optical alignment

process. The dissertation is split into two major sections after Chapter 2. Section I

(Chapters 3–6) covers analytical alignment methods. Section II (Chapters 7–8)

covers numeric alignment methods. The final chapter discusses how to choose which

approach is more appropriate to solve the inverse problem, depending on the details

of the particular situation.

Section I comprises Chapters 3–6. Chapter 3 provides a review of the basic princi-

ples of aberrations. It emphasizes the differences between aberrations of rotationally

symmetric systems, and those of nonrotationally symmetric systems. Chapter 4 dis-

cusses the aberrations that occur in a model of a misaligned two-mirror Gregorian

telescope (the New Solar Telescope). Chapter 5 compares Nodal Aberration Theory
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and the functional description of the field-dependence of aberrations for the example

of a Ritchey-Chretien telescope (the Hubble Space Telescope). Chapter 6 presents a

new set of orthogonal field-dependent aberrations that are formed by combinations

of Zernike polynomials in pupil and field space. The last part of Chapter 6 continues

with the Hubble Telescope example to provide coefficients for a misaligned optical

system.

Section II comprises Chapters 7–8. Chapter 7 discusses a general background

for alignment of optical systems using a numeric method and provides two examples

of SVD of a system. Chapter 8 discusses the specific case of SVD alignment of

the Hobby-Eberly Telescope Wide Field Corrector (HET WFC). The orthogonal

control modes are found by SVD of the influence matrix of the system. These

control modes are examined in the orthogonal two-term double Zernike functions

presented in Chatper 6.

The final chapter (Chapter 9) summarizes the entire dissertation and discusses

how to approach a complicated alignment problem. Additionally, Chapter 9 pro-

poses some ideas for future work in this area.
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CHAPTER 2

EXAMPLE OF AN EXPECTED OPTICAL PERFORMANCE CALCULATION

BASED ON THE FORWARD ANALYSIS OF SYSTEM TOLERANCES

When building optical systems, error analysis is essential for planning and making

decisions that will enable the system to be built to meet the performance specifica-

tions. In this chapter, Monte Carlo simulations are used to predict the performance

of the Hobby-Eberly Telescope (HET) Wide Field Corrector (WFC) for a variety

of sources of error, such as manufacturing errors, misalignment, or temperature

changes.

In an initial analysis (Hvisc & Burge, 2008), the sensitivities to spot size were

found for the alignment degrees of freedom of each of the mirrors. For an individual

degree of freedom, the product of the sensitivity and the tolerance predicts the

degradation to the root mean square (rms) spot size, averaged over a number of

field points. Tolerances were chosen for each of the degrees of freedom, such that

when the total rms spot size was found by root sum square, the resulting performance

was acceptable. Finding the predicted performance using a root sum square assumes

that the individual effects are uncorrelated; however, this assumption may not be

completely valid, especially in a complex system, where there may be many factors

that couple together in unknown ways that affect the performance.

To verify that the tolerances chosen would result in acceptable performance for

the actual specification—the 80% encircled energy diameters throughout the field,
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Monte Carlo simulations were done. In a Monte Carlo simulation, a large number

of systems that meet all tolerances are generated. The first advantage of a Monte

Carlo analysis is that it fully captures any coupling between the degrees of freedom

that are toleranced. In addition, another advantage is that it does not require any

assumptions about the linearity of the sensitivities to the degrees of freedom. (In

later chapters, the nonlinear dependence of aberrations to misalignment is discussed.

Although the nonlinearity is usually small over the chosen range tolerances, a Monte

Carlo analysis saves the hassle of verifying for each degree of freedom and accounting

for it when necessary.) The final advantage of Monte Carlo simulations is that since

a large number of possible systems are generated, statistics may be found for any

number of resulting quantities of interest, beyond the average spot size. In this

case, the Monte Carlo analysis provides statistics on the encircled energy spot size

diameters at different locations throughout the field, the required range of motion

of the compensators and the resulting plate scale of the telescope. Before anything

is made, there are no exact numbers for anything—only probabilities on what might

be. A Monte Carlo analysis is the best way to give the project the confidence it needs

to determine that the chosen tolerances give a high likelihood that an acceptable

system will be built.

The chapter shows the results of an analysis for a newer design of the HET

WFC than in the previous paper (Hvisc & Burge, 2008). The tolerances for the

alignment degrees of freedom have been refined and tolerances on many additional

degrees of freedom have been added. This chapter includes analysis that predicts

the expected performance for the HET WFC that accounts for many sources of
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errors, including manufacturing, alignment, assembly and operation, compensator

positioning, polishing and support figure errors, correlated misalignment errors and

window fabrication errors. Most of the effects for these individual error sources were

found by Monte Carlo simulations.

2.1 INTRODUCTION TO THE HOBBY-EBERLY TELESCOPE

Some telescopes use primary mirrors with spherical shape to reduce the cost of the

mirror fabrication and to allow the mirror to operate at fixed elevation. These ad-

vantages become significant as the size of the telescope grows. The HET is one such

telescope that uses a spherical primary mirror (Ramsey et al., 1998; Krabbendam

et al., 1998). However, the disadvantage of the spherical primary is a large amount

of spherical aberration which needs to be corrected. The 11-m HET has a corrector

for the spherical aberration, but a major upgrade, including a new Wide Field Cor-

rector (WFC), is planned. The new corrector for the HET, shown in Figure 2.1, is

currently under construction at the University of Arizona. The prescription for the

corrector is listed in Table 2.1. The diameters of the mirrors are listed in Table 2.2.

Table 2.1: HET WFC system prescription (not including the entrance and exit
windows).

Surface Name Radius of curvature (mm) Conic constant Thickness (mm)

M1 −26163.9 0 −14014.6
M2 2620.8 0.663 982.6
M3 −2032.5 −7.711 −1559.8
M4 −376.7 −2.098 337.1
M5 −742.1 −0.2675 −2410.8
Focal plane 970.0
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Figure 2.1: The optical layout of the Wide Field Corrector for the Hobby-Eberly
Telescope. The focus of the primary mirror lies near the central hole of M3.

Table 2.2: Mirror diameters used to convert tilt in degrees to microns.

Degree of freedom Diameter

M2 tilt 1020 mm
M3 tilt 1020 mm
M4 tilt 249 mm
M4 M5 tilt 900 mm
Focal plane tilt 232.56 mm
M2-M5 together tilt 1020 mm

Three of the four mirrors are concave and one (M4) is convex. All four mirrors

are aspheric, with surfaces described by conic constants. In addition to the conic

constants, M3 and M5 require higher order aspheric terms to describe their surfaces.

The sag of a mirror z as a function of the radial position r is given by the following

equation when there are higher order aspheric terms α:

z(r) =
cr2

1 +
√

1 − (1 + k)c2r2
+ α1r

2 + α2r
4 + α3r

6 + α4r
8 + α5r

10 (2.1)
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Table 2.3: HET WFC mirror aspheric terms.

Aspheric term M2 M3 M4 M5

α3 6th order term (1/mm5) - −8.263×10−17 - 5.762×10−19

α4 8th order term (1/mm7) - 8.482×10−23 - 2.137×10−25

α5 10th order term(1/mm9) - −3.595×10−29 - -

where c is the curvature (or 1/R, the inverse of the radius of curvature), and k

is the conic constant of the mirror. The terms α1 and α2 are not needed because

the radius of curvature determines the second order dependence on the radial pupil

position and the conic constant describes the fourth order dependence. In addition,

since the surfaces are radially symmetric, only even order terms are needed. The

three aspheric terms for M3 and two aspheric terms for M5 are listed in Table 2.3.

This chapter describes the expected performance in terms of encircled energy

(EE), based on the tolerances for manufacturing, alignment and operation of the

WFC design. The process of finding the sensitivities, choosing tolerances and pre-

dicting the performance for an earlier design of the corrector was discussed in a

previous paper (Hvisc & Burge, 2008). The tolerances and design have both gone

through some slight modifications and this chapter uses the current design for the

mirrors as they will be manufactured. The contributions from a variety of error

sources are assumed to be uncorrelated, which allows their effects to be added to-

gether by root sum square to find the estimated performance. For example, the

resulting 90% encircled energy diameter Φ is given by:

Φ =
√

Φ2
0 + (ΔΦ1)2 + (ΔΦ2)2 + · · · (2.2)
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where Φ0 is the encircled energy for the nominal design and ΔΦi is the effect from

each parameter i. The different parameters or sources of error (i = 1–8), which will

be discussed in Sections 2.3.1–2.3.8, are:

1. Manufacturing tolerances

2. Alignment tolerances

3. Assembly and operation tolerances

4. Compensator tolerances

5. Polishing and support figure errors

6. Temperature effects

7. Correlated misalignment errors

8. Entrance and exit windows

2.2 INTRODUCTION TO MONTE CARLO SIMULATIONS

Monte Carlo (MC) simulations are used to predict the statistical effect of tolerances

on the degrees of freedom in a system by simulating a large number of random

systems that meet all tolerances. For this system, the MC trials (described in

Appendix A) are performed in Zemax using the tolerancing functions with a custom

tolerancing script (included in Appendix B). In one trial, each degree of freedom

is randomly perturbed to some number, within a uniform distribution of values

allowed by the tolerance. The compensators (which are the five degrees of freedom
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of the entire WFC with focal plane) are optimized to minimize the root mean square

(rms) spot size at a collection of points in the field. (This collection includes five

field positions: one on axis and at four at (±5 arcmin, ±5 arcmin)). This is repeated

for some number of trials, typically around 200 or more in this analysis. Confidence

levels for the encircled energy diameters are calculated as the percent of systems that

are better (smaller EE diameters) than the given number. While a 50% confidence

level could be used to show what might be expected on average, there are many

systems that could be much worse. In order to have a high confidence that the

system will work, the 90% confidence levels are considered here. (It is entirely

a coincidence that there are two different values that are both examined at 90%

(confidence levels and encircled energies).)

The specification for this system is given in terms of the 80% encircled energy

spot sizes through the field of view. However, this analysis uses 90% encircled

energy sizes because it is assumed that 10% of the energy is scattered out of the

image completely due to surface irregularities. The encircled energy diameters after

many Monte Carlo trials are performed are evaluated in Matlab at five points

throughout the field of view (0, 2.7, 5.4, 8.1 and 11.0 arcminutes).

The Zemax file resulting from the Monte Carlo analysis lists the resulting en-

circled energy radii across in the field in units of microns, compensator motions and

effective focal length for each trial. A Matlab function (included in Appendix C.1)

loads the data file with the Zemax tolerancing results for one set of Monte Carlo

simulations. The Matlab function searches for the relevant data in the data file

and analyzes the results. The encircled energy radii in microns are converted into
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diameters in arcseconds, and for each field radius, the encircled energy diameter is

plotted as a cumulative probability, as shown in Figure 2.2b, based on the histograms

of the resulting spot sizes from the Monte Carlo trials, as shown in Figure 2.2a.

The output of the function is a set of encircled energy diameters for different

confidence levels across the field. These diameters are usually larger than the ones

for the nominal system. The effect of the set of perturbations tested (e.g. the

alignment tolerances or the manufacturing tolerances) is found by a root difference

squared (Equation 2.3) of the set of perturbed encircled energy diameters and the

ones without the perturbations. That is, the effect for just one perturbation (e.g.

i = 1) in Equation. 2.2 is

ΔΦ1 =
√

Φ2 − Φ2
0. (2.3)

This step is performed for each set of perturbations (i) at each different field radius

and confidence level in a second Matlab file (included in Appendix C.3). The

purpose of calculating the root difference squared is to be able to separate the

contributions so they can be examined individually (in a table or a plot). In the

end, the effect all the contributions together will be found by a root sum square.

However, the assumption does not need to be made that the effects are not correlated

in this case because the data are actually the statistical results from a Monte Carlo

simulation to begin with and they were just arbitrarily separated for the table.

2.3 CONTRIBUTIONS

In this section, each of the contributions and their meanings are presented. Sec-

tion 2.4 lists the encircled energy contributions and shows a plot of the results. All
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(a) Histograms of the spot sizes. The red line indicates the nominal value of the model before the
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Figure 2.2: Results from the Monte Carlo trials including perturbations to the
manufacturing, alignment, and window degrees of freedom.
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tolerances are listed as positive numbers, but are assumed the same in the positive

and negative directions. For example, a tolerance listed as 50 µm should be assumed

to be ±50 µm (peak to valley).

2.3.1 MIRROR FABRICATION TOLERANCES

Mirror fabrication tolerances in this section include the error in the knowledge of

the radii and conic constants. All other errors (such as those in the higher order

aspheric terms) are included in the polishing and support figure errors section. The

focal plane in the system has a radius of curvature because the light will be fed into

optical fibers. The ends of the fibers will be on a spherical focal surface. (This is

possible, while in general, a curved detector is quite hard to make.) This spherical

focal surface (for the fiber ends) has an allowable radius of curvature tolerance

variation chosen (3.44 mm) such that the change in sag at the edge of the surface

at a radius of 116.28 mm (which is the edge of the field) is no more than ±25 µm.

Table 2.4 lists the measurement tolerances used in the Monte Carlo simulation.

Table 2.4: Manufacturing tolerances for M2, M3, M4 M5 and focal plane.

M2 M3 M4 M5 Focal Plane

ΔR uncertainty (mm) 0.075 0.075 0.045 0.04 3.44
Δk uncertainty 0.0011 0.0008 0.0006 0.0001 NA

These uncertainties in Table 2.4 are different from the allowable ΔR and Δk for

actual variations in the final radius of curvature and conic constant. Errors in the

radius of curvature and the conic constant result in radially symmetric aberrations,

such as focus and spherical aberration. Small errors in the specified R and k values
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are acceptable to some level because the spacings between the mirrors can be slightly

adjusted during reoptimization in the optical model after the mirrors are fabricated,

but before the system is put together, to remove these errors completely. It is the

amount of uncertainty in the radius of curvature and conic constant that cause

errors in the final system, because the resulting aberrations can not be corrected by

deliberately changing the spacing between the elements.

A Monte Carlo simulation was performed where each of the mirrors were si-

multaneously perturbed by some amount that satisfied the tolerances in Table 2.4

and the total effect (listed in row Φ1 of Table 2.9) was found using the technique

described in Section 2.2.

2.3.2 ALIGNMENT TOLERANCES

Alignment tolerances include those tolerances for alignment of the individual mirrors

and groups of mirrors, as listed below in Table 2.5. The decenters and tilts were

perturbed in each of the �x and the �y directions with the same tolerances. During

a previous analysis, it was determined that M4 and M5 should move together.

Instead of specifying tight tolerances for both M4 and M5 positions in the system

(which would be hard), one mirror could be held precisely (M4) as long as the other

mirror (M5) moves with it. This concept affected the design of the mechanical

structure holding the mirrors. All of the tilts in Table 2.5 are given in microns of

displacement across the diameter. The diameters assumed were listed in Table 2.2.

The tolerances on decenter, for example are given in the �x and �y directions. For an

arbitrary direction, the total decenter can be
√

2 times the tolerance. A Monte Carlo
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simulation was performed where each of the mirrors were simultaneously perturbed

by some amount that satisfied the tolerances in Table 2.5 and the total effect (listed

in row Φ2 of Table 2.9) was found using the technique described in Section 2.2.

Table 2.5: Alignment tolerances in microns.

Degree of Freedom Tolerance

M2 to M3 axial 100
M2 to M5 axial 100
M4 to M5 axial 20
M2 decenter (�x or �y) 50
M3 decenter (�x or �y) 50
M4 decenter (�x or �y) 20
M4 M5 decenter (�x or �y) 50
M2 tilt (�x or �y) 50
M3 tilt (�x or �y) 50
M4 tilt (�x or �y) 20
M4 M5 tilt (�x or �y) 50
Focal plane axial position 1000
Focal plane tilt (�x or �y) 50
M2-M5 together decenter (�x or �y) 250
M2-M5 together tilt (�x or �y) 250

2.3.3 ASSEMBLY AND OPERATION TOLERANCES

The assembly and operational tolerances are for the same degrees of freedom as

the alignment tolerances in the previous section. The values of these tolerances,

which account for operational changes, are 1/4 of the tolerances above and are

listed in Table 2.6. This amount was chosen as a reasonable approximation for the

tolerances. The total effect (which will be listed in row Φ3 of Table 2.9) is 1/4 that

for the alignment errors in row Φ2.
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Table 2.6: Operational tolerances in microns.

Degree of freedom Tolerance

M2 to M3 axial 25
M2 to M5 axial 25
M4 to M5 axial 5
M2 decenter (�x or �y) 12.5
M3 decenter (�x or �y) 12.5
M4 decenter (�x or �y) 5
M4 M5 decenter (�x or �y) 12.5
M2 tilt (�x or �y) 12.5
M3 tilt (�x or �y) 12.5
M4 tilt (�x or �y) 5
M4 M5 tilt (�x or �y) 12.5
Focal plane axial position 250
Focal plane tilt (�x or �y) 12.5
M2-M5 together decenter (�x or �y) 62.5
M2-M5 together tilt (�x or �y) 62.5

2.3.4 COMPENSATOR TOLERANCES

There are five compensators used to correct manufacturing and alignment errors

and other errors in the system. The compensators are the axial position, �x and �y

tilt, and �x and �y decenter of the entire WFC, including the focal plane, which is

mounted on a hexapod. However, these degrees can only be controlled with finite

precision. The tolerance for each of these degrees of freedom is ±15 µm. For the

system tilt, 15 µm is across the 0.7 meter radius. These compensator resolution

tolerances are given in Table 2.7.

To find the effect of the compensator tolerances, a Monte Carlo simulation was

performed where each of the four mirrors were simultaneously perturbed by some

amount that satisfied all of the manufacturing and alignment tolerances. Then

another Monte Carlo simulation was performed where again each of the four mirrors
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are perturbed according to the manufacturing and alignment tolerances, but this

time, after the compensators are adjusted to their optimal positions according to the

merit function, they are perturbed up to 15 µm. The total effect of just perturbation

of the compensators (Φ4 in Table 2.9) is found by calculating the the root difference

squared of the set of Monte Carlo trials without the compensator perturbations and

the Monte Carlo trials with the compensator perturbations. The effect of perturbing

the compensators is mostly constant across the field because these degrees of freedom

(like tilting or decentering a secondary mirror of a two mirror telescope) cause mostly

constant coma throughout the field.

2.3.5 POLISHING AND SUPPORT FIGURE ERRORS (INCLUDING

TRANSMITTED WAVEFRONT ERROR FOR WINDOWS)

The tolerance on the effect on the polishing and support figure errors (including

errors in the higher order aspheric coefficients) is 0.25 arcseconds for 90% EE, con-

stant across the field. These numbers (not found by Monte Carlo analysis) can be

considered to be at the 100% confidence level, since the mirror will be done when it

meets this specification. For example, there would not be a 50% confidence of meet-

ing 0.20 arcseconds polishing/figuring error across the field or better. The surface

figure specification for the effect on the encircled energy diameter is in the units of

Table 2.7: Compensator resolution tolerances.

Degree of freedom Tolerance

Axial Position 15 µm
�x or �y decenter 15 µm
�x or �y tilt 21.4 µrad or 4.42 arcsec
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the encircled energy diameter, which is arcseconds. An internal University of Ari-

zona report (included in Appendix D) breaks down the 0.25 arcsecond contributions

into the surface slope specifications for both polishing and support errors for each

of the mirrors that are necessary to achieve this overall specification.

2.3.6 TEMPERATURE EFFECTS

The effect of uniform temperature changes in the system is examined. (Temperature

gradients, or differential temperatures between M2 and M3, for example, are not

considered.) The effect of the temperature change on each of the mirror positions was

given by finite element analysis (FEA) (Appendix E), performed by Dr. Rob Stone.

The temperature changes affect the mirror positions linearly for both positive and

negative temperature changes. However, the optical effect on the encircled energy

diameter is not linear.

To find the effect of the temperature, the design is put in the perturbed state as

found by FEA for worst-case (largest ΔT). Next, all the fabrication, alignment and

compensator degrees of freedom are perturbed, within their tolerances, through the

normal MC routine. The statistics on encircled energy spot size are found for the

resulting systems and compared to the statistics resulting from another Monte Carlo

analysis using the same perturbed degrees of freedom and tolerances, but starting

from the nominal system (at 10 ◦C). (In particular, the effect for just the temperature

change is found by a root difference squared of the one set of Monte Carlo trials

that started with a temperature change and another set of Monte Carlo trials that

started at the nominal temperature.) The effects for each a positive and a negative
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temperature change were found. However, negative temperature changes cause a

larger effect on the encircled energy than positive temperature changes throughout

the field. All the numbers listed in Table 2.9 are for a temperature of -10 ◦C, which

is a change of ΔT = −20 ◦C from the nominal temperature of 10 ◦C.

2.3.7 CORRELATED MISALIGNMENTS THAT DEPEND ON THE TILT OF

THE ENTIRE WFC

The tracker on the telescope moves the position of the enitre WFC and focal plane

assembly to keep the position of the stars on the sky constant at the focal plane for

long exposures. During this process, the WFC is tilted from its nominal elevation

angle of 35◦ to keep its optical axis perpendicular to the surface of the primary

mirror. Tilting the WFC with respect to gravity causes the four WFC mirrors to

move out of position. Since the mirrors move together in a certain, repeatable way,

this section is called “correlated misalignments.” The tracker may tilt the corrector

up to 8.5◦ in any direction. The mechanical changes to the mirror positions due

to tilting were found by FEA (Appendix E), performed by Dr. Rob Stone, for

a number of configurations, representing the possible directions and ranges of tilt

angles. These configurations include in plane for both 26.5◦ and 43.5◦, and out of

plane for 35◦/8.5◦, 29◦/6◦, 41◦/6◦.

Next, the optical effect of these mirror changes due to tilting the corrector for

each of these different pointing configurations was found. Similar to the Monte

Carlo analysis done for the temperature changes, the mirror are moved to perturbed

positions, as calculated by the FEA. Then a Monte Carlo simulation is run, where
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the manufacturing and alignment degrees of freedom are perturbed to new values

within the allowed range defined by the tolerances. The effect for the correlated

misalignments is found by a root difference squared between those results and those

from another Monte Carlo analysis, with the same manufacturing and alignment

perturbations, but starting with the mirrors in their positions defined by the nominal

design. Not surprisingly, the different tracker positions affect the mirrors in the

WFC and the resulting optical performance differently. In order to account for the

worst-possible scenario for predicting the performance of the WFC, the largest effect

at each field for any of the different tracker positions tested was used for the results

in Table 2.9. This is shown graphically in Figure 2.3.
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Figure 2.3: Comparison of correlated misalignment errors across the field. For
predicting the performance, the largest value from any tilt configuration was chosen
for the correlated misalignment error for each field in Table 2.9.
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2.3.8 WEDGE AND THICKNESS VARIATION OF THE ENTRANCE AND

EXIT WINDOWS

The entrance and exit windows will not significantly affect the performance, but

are included here for completeness. The effect of wedge and thickness variations in

the windows is modeled by Monte Carlo analysis. The tolerances for these effects

are listed in Table 2.8. The windows may also have transmitted wavefront errors

(from surface irregularities or index variations), but this effect is included in the

0.25 arcsec figure specification (in Section 2.3.5).

Table 2.8: Tolerances on the entrance and exit windows.

Degree of freedom Tolerance

Wedge (amount allowed) 1 arcminute
Thickness (measurement uncertainty) 0.1 mm

2.4 RESULTS

The tolerances were chosen so that the 90% confidence level (almost) meets the

specification. The net result of all contributions added by root sum square is shown

in Figure 2.4. There is a 90% confidence that the system will perform this well or

better. The numbers in this graph are provided in Table 2.9. Since many of the

tolerances have a similar magnitude effect, it would be hard to improve performance

significantly without tightening all of the tolerances.

As a final check, one Monte Carlo simulation that included perturbations to the

alignment, fabrication, window and compensator degrees of freedom was performed

and the net result was basically the same as the root sum square of the individual
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Figure 2.4: Contributions to HET WFC encircled energy.

Table 2.9: Contributions to 90% encircled energy (in arcseconds) for the HET WFC
(90% confidence level).

Field Radius (arcminutes) 0 2.7 5.4 8.1 11.0

Φ0 Nominal design 0.253 0.229 0.193 0.318 0.584
Φ1 Mirror fabrication 0.204 0.179 0.118 0.148 0.269
Φ2 Alignment 0.057 0.065 0.187 0.272 0.295
Φ3 Assembly and operation 0.014 0.016 0.047 0.068 0.074
Φ4 Compensators–15 µm accuracy 0.119 0.144 0.176 0.229 0.156
Φ5 Polishing and support figure 0.25 0.25 0.25 0.25 0.25
Φ6 Temperature effects 0.000 0.078 0.117 0.158 0.251
Φ7 Correlated misalignment 0.081 0.027 0.184 0.268 0.276
Φ8 Entrance and exit windows 0.091 0.065 0.082 0.114 0.099

Φ Root Sum Square Total 0.448 0.428 0.486 0.653 0.861

results (rows Φ0, Φ1, Φ2, Φ4 and Φ8), as shown in Figure 2.5, as one would expect.
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Figure 2.5: Net effect of nominal design; alignment, manufacturing, and window
tolerances; and 15 µm compensator perturbations.

2.5 OTHER CONFIDENCE LEVEL CURVES

For comparison, Figure 2.6 shows curves for different confidence levels. 90% of the

systems generated randomly that met all tolerances (given throughout the report)

will have encircled energy diameters equal to or smaller than the yellow line, which

was shown in red in Figure 2.4. Other confidence levels, including 25%, 50%, 75%,

95% and 98% are shown now as well.

With such a complex system, the tolerance stack-up is necessarily statistical. It

is unlikely, but possible, that many effects will be within tolerance, but will add

in such a way that the system performance specification would not be met. This

situation must be addressed by extra alignment steps during the system test. In

the system test, the wavefront aberrations may be measured throughout the field
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Figure 2.6: Expected performance of the Wide Field Corrector.

and a maximum likelihood estimation of the optimum mirror alignment motions to

compensate can be made. This is the type of inverse problem that is considered

in the rest of the dissertation. The field-dependent aberrations that are possible in

the misaligned HET WFC system are considered in Chapter 8, although the system

test itself will not be described in this dissertation.

2.6 IMPROVEMENT WHEN MORE COMPENSATORS ARE USED

During any optimization, adding extra degrees of freedom allows the system to have

a wider solution space. If the additional degrees of freedom chosen are helpful in cor-

recting the existing errors in the system, then the resulting performance improves.

Including focal plane tilt (in two directions) and axial motion during optimization

in the Monte Carlo analyses, in addition to the previous five rigid body motions
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Figure 2.7: The encircled energy diameters are smaller when eight compensator
degrees of freedom are included during optimization than when five compensator
degrees of freedom are used.

of the corrector allowed by the hexapod, improves the performance of the system.

While these additions degrees of freedom are not currently planned to be actively

controlled during operation, they may be adjusted in the initial alignment. Fig-

ure 2.7 compares the 90% confidence level of the 90% encircled energy diameters

from the Monte Carlo simulations when perturbations to the alignment, fabrica-

tions and compensator resolution degrees of freedom are included for the case of

eight compensators to that of five. The root difference squared between these two

curves is approximately 0.2 arcseconds and fairly uniform through the field.
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2.7 EFFECTIVE FOCAL LENGTH CHANGE DUE TO CORRELATED

MIRROR MISALIGNMENTS

When the mirrors move because of changes in orientation or temperature, there is

a change in the plate scale, which is equivalent to a change in effective focal length.

Table 2.10 shows the change in focal length of the system due to correlated mirror

motions for different cases. The system is perturbed according to the values from

the FEA analysis (Appendix E) and then the rigid body tilt of the entire corrector

and focal plane is adjusted for compensation to minimize the same merit function

for rms spot size throughout the field as was used during the Monte Carlo trials.

Table 2.10: Change in effective focal length (after optimization) due to correlated
mirror motion and result on maximum relative image motion for two points on
opposite edges of the field of view.

Configuration EFL ΔEFL Change in
in mm in mm separation

in µm

35◦ in plane, 0◦ out of plane tilt 36497.4
26.5◦ in plane, 0◦ out of plane tilt 36498.7 1.3 8.32
43.5◦ in plane, 0◦ out of plane tilt 36496.2 −1.2 −7.68
35.0◦ in plane, 8.5◦ out of plane tilt 36497.4 0.0 0
29.0◦ in plane, 6.0◦ out of plane tilt 36498.3 0.90 5.76
41.0◦ in plane, 6.0◦ out of plane tilt 36496.5 −0.90 −5.76
Positive temperature change (+20◦C) 36498.3 0.90 5.76
Negative temperature change (−20◦C) 36496.4 −1.0 6.40

The effective focal lengths resulting from the Monte Carlo analyses that perturb

the alignment and fabrication degrees of freedom have much greater variations. The

standard deviation of the distribution of effective focal lengths for all the different

Monte Carlo simulations was similar. For the set of Monte Carlo trials with the
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widest distribution of resulting focal lengths, the standard deviation was 24.5 mm.

The most extreme change in focal length from nominal out of all the Monte Carlo

trials was 69.9 mm. This means that the nominal EFL once the system is built

may be anything within a large range. The overall plate scale will be measured, and

offsets from the nominal effective focal length are not important.

The main problem for HET will be plate scale changes that occur during an

exposure due to correlated misalignment errors or temperature changes, which can

not be corrected. For long exposures, the change in effective focal length can be

approximated by determining how much the pointing of the WFC and temperature

will change during the time of the exposure. The plate scale of a telescope can be

expressed as

Plate scale =
EFL

206265 arcseconds/radian
. (2.4)

The specification for plate scale change change is that no two points in the field

can move relative to each other by more than 35 µm during an exposure. When

the plate scale changes during an exposure, the two points at opposite sides of the

field of view (located 22 arcminutes apart) will have more relative motion than any

other pair of two points. During an exposure, the relative motion of two points at

the opposite sides of the field of view in microns can be calculated by the following

expression:

Motion = (22 arcmin)

(
60 arcsec

arcmin

)(
1000 µm

mm

)(
ΔEFL (in mm)

206265 arcsec/rad

)
. (2.5)

This equation was used to calculate the “Change in separation” values in Table 2.10.
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In the longest possible exposure, an object would be tracked over the entire range of

motion of the WFC from 26.5◦ to 43.5◦ elevation angle and two points could change

in position by 8.32 µm−− 7.68 µm = 16 µm. Since this change in relative position

between two points is less than 35 µm, the specification will be met.

2.8 RESULTING COMPENSATOR RANGES OF MOTION

One of the important results from the Monte Carlo simulations, in addition to the

expected performance, is the expected range of values required of the compensators

to correct the system when other errors are present. The compensators are the

rigid body motions of the entire WFC and focal plane, which are controlled by

the hexapod. These values, listed in Table 2.11, show the range of motion from

the hexapod required during the Monte Carlo simulations (when five compensator

degrees of freedom were used), and that it should be able to achieve in the system.

Table 2.11 lists the maximum change recorded change out of all Monte Carlo trials

performed, a typical value for the standard deviation for a set of Monte Carlo trials

and two times the standard deviation, which represents the maximum range for 90%

of the time.

Table 2.11: Compensator adjustments used during the Monte Carlo simulations and
required by the hexapod on the telescope.

Compensator degree of freedom maximum σ 2σ

axial position (mm) 0.45 0.13 0.26
x or y decenter (mm) 10.6 1.8 3.6
x or y tilt (arcmin) 2.9 0.69 1.4
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2.9 CONCLUSION

This chapter showed an example of the forward problem using the example of the

Hobby-Eberly Telescope Wide Field Corrector, currently under construction at the

University of Arizona. Many degrees of freedom were investigated individually to

find their expected contribution to the degradation of the system performance. This

type of tolerance analysis must always be done before building an optical system in

order to ensure both that the final specifications will be met and that the tolerances

are not so tight that they are detrimental to the project budget. A careful tolerance

analysis is especially important for systems that have challenging specifications, such

as this example.

This example addressed the degradation to system performance for many degrees

of freedom, including both from manufacturing and alignment. The remainder of

this dissertation will concentrate primarily on the errors in the optical wavefront

from alignment. This information is useful for inverse-type problems for alignment.

That is, given a measurement of the wavefront aberrations, how can one infer the

alignment degrees of freedom that are incorrect?
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CHAPTER 3

BASIC PRINCIPLES OF ABERRATIONS

In an ideal geometrical optical system, there is one to one correspondence between

a point object and its point image. This type of system is completely described

by first order optics (the focal length of the optical system, the object and image

heights and positions, etc.). However in real life, there is no such thing as a perfect

optical system and systems fail to make perfect images, due to diffraction and ge-

ometrical aberrations. The best possible images, limited only by diffraction when

geometrical aberrations are not present, are referred to as diffraction-limited and

for point objects appear as the well-known Airy pattern. The wavefront aberrations

due to geometric considerations are discussed in this chapter. As a wavefront prop-

agates, however, diffraction does causes the wavefront to change, and the effect is

that different aberrations become coupled (Sasian, 2009; Zhou, 2009).

The aberrations in an optical system can be represented as optical path differ-

ences (OPD) between the light rays. The path a ray takes depends on how it is

refracted or reflected by each element of the system. This path can be uniquely

described by knowing the starting location and direction of the ray in any plane, or

alternatively by knowing the coordinates of a ray in two different planes. Typically,

for the purpose of aberrations, the ray is described by two vectors: �H , the field vec-

tor in the object plane, and �ρ, the pupil vector. These are shown in the right-hand

convention in Figure 3.1.
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Figure 3.1: Pupil and image conventions in a right-handed coordinate system. The
components along the �x and �y axes respectively are ρ cosφ and ρ sinφ for �ρ and Hx

and Hy for �H .

Aberrations can be divided into two broad categories: chromatic aberrations

and monochromatic aberrations. Chromatic aberrations occur in refractive optical

systems due to the variation of index of refraction with wavelength, and are not

considered in this dissertation. Monochromatic aberrations occur in both refrac-

tive and reflective optical systems and do not depend on the wavelength. Only

monochromatic aberrations occur reflective optical systems, such as telescopes, and

this are the type of aberration considered in this dissertation.

An optical wavefront is the surface connecting the ends of all the rays with

equal optical path length. As a spherical wavefront emanating from a point source

travels through an optical system, it departs from the original spherical shape. If

there existed a perfectly spherical converging wavefront departing from the optical

system, it would converge back into a point image. The wavefront aberrations in
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an optical system are defined relative to this spherical reference wavefront. Many

references, including Mahajan (1998, 2001), and Born & Wolf (1999) cover the basics

of aberrations in detail.

3.1 ABERRATIONS OF ROTATIONALLY SYMMETRIC OPTICAL SYSTEMS

The aberrations in axially symmetric optical systems were first studied in the 1800’s

by Seidel (1865). Hopkins (1950) created the wave aberration expansion to describe

the aberration contributions in a rotationally symmetric system. Welford (1974,

1986) is a classic text which describes these aberrations.

If the coordinate system of a rotationally symmetric optical system is rotated,

there are some quantities that remain invariant. Simply stated, these are the length

of the pupil and field vectors and the angle between the two vectors. Mathematically,

these terms come from combinations of the dot products of the field and pupil

vectors. The length of the field vector comes from a dot product of the field vector

with itself: h = | �H| =
√
�H · �H. The length of the pupil vector comes from a dot

product of the pupil vector with itself: ρ = |�ρ | =
√
�ρ · �ρ . Finally, the angle between

the two vectors is determined by the dot product: �H · �ρ = h ρ cos(θ − φ). If one

assumes (in a rotationally symmetric system) that the object is on the �x axis, then

θ = 0 and there is no loss of generality. The dot product between the field and pupil

vectors becomes �H · �ρ = h ρ cos(φ).

One can describe the wavefront aberration function W ( �H, �ρ ) as a power se-

ries sum of combinations of these vector dot products that remain invariant under
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rotation:

W ( �H, �ρ ) =
∞∑

p = 0

∞∑
n = 0

∞∑
m = 0

Wklm ( �H · �H)p (�ρ · �ρ)n ( �H · �ρ)m. (3.1)

The aberration function can also be expressed in the standard scalar form W (h, ρ, φ)

as originally published by Hopkins:

W (h, ρ, φ) =

∞∑
p = 0

∞∑
n =0

∞∑
m = 0

Wklm (h2)p (ρ2)n (h ρ cosφ)m

=

∞∑
p = 0

∞∑
n =0

∞∑
m = 0

Wklm h
2p+m ρ2n+m cosm φ

(3.2)

where the power of the field is k = 2p+m and the power of the pupil is l = 2n +m.

The constant Wklm is the weighting coefficient for the aberration term, where the

dependence of the aberration on the field �H is given by the first subscript (or index),

the dependence on the pupil �ρ is given by the second subscript, and the dependence

on the angle between the field and pupil (given by the dot product �H · �ρ ) is given

by the third subscript. This constant includes contributions from all of the optical

surfaces j in the system, such that

Wklm =
∑

j

(Wklm)j . (3.3)

The order of the wave aberration is found by summing the powers of h and ρ. The

order is equal to 2(p+ n +m) and thus is always even. Terms of order four, six and

eight are called the primary (or Seidel), secondary (or Schwarzchild) and tertiary

aberrations respectively. Terms of order two in the wave aberration correspond

to changes in the first order properties of the optical system and are usually not
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included as aberrations, since in those cases, points still image to points. These

terms include:

• W200: piston (no effect on the image),

• W020: focus (affects the image plane axial location), and

• W111: tilt (affects the lateral position of image in the image plane).

Including all the fourth order terms in the wave aberration function leads to the

equation:

W (h, ρ, φ) = W040 ρ
4 +W131 h ρ

3 cos φ+W222h
2 ρ2 cos2 φ

+W220 h
2 ρ2 +W311 h

3 ρ cosφ,

(3.4)

where the W ’s with subscripts on the right hand side of the equation are the scaling

factors that describe the amount of each aberration. An alternate way of describing

the aberration function for any one field h is:

W (ρ, φ) = a40 ρ
4 + a31 ρ

3 cosφ+ a22 ρ
2 cos2 φ+ a20 ρ

2 + a11 ρ cosφ, (3.5)

where now the coefficients only have two subscripts, for the powers of ρ and cosφ

respectively. This equation is called the Seidel aberration function and also the

primary aberration function (Mahajan, 1998).

The primary aberrations of a rotationally symmetric optical system are familiar

to most optical engineers as the five Seidel aberrations. The primary aberrations

well describe the low-order aberrations that occur in a rotationally symmetric optical
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system. The Seidel aberrations are:

• W040: spherical aberration (a40),

• W131: coma (a31),

• W222: astigmatism (a22),

• W220: field curvature (a22), and

• W311: distortion (a31).

Ray aberrations, an alternate way of looking at aberrations, describe where the

rays intersect the image plane. This is useful for producing spot diagrams, which

are visualizations of how images might actually appear. The ray aberrations are

described by the coordinates of a ray in the image plane:

(Hx, Hy) =
R

n
�∇W (3.6)

where R is the radius of curvature of the reference sphere, n is the index of refraction

in image space and �∇ is the gradient operator.

Thus, because the ray aberrations are derivatives of the wave aberrations, the

order of the ray aberration is one power lower than the corresponding wave aberra-

tion. Fourth-order wave aberrations correspond to third-order ray aberrations and

sixth-order wave aberrations correspond to fifth-order ray aberrations. This explains

why some people use “fourth-order aberrations” while others use “third-order aber-

rations” to refer to the same thing. In this dissertation, I refer to the order of the
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ray aberrations (e.g. third-order and fifth-order aberrations) because it appears to

be a little more common.

3.1.1 ABERRATION DEFINITIONS

Aberrations are always named according to their dependence on the pupil coordi-

nates, ρ and φ. The particular field dependence that each aberration has should be

considered a characteristic of the aberration and not a defining term for the aber-

ration. In this section, each of the Seidel (or primary) aberrations, which are the

ones where the combined powers of the field and pupil sum to four, are described.

Extra emphasis on the field dependence in a rotationally symmetric system is given

because, as shown later, these dependencies change when the system is no longer

rotationally symmetric.

W040: Spherical aberration

Spherical aberration occurs when the rays from a point object focus at different axial

positions. The location of the focus depends on which zone of the pupil the rays

pass through: the paraxial rays (those that are close to the axis) focus at a different

axial position than the marginal rays (those that pass through the edge of the pupil).

Thus, there are a variety of focal positions, including those that depend on where the

rays pass through the pupil (such as paraxial focus or marginal focus) and those that

can be considered “best focus” (under different merits, such as minimum wavefront

error, minimum rms spot size, or circle of least confusion), as shown in Figure 3.2.

For more information on these, see Mahajan (1998).
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Figure 3.2: Graphical representations of spherical aberration through focus.
(a) aberrated rays coming to focus; (b) spot diagrams through focus showing what
an image of a point would look like (Burge, 1993).
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Spherical aberration has no dependence on the field and since it occurs equally

everywhere in the field (see Figure 3.3), including on-axis, designers strive hard to

minimize this aberration in the optical system. The term “spherical aberration”

comes from the fact that it occurs when a spherical mirror images a source at

infinity. To eliminate this aberration from the optical design, mirrors can be made

conic (paraboloids etc), or complex correctors, as for the Hobby-Eberly Telescope,

can be used. In practice it is difficult to completely eliminate spherical aberration

in a system with large mirrors because it is hard to fabricate the mirrors exactly to

meet the optical specification. In order to polish the mirror’s conic constant exactly,

it must be able to be measured exactly, but even this is hard to do. The Hubble

Space Telescope was accidentally made with an especially bad case of spherical

aberration when it was original built due to an error in the optical test, but this was

subsequently corrected by additional optics. Spherical aberration is not limited to

reflective systems. Refractive systems also may have this aberration that depends

on the pupil location as ρ4.

Figure 3.3: Spot diagram for spherical aberration constant throughout the field
(from Shack).
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W131: Coma

Coma is an aberration that causes a point object to image into a comet-shaped

image. Many think that this is the origin of the word “coma.” However, the name

“coma” comes from the Greek word for hair (Wilson, 1996). One online dictionary

(foreignword.com) translates “hair” into κoμη. Coma occurs when the rays from

the different zones of the pupil image to incorrect field positions in the image plane,

as shown in Figure 3.4. For pupil positions that are larger, the location of the

position of the circles move out. In particular, coma depends on the pupil position

as ρ3 cos φ. In a rotationally symmetric system, coma increases linearly with field

angle, as shown in Figure 3.5, and so is larger for small field angles than the other

aberrations that have a quadratic or cubic dependence on the field (given the same

coefficient values for the aberrations which are measured at the edge of the field). It

is the biggest (or most limiting type of) aberration in Cassegrain telescopes. Coma

occurs when there is a violation of the sine condition. Satisfying the sine condition

actually corrects all linear field-dependent aberrations, not just coma (Zhao & Burge,

2002; Born & Wolf, 1999).

W222: Astigmatism

Astigmatism is an aberration that occurs when the tangential rays focus at a differ-

ent axial distance than the sagittal rays, as shown in Figure 3.6. When the object

lies on the y-axis, the tangential rays are those in the y− z plane, while the sagittal

rays are those in the x − z plane. The particular wavefront aberration that causes
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Figure 3.4: Ray diagram for coma.

Figure 3.5: Spot diagram for coma linear throughout the field (from Shack).
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astigmatism is ρ2φ2. Astigmatism is quadratic in field in a rotationally symmetric

optical system, as shown in Figure 3.7. Line images are formed on the sagittal

and tangential focal surfaces, while circular images are formed on the medial focal

surface. The sagittal and tangential focal surfaces are shown in Figure 3.8. The

tangential and sagittal line images are always at right angles to each other.

Exit
Pupil

Sagittal
Focus

Tangential
Focus

Medial
Focus

z

y
x

Figure 3.6: Ray diagram for astigmatism.

(a) Sagittal focus. (b) Tangential focus.

Figure 3.7: Spot diagram for astigmatism quadratic throughout the field.

W220: Field Curvature

Field curvature occurs because the surface of sharp images is not flat. Field cur-

vature is quadratic in field, as shown in Figure 3.9a. Because of the ρ2 pupil de-
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Figure 3.8: Astigmatism field curves. The line astigmatic line images are formed on
these surfaces. The medial focal surface (not shown) is located halfway in between
the sagittal and tangential focal surfaces.

pendence, field curvature is equivalent to defocus at a single field point. However,

field curvature refers to a type of defocus with a specific field dependence. In a

rotationally symmetric system, field curvature has a quadratic field dependence. If

an image plane could be made spherically curved with the Petzval curvature, this

aberration could be eliminated from the optical system.

(a) Spot diagram showing the
outline of defocused imagess
due to field curvature.

z

Gaussian
Image Plane

Petzval
SurfaceExit

Pupil

(b) Focal surface field curve.

Figure 3.9: Field curvature (quadratic with field).
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W311: Distortion

Distortion is a different sort of aberration than the others because with it a point

source may still be imaged to a point image. This imaged point is, however, in

the wrong position. Since it is a mapping error, distortion is best visualized by

showing how a square grid maps in the image plane. A mapping error can also be

considered as magnification that is a function of field or a plate scale (scale in the

image plane) that is not constant but varies in both field angle and direction. For

most applications, distortion is “not so bad” as an aberration because it still allows

a point source to image to a perfect point and the mapping error can be calibrated

out. In a rotationally symmetric system, distortion is cubic in field, as shown in

Figure 3.10.

No distortion Barrel distortion Pincushion distortion

Hx Hx Hx

Hy Hy
Hy

W311>0 W311<0

Figure 3.10: Distortion (cubic with field).

Higher order aberrations

One can continue expanding the wave aberration function to describe even higher

order aberrations. Fifth order aberrations include:
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• W060: fifth-order spherical aberration,

• W151: fifth-order coma,

• W420: field curvature for fifth-order astigmatism,

• W422: fifth-order astigmatism,

• W511: fifth-order distortion,

• W240: field curvature for oblique spherical aberration,

• W242: oblique spherical aberration,

• W331: field cubed coma, and

• W333: elliptical coma (trefoil).

For more details about these aberrations, please see Buchdahl (1968), Sasian

(2009), and Tessieres (2003).

3.1.2 DESCRIPTION OF THIRD-ORDER ABERRATIONS USING ZERNIKE

POLYNOMIALS

Zernike polynomials (describing in detail in Appendix F) offer an alternate, orthogo-

nal basis for describing the aberration function of an optical wavefront. A wavefront

(or an optical surface) can be described as a sum of Zernike polynomials terms such

as

W (ρ, φ) =
∑

j

CjZj(ρ, φ), (3.7)
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where Cj are the expansion coefficients that represent the scale of the corresponding

Zernike polynomials Zj , with pupil coordinates (ρ, φ).

Since Equation 3.7 has no explicit field dependence, if one wants to use Zernike

polynomials to describe the field dependence of the aberrations, then the field de-

pendence needs to be added to Equation 3.7. One way to do this is to make the

expansion coefficients Cj a function of the field. This can be done in an equation

such as

W (ρ, φ,Hx, Hy) =
∑

j

Cj(Hx, Hy)Zj(ρ, φ), (3.8)

where now Cj(Hx, Hy) is a function that represents the scale and field dependence

of the corresponding Zernike polynomials. These functions were found by Tessieres

(2003).

For example, the following equation shows the quadratic field dependence that

primary astigmatism (Zernike terms 5 and 6) has in a rotationally symmetric optical

system:

Wastigmatism(ρ, φ,Hx, Hy) = C5(Hx, Hy)Z5(ρ, φ) + C6(Hx, Hy)Z6(ρ, φ)

= 2α0HxHy Z5(ρ, φ) + α0 (Hx
2 −Hy

2)Z6(ρ, φ),

(3.9)

where α0 = 1
2
√

6
W222.

As seen in Section 3.1.1, primary coma (Zernike polynomial terms 7 and 8) has

a linear field dependence in a rotationally symmetric optical system. The particular

linear dependence on Hx and Hy for each of the primary coma Zernike polynomial
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terms is given by:

Wcoma(ρ, φ,Hx, Hy) = C7(Hx, Hy)Z7(ρ, φ) + C8(Hx, Hy)Z8(ρ, φ)

= β0Hy Z7(ρ, φ) + β0Hx Z8(ρ, φ),

(3.10)

where β0 relates to W131, the original Seidel coefficient for coma.

Field curvature has the same pupil dependence as defocus, as mentioned in Sec-

tion 3.1.1, so it is described by the Zernike focus term Z4(ρ, φ). Equation 3.11 shows

the quadratic field dependence that field curvature has in a rotationally symmetric

optical system:

Wfield curvature(ρ, φ,Hx, Hy) = C4(Hx, Hy)Z4(ρ, φ)

= γ0 (Hx
2 +Hy

2)Z4(ρ, φ),

(3.11)

where γ0 relates to the original Seidel field curvature coefficient W220.

Spherical aberration does not have any dependence on the field. Thus the stan-

dard coefficient for the spherical aberration Zernike term Z11 is valid for any field

angle:

Wspherical = C11 Z11(ρ, φ) = ν0 Z11(ρ, φ) (3.12)

where ν0 relates to W040, the original Seidel coefficient for spherical aberration.

If fifth order aberrations are considered, then there exist higher order types of

spherical aberration, such as W240, that have field dependence. This contribution

from W040 must be added to the total spherical aberration.
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3.2 ABERRATIONS OF NON-ROTATIONALLY SYMMETRIC OPTICAL

SYSTEMS

The aberrations in non-rotationally symmetric optical systems have been studied

at the University of Arizona’s College of Optical Sciences over the years. An op-

tical system becomes non-rotationally symmetric when one of the components in

the systems becomes tilted or decentered. An optical element is tilted when the

optical axis of the element is not parallel to the optical axis of the system. An

optical element is decentered when its vertex is displaced from the optical axis. An

optical element can also be despaced along the optical axis, but this does not vio-

late the rotational symmetry of the optical system and is not considered here. This

degree of freedom may cause rotationally symmetric aberrations (such as defocus or

spherical aberration), but the effect is decoupled from that of the non-rotationally

symmetric degrees of freedom. The analysis included here for non-rotationally sym-

metric systems is valid for both small and large deviations from axial symmetry.

The equations could be used to aid in the design of non-axial systems. However,

the concentration of this dissertation is the study of the aberrations resulting from

unintentional misalignments.

One of the first students at the University of Arizona to study aberrations in

non-rotationally symmetric optical systems was Buchroeder (1976), a student of

Roland Shack. The main result of his work is the hypothesis that the aberration

field at the image plane of a misaligned or non-symmetric optical system is still a

sum of the individual surface contributions, but that the contributions no longer

have a common center on-axis in the image plane (Buchroeder, 1976).
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Kevin Thompson, another student of Roland Shack, described the wavefront

aberrations (expanded up to 5th order) that can occur in non-symmetric optical

systems using the notion proposed by Buchroeder that the field centers become dis-

placed from the optical axis. One important conclusion of Thompson’s dissertation

is that no new aberrations are created in non-rotationally symmetric optical sys-

tems. The only thing that happens is that new field dependencies occur for those

aberrations that are already known, and the new field dependence goes down in or-

der from the power that exists in the rotationally symmetric system. For example,

astigmatism which grows quadratically with field in a rotationally symmetric sys-

tem also has linear and constant contributions (in field) in a non-symmetric system.

Thompson also introduced Nodal Aberration Theory (Thompson, 1980, 2005, 2009)

to describe the locations in the field where aberrations sum to zero.

3.2.1 NODAL ABERRATION THEORY

This section shows the theory of the field centers (or nodes) and then expands

the equations for the case of astigmatism. Critical to Thompson’s dissertation is

the operation of vector multiplication (established by Roland Shack). This vector

operation, described in Appendix G, is neither a dot product nor a cross product

and is similar to multiplication of complex numbers when the vectors are written as

phasors. In this section, the symbol “·” corresponds to the dot product and no sign

between two vectors denotes a vector multiplication.

For the case of a perturbed optical system, the effective field height �HAj replaces
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�H in the wave aberration expansion (Equation 3.1):

W
(
�H, �ρ, �σj

)
=
∑

j

∞∑
p =0

∞∑
n =0

∞∑
m = 0

(Wklm)j

(
�HAj · �HAj

)p

(�ρ · �ρ)n
(
�HAj · �ρ

)m

.

(3.13)

This is Equation (3-9) in Thompson (1980). The effective field height for the j-th

surface contribution �HAj may be expressed as:

�HAj = �H − �σj , (3.14)

where the vector �σj in the image plane, first introduced by Buchroeder, describes the

location of the center of rotational symmetry for a perturbed surface j with respect

to the optical axis. The vector �σj can be calculated using real-ray-based methods

by an optical design program (Thompson et al., 2009). The wave aberration in

Equation 3.13 above was modified from Equation 3.1 to also explicitly include the

contributions from each of the surfaces j in the system. The coefficients (Wklm)j

are not affected by tilts and decentrations because they are functions of paraxially

determined quantities (Thompson, 1980).

In this section, the astigmatism will be defined from the medial surface. The

medial surface in the case of astigmatism is the focal surface where point objects

image to circles. This surface is inbetween the two surfaces where the astigmatic

line images are formed. The medial surface is obtained from the coefficient W220M
=

W220 + 1
2
W222. Thus, the astigmatism relative to the medial surface is given by

1
2
W222

(
�H2 · �ρ2

)
(instead of W222

(
�H2 · �ρ2

)
which is to the sagittal focal surface).

The astigmatism contribution in a perturbed optical system with respect to the
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medial surface is given by Equation (3-33) in Thompson (1980):

W =
1

2

∑
j

W222j

[(
�H − �σj

)2

· �ρ 2

]

=
1

2

[∑
j

W222j
�H2 − 2 �H

(∑
j

W222j�σj

)
+
∑

j

W222j �σ
2
j

]
· �ρ 2

=
1

2

(
W222

�H2 − 2 �H �A222 + �B 2
222

)
· �ρ 2,

(3.15)

where the perturbation vectors �A222 and �B 2
222 are

�A222 ≡
∑

j

W222j �σj , and (3.16)

�B 2
222 ≡

∑
j

W222j �σ
2
j . (3.17)

The perturbation vectors in Equations 3.16 and 3.17 can be normalized such that:

�a222 ≡ �A222/W222, and (3.18)

�b 2
222 ≡ �B 2

222/W222 − �a 2
222. (3.19)

Now Equation 3.15 may be written using the normalized vectors as:

W =
1

2
W222

[(
�H − �a222

) 2

+�b 2
222

]
· �ρ 2. (3.20)

The astigmatism nodes in the image plane may be found by solving Equation 3.20
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Figure 3.11: Astigmatism nodes in a perturbed optical system. There are two nodes
in the field which are determined by the vectors �a222 and �b222 (Thompson, 1980).

for W = 0:

0 =
(
�H − �a222

)2

+�b 2
222 (3.21)

�H = �a222 ±
√

−�b 2
222 (3.22)

�H = �a222 ± i�b222. (3.23)

These two locations where the astigmatism is zero are the nodes, and they are shown

conceptually in Figure 3.11. This behavior was dubbed “binodal astigmatism” by

Roland Shack.

Thompson (1980) includes figures showing the nodes, such as Figure 3.11, for

all of the different aberrations in his dissertation. Tables 3.1 and 3.2 list the rest of

the third and fifth-order Seidel aberrations that are possible in a misaligned system

developed by Thompson. These equations were used by Tessieres to find the Hx and

Hy field dependencies of the Zernike polynomials, as described in the next section.

Note that in Table 3.2, the terms for W242, W151 and W240M
look very similar

(in terms of field-dependence) to the third-order aberration terms in Table 3.1 for
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Table 3.1: Third-order aberrations in a misaligned system developed by Thompson
(1980). (The symbol “ · ” corresponds to the dot product and no sign between two
vectors denotes a vector multiplication.)

Spherical aberration: W040

W040 (�ρ · �ρ)2

Third order astigmatism: W222

1
2

(
W222

�H2 − 2 �H �A222 + �B2
222

)
· �ρ 2

Third order coma: W131[(
W131

�H − �A131

)
· �ρ
]
(�ρ · �ρ)

Field curvature: W220M[
W220M

(
�H · �H

)
− 2
(
�H · �A220M

)
+B220M

]
(�ρ · �ρ)

Third order distortion: W311[
W311( �H · �H) �H − 2( �H · �A311) �H + 2B311

�H − ( �H · �H) �A311 + ( �B2
311

�H∗) − �C311

]
· �ρ

W222, W131 and W220M
, respectively. The only difference is the addition of a factor

ρ · ρ.

The perturbation vectors and scalars derived by Thompson (1980, 2005) and

used in Tables 3.1 and 3.2 are summarized in Table 3.3.
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Table 3.2: Fifth-order aberrations in a misaligned system developed by Thompson
(1980). (The symbol “ · ” corresponds to the dot product and no sign between two
vectors denotes a vector multiplication.)

Spherical aberration: W060

W060 (�ρ · �ρ)3

Field cubed coma: W331[
W331M

(
�H · �H

)
�H − 2

(
�H · �A331M

)
�H + 2B331M

�H −
(
�H · �H

)
�A331M

+ �B2
331M

�H∗ − �C331M

]
· �ρ (�ρ · �ρ )

Elliptical coma (Trefoil): W333[
1
4
W333

�H3 − 3
4

(
�H2 �A333

)
+ 3

4

(
�H �B2

333

)
− 1

4
�C3

333

]
· �ρ 3

Quartic field curvature: W420M[
W420M

(
�H · �H

)2

− 4
(
�H · �H

)(
�H · �A420M

)
+B420M

(
�H · �H

)
+ 2
(
�H2 · �B2

420M

)
−4
(
�H · �C420M

)
+D420M

]
(�ρ · �ρ )

Quartic astigmatism: W422[
1
2
W422

(
�H · �H

)
�H2 −

(
�H · �H

)(
�H �A422

)
+ 3

2

(
�H · �H

)
�B2

422 −
(
�H · �A422

)
�H2

−1
2
�C3

422
�H∗ + 3

2
B422

�H2 − 3
2

(
�H �C422

)
+ 1

2
�D2

422

]
· �ρ 2

Fifth order coma: W151[(
W151

�H − �A151

)
· �ρ
]
(�ρ · �ρ )2

Oblique spherical aberration: W242

1
2

[(
W242

�H2 − 2 �H �A242 + �B2
242

)
· �ρ 2
]
(�ρ · �ρ )

Field curvature for oblique spherical: W240M[
W240M

(
�H · �H

)
− 2
(
�H · �A240M

)
+B240M

]
(�ρ · �ρ ) 2

Fifth order distortion: W511[
W511

(
�H · �H

)2
�H − 4

(
�H · �H

)(
�H · �A511

)
�H + 6B511( �H · �H) �H + 2( �H2 · �B2

511)
�H

−4
(
�H · �C511

)
�H + 3D511

�H −
(
�H · �H

)2
�A511 + 2

(
�H · �H

)
�B2

511
�H∗

−4
(
�H · �H

)
�C511 − �H2 �C∗

511 − �C3
511

�H2∗ + 2 �D2
511

�H∗ − �E511

]
· �ρ
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Table 3.3: Perturbation vectors and scalars defined by Thompson (1980).

Wklm =
∑

j

Wklmj

�Aklm =
∑

j

Wklmj
�σj

Bklm =
∑

j

Wklmj
(�σj · �σj)

�B2
klm =

∑
j

Wklmj
�σ2

j

�Cklm =
∑

j

Wklmj
(�σj · �σj)�σj

�C3
klm =

∑
j

Wklmj
�σ3

j

Dklm =
∑

j

Wklmj
(�σj · �σj)

2

�D2
klm =

∑
j

Wklmj
(�σj · �σj)�σ

2
j

�Eklm =
∑

j

Wklmj
(�σj · �σj)

2 �σj

3.2.2 DESCRIPTION OF THIRD-ORDER ABERRATIONS USING ZERNIKE

POLYNOMIALS

In his thesis, Tessieres expanded on Thompson’s work, transferring the aberrations

generated from vector multiplication that are possible in a misaligned system into

Zernike polynomials for both third and fifth order aberrations (Tessieres, 2003).

The derivations for all the 3rd order and 5th order equations are included in his

thesis using the convention where the angle is measured clockwise from the �y-axis

(Tessieres, 2003), which is different from the convention used in this dissertation.

These derivations also require vector multiplication as described in Appendix G. Ap-

pendix G also includes a discussion about how the equations are modified, depending

on whether the angles are measured clockwise from the �y-axis or counterclockwise
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Table 3.4: Field-dependent functions to describe the Zernike polynomial coefficients
for third-order aberrations in a misaligned system.

Third order field curvature: W220M

C4(Hx, Hy) = γ0 (Hx
2 +Hy

2) + γ1Hy + γ2Hx + γ3

Third order astigmatism: W222

C5(Hx, Hy) = 2α0HxHy + α1Hx + α2 Hy + α3

C6(Hx, Hy) = α0 (Hx
2 −Hy

2) − α1Hy + α2Hx + α4

Third order coma: W131

C7(Hx, Hy) = β0Hy + β1

C8(Hx, Hy) = β0Hx + β2

Spherical aberration: W040

C11 = ν0

from the �x axis.

Table 3.4 lists the field-dependent Zernike coefficients in a misaligned optical sys-

tem for astigmatism, coma, and focus (field curvature) using the standard Zernike

polynomial ordering (Noll, 1976). These equations will use the same Greek letter

variables (e.g. α for astigmatism, β for coma) for the aberration coefficients as

in Section 3.1.2, however now there will be nonzero values for the subscripts for

field dependencies that did not exist in an aligned system. Spherical aberration is

included here for completeness, although it is unchanged by misalignments. Distor-

tion is not included because it is not easily measured with wavefront sensors in a

misaligned system. Also, the Zernike polynomial equations for distortion can not be

directly derived from Thompson’s equation for W311 because they would also require

additional terms to cancel the tilt terms in Z7(ρ, φ) and Z8(ρ, φ) terms which are

not part of third-order coma.
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Table 3.5 lists a conversion between the Greek letter notation and Thompson’s

notation. The terms are listed in order of increasing subscript value for each aber-

ration. It is interesting to note that the terms from Thompson that are scalars

correspond to one Greek letter coefficient according to Tessieres, while the terms

from Thompson that are vectors correspond to two Greek letter coefficients, which

makes sense. In Table 3.4, the aberration corresponding to W220M
is labeled “third-

order field curvature,” however the name corresponding to the W220M
is changed to

“focus” in Table 3.5. This makes more sense because, when one observes the field

dependence of the terms in the equation, there are terms that are linear and con-

stant in the field. This linear term is often called “focal plane” tilt. The constant

term is simply defocus. The terms in Table 3.5 that are directly proportional to

the misalignment are the ones that are often discussed as being induced by mis-

alignments in the system. These terms include focal plane tilt (linear focus), linear

astigmatism, and constant coma.

Table 3.6 lists the additional field-dependent Zernike coefficients in a misaligned

optical system for the 5th order aberrations (still using the standard Zernike poly-

nomial ordering (Noll, 1976)). As before, the terms with subscript zero occur in a

rotationally symmetric system and the higher subscripts indicate the terms that can

be induced due to misalignments. Once again, distortion is not included because it

is not easily measured with wavefront sensors in a misaligned system.
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Table 3.5: Conversion from Thompson’s notation into Tessieres’s notation for third-
order aberrations.

Zernike Aberration Field Tessieres Thompson Dependence on
Term Name dependence misalignment

4 Focus quadratic γ0 W220M
none

linear γ1, γ2
�A220M

∝ perturbation

constant γ3 B220M
∝ perturbation2

5, 6 Astig. quadratic α0 W222 none

linear α1, α2
�A222 ∝ perturbation

constant α3, α4
�B222 ∝ perturbation2

7, 8 Coma linear β0 W131 none

constant β1, β2
�A131 ∝ perturbation

11 Spherical constant ν0 W040 none
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Table 3.6: Field-dependent functions to describe the Zernike polynomial coefficients
for fifth-order aberrations in a misaligned system.

Quartic field curvature: W420

C4(Hx, Hy) = ψ0 (Hx
4 +Hy

4 + 2Hx
2 Hy

2) + ψ1 (Hy
3 +Hx

2Hy)
+ψ2 (Hx

3 +HxHy
2) + ψ3 (Hx

2 +Hy
2) + ψ4 HxHy

+ψ5 (Hx
2 −Hy

2) + ψ6 Hy + ψ7Hx + ψ8

Quartic astigmatism: W422

C5(Hx, Hy) = 2χ0 (HxHy
3 +Hx

3Hy) + χ1 (3Hx
2Hy +Hy

3)
+χ2 (Hx

3 + 3HxHy
2) + χ3 (Hx

2 +Hy
2) + χ5 2HxHy − χ6Hy

+χ7Hx + χ8Hy + χ9Hx + χ10

C6(Hx, Hy) = χ0 (Hx
4 −Hy

4) + 2χ1Hx
3 − 2χ2Hy

3 + χ4 (Hx
2 +Hy

2)
+χ5 (Hx

2 −Hy
2) + χ6Hx + χ7Hy + χ8 Hx − χ9Hy + χ11

Field cubed coma: W331

C7(Hx, Hy) = ξ0 (Hy
3 +Hx

2Hy) + ξ1Hy
2 + ξ2HxHy + ξ3Hy + ξ4 (Hx

2 +Hy
2)

+ξ6Hx + ξ7Hy + ξ8

C8(Hx, Hy) = ξ0 (Hx
3 +HxHy

2) + ξ1HxHy + ξ2Hx
2 + ξ3Hx + ξ5 (Hx

2 +Hy
2)

+ξ6Hy − ξ7Hx + ξ9

Elliptical coma (trefoil): W333

C9(Hx, Hy) = μ0 (3Hx
2Hy −Hy

3) + μ1 (Hx
2 −Hy

2) + μ2 2HyHx

+μ3Hy + μ4Hx + μ5

C10(Hx, Hy) = μ0 (Hx
3 − 3HxHy

2) − 2μ1HyHx + μ2 (Hx
2 − Hy

2)
+μ3Hx − μ4Hy + μ6

Fifth order field curvature: W240M

C11(Hx, Hy) = δ0 (Hx
2 +Hy

2) + δ1 Hy + δ2Hx + δ3

Oblique spherical aberration: W242

C12(Hx, Hy) = η0(Hx
2 −Hy

2) − η1Hy + η2Hx + η3

C13(Hx, Hy) = η0 2HxHy + η1 Hx + η2 Hy + η4

Fifth order coma: W151

C16(Hx, Hy) = κ0Hx + κ1

C17(Hx, Hy) = κ0Hy + κ2
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Table 3.7 lists a conversion between the Greek letter notation and Thompson’s

notation. As in Table 3.5, the rows are listed in the order of Zernike polynomial

coefficients for increasing Greek letter subscript values. The terms that scale directly

to the misalignment now include cubic focus, cubic astigmatism, quadratic coma,

quadratic trefoil, linear oblique spherical aberration, and constant secondary (ρ5)

coma. These terms are the aberrations that one should expect to find in a misaligned

system with many degrees of freedom after constant coma, linear astigmatism and

focal plane tilt have been corrected.

While before the scalars from Thompson corresponded to one Greek letter

coefficient, and the vectors corresponded to two coefficients, this does not have to

be the case. When there are multiple terms that use the same vectors (for example

(−1
2
�C3

422
�H∗) and (−3

2
�H �C422)), two Greek letters could be chosen to correspond to

C422x and C422y, but since these coefficients are coupled in a complex way to the

field dependencies, it is simpler to use four coefficients.

Table 3.7: Conversion from Thompson’s notation into Tessieres’s notation for fifth-

order aberrations.

Zernike Aberration Field Tessieres Thompson Dependence on

Term Name dependence misalignment

4 Focus quartic ψ0 W420M
none

cubic ψ1, ψ2
�A420M

∝ perturbation

quadratic #1 ψ3 B420M
∝ perturbation2

quadratic #2 ψ4, ψ5
�B420M

∝ perturbation2

linear ψ6, ψ7
�C420M

∝ perturbation3

constant ψ8 D420M
∝ perturbation4

continued on next page
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Table 3.7: continued

Zernike Aberration Field Tessieres Thompson Dependence on

Term Name dependence misalignment

5, 6 Astig. quartic χ0 W422 none

cubic χ1, χ2
�A422 ∝ perturbation

quadratic #1 χ3, χ4
�B422 ∝ perturbation2

quadratic #2 χ5 B422 ∝ perturbation2

linear #1 χ6, χ7
�C422 ∝ perturbation3

linear #2 χ8, χ9
�C422 ∝ perturbation3

constant χ10, χ11
�D422 ∝ perturbation4

7, 8 Coma cubic ξ0 W331M
none

quadratic #1 ξ1 ξ2 �A331M
∝ perturbation

quadratic #2 ξ4, ξ5 �A331M
∝ perturbation

linear #1 ξ3 B331M
∝ perturbation2

linear #2 ξ6, ξ7 �B331M
∝ perturbation2

constant ξ8, ξ9 �C331M
∝ perturbation3

9,10 Trefoil cubic μ0 W333 none

quadratic μ1, μ2
�A333 ∝ perturbation

linear μ3, μ4
�B333 ∝ perturbation2

constant μ5, μ6
�C333 ∝ perturbation3

11 Oblique Sph. quadratic δ0 W240M
none

linear δ1, δ2 �A240M
∝ perturbation

constant δ3 B240M
∝ perturbation2

12, 13 Oblique Sph. quadratic η0 W242 none

linear η1, η2
�A242 ∝ perturbation

constant η3, η4
�B242 ∝ perturbation2

16, 17 Coma (ρ5) linear κ0 W151 none

constant κ1, κ2
�A151 ∝ perturbation

3.3 CONCLUSION

This chapter introduced the wavefront aberration function to describe the aberra-

tions in optical systems. First, rotationally symmetric systems were considered and

the different types of aberrations (including spherical aberration, coma, astigma-
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tism, field curvature and distortion) were introduced. Each of these aberrations has

a characteristic field dependence in an axially-symmetric system. However, in non-

rotationally symmetric systems, the aberrations develop different field dependencies.

Equations (developed by Tessieres) were introduced to describe the functional de-

pendence of the aberrations when they are measured as Zernike polynomials in

a misaligned system. Chapter 4 shows an application using these equations for

studying the alignment of the New Solar Telescope (NST). Chapter 4 also examines

in more detail and shows plots of two of the most common aberrations found by

Tessieres (and others) that are possible in a misaligned two mirror system including

constant astigmatism and linear astigmatism.
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CHAPTER 4

DEMONSTRATION OF COUPLING OF LOW ORDER FIELD-DEPENDENT

ABERRATIONS TO ALIGNMENT OF AN OFF-AXIS TWO MIRROR

TELESCOPE

The aberrations due to misalignment of the secondary mirror in the New Solar

Telescope (NST) are reviewed in this chapter. The majority of this chapter was

previously published as an SPIE proceeding (Manuel & Burge, 2009) and appears

here with permission of SPIE. The NST is an off-axis Gregorian telescope at Big

Bear Solar Observatory (BBSO) (Didkovsky et al., 2004). The telescope will operate

in the wavelength range of 390 nm into the far infrared. The design of the telescope

is presented in Section 4.1. Section 4.2 includes a discussion of the aberrations due

to misalignments of the secondary mirror for a general on-axis Gregorian telescope

with the same first order properties as NST. The observed aberrations of constant

coma and linear astigmatism for this “parent” telescope from the Zemax model

match what is expected in a misaligned telescope. Section 4.3 includes a discussion

of the changes to the observed aberrations due to the off-axis nature of the NST.

Finally, Section 4.5 discusses the effect of the misalignments on the pointing of the

telescope. A summary of the chapter is given in Section 4.6
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4.1 OPTICAL DESIGN OF THE NEW SOLAR TELESCOPE

The New Solar Telescope is an off-axis telescope with the same design parameters

(e.g. radii, conic constants) as a theoretical on-axis parent telescope, but only

certain off-axis sections of the theoretical on-axis telescope are fabricated and used.

The reasons for the off-axis design, discussed in detail by Didkovsky et al. (2004),

are to avoid having a central obscuration and spiders. The primary and secondary

mirrors (M1 and M2) of NST together compose a Gregorian telescope and then

either one or two flat fold mirrors (M3 and M4) are used to send the light to either

the Nasmyth or Gregory-Coudé focal plane. The two mirror system prescription is

listed in Table 4.1.

Table 4.1: NST system prescription.

Surface Name Radius of curvature (mm) Conic constant Thickness (mm)

M1 −7700 −1 3850
Prime Focus 300.05
M2 573.5828 −0.83087 6490.259
Gregorian Focus

The (off-axis) primary mirror (f/2.4) has a radius of curvature of 7700 mm and a

clear aperture diameter of 1600 mm, as shown in the telescope design in Figure 4.1a.

This mirror was figured and tested at the University of Arizona as a 1/5 scale

demonstration (Martin et al., 2006) for the 8.4 m diameter off-axis mirror segments

of the 25 m f/0.7 Giant Magellan Telescope (GMT) (Johns, 2008) primary mirror.

For simplification during the analysis of the off-axis telescope, the two fold mirrors

were removed, as in Figure 4.1b. To make the axisymmetric parent telescope of NST

in Zemax, the coordinate breaks and off-axis aperture definitions were removed, as
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shown in Figure 4.1c. The aperture stop is the primary mirror and a comparison of

the two pupils is shown in Figure 4.1d—the end view of the optical design.

(a) NST with all four mirrors (f/52.05 system) (b) NST after fold mirrors removed (f/52.05 sys-
tem)

(c) Side view of NST on-axis parent tele-
scope (f/15.77 system)

(d) End view of the two pupils

Figure 4.1: New Solar Telescope optical layout. The f/number calculations are
provided in Table 4.2.

Table 4.2 provides a comparison of the f/numbers for the NST system and pri-

mary mirror for both the actual and parent pupils.
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Table 4.2: NST f/number calculations.

Label f/# Calculation

NST primary mirror f/2.406 3850/1600
NST system f/52.05 83277.8/1600
Parent primary mirror f/0.729 3850/5280
Parent system f/15.77 83277.8/5280

4.2 ABERRATIONS OF THE PARENT ON-AXIS GREGORIAN TELESCOPE

4.2.1 DEFINITION OF THE DEGREES OF FREEDOM STUDIED FOR NST

The analysis in this chapter assumes that all the optics are fabricated and supported

perfectly and that the only aberrations beyond the residual aberrations are intro-

duced by rigid body misalignments of those optics. (The residual design aberrations

are those that exist in the optical model, since it is impossible to design a system to

be absolutely perfect.) The image quality of a two mirror telescope is dependent on

the position of the secondary mirror relative to the primary mirror. The position

of the primary mirror, which serves as the reference, only affects the pointing of

the telescope. As for any object, the secondary mirror has six rigid body degrees

of freedom as defined from the surface vertex: �x, �y, and �z rotations; and �x, �y, and

�z translations. The first two degrees of freedom for the secondary mirror may be

defined as: 1. rotation about the optical axis, which has no effect in a rotationally

symmetric system and 2. translation of the secondary along the optical axis, which

only causes defocus and a small amount of spherical aberration. These degrees of

freedom will not be further discussed in this chapter because their effect on system

performance is decoupled from the remaining non-axisymmetric degrees of freedom,
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which are the emphasis of the chapter. The other four degrees of freedom (two tilts

and two decenters) of the secondary mirror will each individually cause both coma

and astigmatism where the sign of the aberration depends on the direction of the

misalignment and the amount depends on the magnitude of the perturbation. Other

higher order aberrations may occur in addition to third order coma and astigmatism,

but are not significant in a system like this without too many degrees of freedom.

However, it is possible to define the degrees of freedom differently such that the �x

and �y translations and rotations about the vertex are combined into rotations about

two different points along the optical axis. Different linear combinations of rotations

about these points can achieve any of the same vertex rotations plus translations

as before. In a two-mirror telescope, there is a point on the optical axis where

rotations about this point do not introduce any coma (Wilson, 1996; Schroeder,

1999; Mahajan, 1998). This “coma-free point” or “neutral point” exists because

different misalignment degrees of freedom produce the same types of aberrations

with different magnitude ratios. Thus, it is possible to cancel the coma introduced

by a decenter with the coma that is introduced by a tilt (if properly chosen). This

linear combination of tilt and decenter is equivalent to a rotation about the coma-free

point and since the effect of a perturbation on the induced coma is linear, it is always

balanced for any rotation angle of the secondary mirror about the coma-free point.

However, rotations about this coma-free point still introduce field astigmatism. The

coma-free point for a classical telescope such as this is at the focus of the primary

mirror, as explained the next paragraph. For more complex systems, the position of

the coma-free point can be found using the equations in the references (Schroeder,
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1999; Wilson, 1996) or a lens design program. (This point will be abbreviated PF

for prime focus in the figures and tables below.) In NST, the prime focus is located

300.1 mm away from the vertex of the secondary mirror, as shown in Figures 4.2

and 4.3a.

M2 CoC

M2 vertex 
Focus of M2 
ellipsoid

From PM 

To focus 

300.1 mm

573.6 mm

Figure 4.2: M2 rotation points shown in the nominal aligned system.

In a classical telescope, the primary mirror is a paraboloid (conic constant

k = −1). The type of telescope is defined by whether the secondary mirror is con-

cave (Gregorian) or convex (Cassegrain). In a Gregorian telescope, the secondary

mirror is an oblate ellipsoid (−1 < k < 0) such that one focus of the ellipse is at the

prime focus and the other is at the system focal plane. The two foci are conjugate

points and the light rays can transfer perfectly from one focus to the other focus

according to Fermat’s Principle. As the secondary mirror ellipsoid rotates about the

prime focus (one of its focal points), the rays for the on-axis field that go through

the prime focus on the optical axis still can form a perfect image at the other focal

point (the system focus) which is displaced from nominal by the rotation. However,

as the telescope field angle changes, aberrations from the primary and secondary



97

mirrors are created.

M2 vertex 

300.1 mm

Prime focus 
coma-free 
rotation point 

10°

Focus of
M2 ellipsoid 

From PM 

To focus 

(a) Rotation about PF.

10°

M2 CoC 
rotation point 

573.6 mm

M2 vertex Focus of M2 
ellipsoid

From PM 

To focus 

(b) Rotation about M2 CoC.

Figure 4.3: M2 degrees of freedom. (The rotations are shown larger than typical
misalignments to clearly show the location of the rotation point.)

A spot diagram for NST with M2 having some rotation about the coma-free

point is shown in Figure 4.4a. This spot diagram shows astigmatism, which causes

the focused spots to be elongated. At the sagittal and tangential image surfaces, the

images would form perfect line images. (The tangential image surface is that where

line images from objects in the y − z plane are formed, while the sagittal image

surface is that where line images from objects in the x − z plane are formed.) In

particular, the astigmatism shown here has a linear field dependence, which can be

seen by the length of the spots throughout the field and the particular orientation

pattern of the elongated spots throughout the field. For the large rotation angle

used in Figure 4.4a, the pointing error would be very large, so it is not included in

the spot diagram.

Specifying �x and �y rotations about the coma-free point uses two degrees of free-

dom. The remaining two degrees of freedom may either be regular vertex tilts or

decenters or a combination that results in rotation about another point on the axis.
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(a) M2 rotated about
coma-free point (PF)
showing linear astigma-
tism (defocused to a
plane behind the medial
focus to show orienta-
tion) (PFRotX = 5.5◦).

(b) M2 rotated about
neutral point for
pointing (M2 CoC)
showing constant coma
(CoCRotX = 0.1◦).

Figure 4.4: Effect of M2 degrees of freedom on spot diagrams. The maximum
field angle spots are shown for a full field of view of 3 arcminutes. Spot sizes are
exaggerated by 4× for clarity. (These spot diagrams are what you would see looking
toward the focal plane, and not from behind it.)

For this chapter, the final two degrees of freedom are defined as �x and �y rotations of

the secondary mirror about its center of curvature (CoC). Perturbing this degree of

freedom results in the aberrations of constant coma and linear astigmatism; however

it does not result in a pointing error for the paraxial rays. In NST, the CoC of the

secondary mirror is located 573.6 mm away from the vertex of the secondary mirror,

as shown in Figure 4.3b. The center of curvature of the secondary mirror is always

a pointing-free neutral point for paraxial rays (independent of the secondary mirror

shape) (Wilson, 1996). This can be visualized by considering the case of a spherical

secondary mirror. For this case, rotations about the center of curvature have abso-

lutely no effect on the shape of the optical surface. The paraxial rays which do not

have a pointing error in Figure 4.4b are those at the pointed tip of the coma pattern.

(Comatic images are identified by their teardrop or comet shape.) Since the coma

aberration causes a nonsymmetric image blur, the centroid pointing does indeed
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change for center of curvature rotations. If desired, a lens design program could be

used to find an alternate rotation point that does not cause centroid pointing errors.

This point would be near the M2 center of curvature, but slightly displaced along

the optical axis.

The definition of these degrees of freedom for the secondary mirror provides a

convenient choice because it decouples the effects of coma and pointing. Table 4.3

summarizes the results that a rotation of the secondary mirror about the coma-free

point will only introduce astigmatism and a pointing change, while a rotation of

the secondary about its center of curvature causes no pointing error, but introduces

both constant coma and linear astigmatism. The name of the aberration (i.e. coma

or astigmatism) describes the shape of the wavefront in the exit pupil while the

preceding modifier (i.e. constant or linear) describes the magnitude of the aberration

as a function of the field of view.

Table 4.3: Secondary mirror degrees of freedom and effects on aberrations.

Rotation point Prime Focus M2 Center of Curvature
for secondary mirror (neutral point for coma (neutral point for pointing)

or coma-free point)
Distance from M2 vertex 300.1 mm 573.6 mm
Aberrations:
Constant coma No Yes (dominating effect)
Linear astigmatism Yes Yes (but small effect)

Pointing change Yes No
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4.2.2 USING ABERRATIONS FOR ALIGNING THE SYSTEM

Knowledge of the aberrations and their sensitivities to misalignment can be used to

align an optical system. In a two mirror telescope, one can rotate the secondary mir-

ror about its center of curvature until the constant coma is eliminated, then rotate

the secondary about the prime focus (coma-free point) until the linear astigmatism

is gone. This rotation about prime focus will also simultaneously eliminate pointing

errors, which alternatively may be easier to measure and correct. Pointing errors

are discussed in Section 4.5.

It is interesting to note that if the primary mirror surface is incorrectly figured

with coma, the telescope images during operation will appear with the same constant

coma as that caused by a secondary mirror misalignment. This means that some

amount of coma figure error on the primary can be accommodated by purposely

misaligning the telescope without any degradation in performance. Similarly, if

the primary mirror is incorrectly figured with astigmatism, this astigmatism will

show up equally for all field angles. However, this constant astigmatism can not be

corrected by purposely misaligning the secondary mirror because the astigmatism

due to misalignment has linear field dependence. Thus, the astigmatism error in

the mirror shape must be corrected by other means, such as additional polishing

or by bending the surface with active supports during operation. It is also possible

to correct the astigmatism in one mirror by introducing astigmatism on a different

mirror. This is discussed more in Section 6.7.

The total aberrations measured in a system are a sum of the aberrations that

exist in the rotationally symmetric system, the aberrations that are induced by
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misalignments and scale linearly with them, the aberrations that are induced by

misalignments that scale with the misalignment squared, or higher, and the aberra-

tions due to bending. This can be expressed conceptually in the following equation:

⎡
⎢⎣
C5

C6

C7

C8

⎤
⎥⎦ =

⎡
⎢⎣
C5

C6

C7

C8

⎤
⎥⎦

nominal

+

⎡
⎢⎣
C5

C6

C7

C8

⎤
⎥⎦

misalignment

+

⎡
⎢⎣
C5

C6

C7

C8

⎤
⎥⎦

misalignment2

+

⎡
⎢⎣
C5

C6

C7

C8

⎤
⎥⎦

bending

. (4.1)

The telescope alignment adjustments can be calculated if the sensitivities to

misalignments of the secondary mirror are known from the optical model. The

sensitivities of the aberrations that arise with a tilted or decentered secondary mirror

are described using Zernike polynomial coefficients in this section. This description

is based on the work of Tessieres (2003) and Thompson (1980, 2005). A similar

alignment problem was described for the prime focus corrector of the Bok 90-inch

telescope on Kitt Peak by Tessieres (2003). In this chapter, the information is stored

in a matrix that relates the Zernike coefficients to the perturbations. In a system

with only two elements, tilt and decenter perturbations only cause primary coma

and astigmatism, which are represented by the coefficients C5–C8 for the standard

Zernike polynomials in Z5–Z8. The standard Zernike definitions described by Noll

(1976), where subscripts 5 and 6 correspond to astigmatism and 7 and 8 correspond

to coma, are used. (It is assumed that a separate procedure will be used to focus the

telescope and set the secondary mirror spacing to eliminate focus (Z4) and spherical

aberration (Z11).) Therefore, a 4 × 4 interaction matrix M is sufficient to describe
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the alignment aberrations:

⎡
⎢⎣
C5

C6

C7

C8

⎤
⎥⎦

misalignment

=

⎡
⎢⎣
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤
⎥⎦ ·

⎡
⎢⎣
PFRotX
PFRotY
CCRotX
CCRotY

⎤
⎥⎦ . (4.2)

In a system that has more elements that may be perturbed, there should be an

additional column in M for each degree of freedom. These extra degrees of freedom

cause additional aberrations to become significant and, therefore, more rows would

be required. Equation 4.2 can also be written in shortened form as Z = MA where

Z is the vector of Zernike coefficients C5–C8 and A is a vector storing the alignment

perturbations. When the interaction matrix M and the specific Zernike aberration

coefficients C5–C8 are known, the current misalignments can be determined using

the equation A = M−1Z. The system can then be aligned once the misalignments

are calculated. Chapter 7 includes more discussion on solving linear systems in the

presence of noise.

The aberrations that can occur due to misalignments may only have certain

field dependencies and these must be known in order to fill the M matrix. The

field dependencies have been described by Thompson for third and fifth order Sei-

del aberrations (Thompson, 1980, 2005) and by Tessieres for Zernike polynomials

(Tessieres, 2003). In this chapter, the coefficients are fit to the equations describing

the field dependencies of the Zernike polynomials as found by Tessieres.
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4.2.3 FIELD-DEPENDENT ZERNIKE ABERRATIONS IN A MISALIGNED

SYSTEM

Typically, a single wavefront W (ρ, φ) can be described by a sum of scaled Zernike

polynomials, as in Equation 3.7. However one might also describe the wavefront

for any field angle in a system by making the weighting coefficients field-dependent

functions Ci(Hx, Hy), as in Equation 3.8. A complete set of equations have been

developed to describe the Zernike polynomials in a misaligned system (Tessieres,

2003), as described in Section 3.2.2. In Section 4.2, it was shown that constant

coma and linear astigmatism are the dominant aberrations caused by misalignments

in a two-mirror optical system. The following equations (introduced in Chapter 3)

express the field-dependent Zernike coefficients of astigmatism (Z5 and Z6) and coma

(Z7 and Z8) in a misaligned system:

C5(Hx, Hy) = 2α0HxHy + α1Hx + α2 Hy + α3 (4.3)

C6(Hx, Hy) = α0 (Hx
2 −Hy

2) − α1Hy + α2Hx + α4 (4.4)

C7(Hx, Hy) = β0Hy + β1 (4.5)

C8(Hx, Hy) = β0Hx + β2. (4.6)

The Greek letter coefficients with subscript zero correspond to aberrations that oc-

cur in a rotationally symmetric system (Tessieres, 2003). Equations 4.3 and 4.4 show

that the total astigmatism can be a combination of astigmatism components that

are quadratic, linear and constant in field, while Equations 4.5 and 4.6 show that

coma can be linear or constant in field. The combination of quadratic and linear
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astigmatism results in two locations in the image field where the total astigmatism

is zero. This is referred to as “binodal astigmatism” and is discussed more in Chap-

ter 5. By itself, the linear coma that exists in a rotationally-symmetric system has

one location in the field where the total coma is zero, which is the on-axis field point.

When a system has both linear and constant coma, the location of the coma node

shifts away from the on-axis field. If the amount of constant coma is large, as in the

examples in this chapter, the coma node will be far outside of the field of view.

The optical model used in this section is the NST axisymmetric parent telescope,

described in Section 4.1. The specific aberrations in the actual off-axis NST will be

different, but it is important to first show the technique that will be used. Each

column of the matrix M shown in Equation 4.2 corresponds to a perturbation of one

alignment degree of freedom for the secondary mirror. The columns are calculated

one at a time (left to right), starting with a coma-free (prime focus) rotation about

�x, then about �y, then pointing-free (CoC) rotation about �x and then about �y. The

process of finding the aberrations in Zemax consists of the following steps for each

misalignment perturbation.

1. Record the Zernike coefficients at a grid of field angles for some amount of

perturbation.

2. Perform a least-squares fit on the recorded Zernike coefficients to find the

coefficients α0–α4 and β0–β2 that describe each degree of freedom.
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Record the Zernike coefficients throughout the field for perturbations of

M2

The first step in the process of finding the equations that relate the Zernike coef-

ficients to the perturbations is to perturb the secondary mirror with a significant

amount of rotation. For each perturbation, the Zernike coefficients are recorded for

a grid of 49 different field positions using a Zemax macro, provided in Appendix H.

The Zernike coefficients are then stored in five separate data files for: 1. the nom-

inal system, 2. the secondary mirror PF �x rotation, 3. the secondary mirror PF �y

rotation, 4. the secondary mirror �x CoC rotation and 5. the secondary mirror �y

CoC rotation. The residual design aberrations of the nominal system are recorded,

so the effect of the misalignment can be found by taking a difference between the

coefficients before and after the misalignment is applied.

Rotation of the secondary mirror about the coma-free point (prime focus)

Rotating the secondary mirror about the coma-free point (the prime focus) results

in linear astigmatism, as shown by the spot diagrams in Figure 4.5. As mentioned

earlier, linear astigmatism always has this pattern of line images throughout the field

when out of focus. (In the medial plane, astigmatism still results in circular images.)

However the pattern for the entire field rotates by 90◦, depending on the direction

of the rotation of M2. (The orientation angle of the line image for any field angle

may be calculated and is 1/2 the arctangent of the ratio of the Zernike coefficients

C5 and C6 (Tessieres, 2003).) Errors in this degree of freedom are tolerable because

the astigmatism grows linearly from the on-axis field and therefore small field angles
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have small aberrations. In Figure 4.5, a rather large rotation angle of 5.5◦ is used, so

that the induced linear astigmatism is clearly shown over the residual field curvature

in the design. This large misalignment causes a large amount of pointing error, so

the spots in Figure 4.5 are shown as referenced to the centroid.

(a) Positive �x rota-
tion.

(b) Negative �x rota-
tion.

(c) Positive �y rota-
tion.

(d) Negative �y rota-
tion.

Figure 4.5: Spot diagrams of NST axisymmetric parent with M2 rotated about prime
focus by 5.5◦ showing linear astigmatism in an image plane behind the medial focus.
The full field of view is 3 arcminutes. Spot sizes are exaggerated by 4× for clarity.

Rotation of the secondary mirror about its center of curvature

Rotating the secondary mirror about its CoC causes mostly constant coma, as seen

in Figure 4.6. The direction of the coma pattern depends on the axis and direction

of rotation. This secondary mirror perturbation also causes a small amount of

astigmatism compared to the coma, but it is not visible in the figure. Notice that

the tip of the coma pattern for the on-axis field is centered in the field, so there is no

pointing error. The rotation angle for Figure 4.6 is much smaller than the rotation

about prime focus in the Figure 4.5, but the spot size exaggeration is the same, so

the amount of coma is very large. Since this misalignment causes so much coma,

it is an important degree of freedom to correct, especially since it affects all field

angles equally.
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(a) Positive �x rota-
tion.

(b) Negative �x rota-
tion.

(c) Positive �y rota-
tion.

(d) Negative �y rota-
tion.

Figure 4.6: Spot diagrams of NST axisymmetric parent showing constant coma
caused by rotating the secondary mirror about its center of curvature by 0.1◦. The
full field of view is 3 arcminutes. Spot sizes are exaggerated by 4× for clarity.

Perform a least-squares fit to find the values of αn and βn

To find the equations that relate the Zernike coefficients to the perturbations and

the field positions, a least-squares fit is performed on the recorded data using a

Matlab script, provided in Appendix I. For each perturbation, the script finds the

values of all the αn and βn terms to describe the field dependent Zernike coefficients.

The results are listed in Table 4.4. One of the linear astigmatism coefficients (α1 or

α2) is significant for all the degrees of freedom, as expected. The center of curvature

rotations have a significant amount of constant coma (β1 or β2) and some constant

astigmatism (α4). The prime focus rotations, which were intended to be coma-free

degrees of freedom, result in a very small amount of constant coma after all. All the

coefficients from the least-squares fit with magnitudes less than 1 × 10−10 microns

were set to zero in Table 4.4. A large number of significant digits are shown so that

the nonlinearity can be seen in the linear coma coefficient (β0). The nonlinearity

of the field-dependent aberration functions is discussed in Chapter 6. The constant

coma sensitivity to center of curvature rotations (3.951 µm/0.1◦) is much larger than
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the linear astigmatism sensitivity to prime focus rotations (0.140 µm/0.1◦), which

shows that the system is much more sensitive to aberrations caused by center of

curvature rotations.

Table 4.4: α and β coefficients in units of microns for rotations of 0.1◦. Quadratic
astigmatism is described by α0. Linear astigmatism is described by α1 and α2.
Constant astigmatism is described by α3 and α4. Linear coma is described by β0.
Constant coma is described by β1 and β2.

Nominal PFRotX PFRotY CoCRotX CoCRotY

α0 0.022033 0.022033 0.022033 0.022033 0.022033
α1 0 0.14033 0 0.1293 0
α2 0 0 −0.14033 0 −0.1293
α3 0 0 0 0 0
α4 0 −2.50e− 6 2.50e− 6 0.37234 −0.37234
β0 −0.035714 −0.035715 −0.035715 −0.035691 −0.035691
β1 0 0 −4.2584e−4 0 3.9531
β2 0 4.2584e−4 0 −3.9531 0

The quadratic astigmatism α0 and the linear coma term β0 were found to be the

same (or near numerically the same) for all misalignment degrees of freedom and for

different magnitudes of misalignment. This makes sense because these are the terms

that occur in the rotationally symmetric system and are not affected by alignment.

The net field-dependent astigmatism has both quadratic and linear field-

dependent terms, which have a combined effect of creating two nodes, which are

locations where the net astigmatism is zero. One node is on axis because both func-

tions are zero on axis. The other node occurs at the single point where the quadratic

astigmatism compensates the linear astigmatism.

The misalignment of 0.1◦ used in Table 4.4 was found to be in the range of

rotation angles that have a linear effect on the resulting aberrations for linear astig-
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matism and constant coma. For example, rotations of 0.01◦ result in coefficients ten

times smaller, while rotations of 1◦ result in coefficients ten times larger. Constant-

field astigmatism terms depend on the square of the misalignment. For example,

rotations of 0.01◦ result in coefficients one hundred times smaller, while rotations of

1◦ result in coefficients one hundred times larger. Since the α3 and α4 coefficients

for constant astigmatism do not depend linearly on the misalignment, they should

not be used in the LS fit.

4.2.4 SUMMARY OF LEAST-SQUARES FIT COEFFICIENTS

Next, the Zernike coefficients can be expressed in terms of the perturbations and

the field positions in the matrix form. The significant terms that are induced by

misalignment and included in the sensitivity matrix in the following equation are α1,

α2, β1 and β2. These terms depend linearly on the misalignment degree of freedom.

In order to specify the rotation angle in degrees, these values will be multiplied

by ten (because the original misalignment was 0.1◦). The equation describing the

aberrations resulting in the system due to different misalignment degrees of freedom

is:

⎡
⎢⎣
C5

C6

C7

C8

⎤
⎥⎦ =

⎡
⎢⎣

1.403Hx −1.403Hy 1.293Hx −1.293Hy

−1.403Hy −1.403Hx −1.293Hy −1.293Hx

0 0 0 39.53
0 0 −39.53 0

⎤
⎥⎦ ·

⎡
⎢⎣
PFRotX
PFRotY
CoCRotX
CoCRotY

⎤
⎥⎦ (4.7)

where Hx and Hy are the normalized field angles, the Zernike coefficients are in

microns, and the misalignment rotations are in degrees. If one desires the field

angles to be specified in degrees, then the coefficients of Hx and Hy must be divided
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by the half field of view Fr = 0.025◦. When the field coordinates are in degrees,

then the equation becomes:

⎡
⎢⎣
C5

C6

C7

C8

⎤
⎥⎦ =

⎡
⎢⎣

56.13 fx −56.13 fy 51.72 fx −51.72 fy

−56.13 fy −56.13 fx −51.72 fy −51.72 fx

0 0 0 39.53
0 0 −39.53 0

⎤
⎥⎦ ·

⎡
⎢⎣
PFRotX
PFRotY
CoCRotX
CoCRotY

⎤
⎥⎦ (4.8)

where now the field coordinates fx = Hx Fr and fy = Hy Fr (using the notation of

Zemax) are in degrees, the Zernike coefficients are in microns, and the misalignment

rotations are in degrees.

4.2.5 ALTERNATE DEGREES OF FREEDOM

In Section 4.2.1, two different rotation points for the secondary mirror were defined

that do not cause constant coma or pointing to be induced in the optical system

when misaligned. Misalignments of both of these degrees of freedom induce linear

astigmatism in the optical system. This may cause one to wonder if there is a

rotation point about which the secondary mirror can be misaligned that does not

cause linear astigmatism. This was tested through a simulation in the optical design

program. The constant coma and linear astigmatism coefficients were found for a

constant rotation angle of 0.1◦ for rotation points at varying distances from the

secondary mirror. A linear astigmatism-free rotation point was found 3548 mm

away from the secondary mirror toward the primary mirror. A plot of the constant

coma and linear astigmatism coefficients is provided in Figure 4.7.
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Aberration coefficients due to rotation of the secondary mirror
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Figure 4.7: Constant coma and linear astigmatism coefficients in NST for different
rotation points. The scale for the coma coefficient y-axis is 10× larger than the
astigmatism y-axis. (All rotations were 0.1◦.)
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4.3 ABERRATIONS OF NST (THE ACTUAL OFF-AXIS TELESCOPE)

The analysis done in Section 4.2 was performed for the full NST parent telescope.

The actual NST will just be an off-axis portion of the entire telescope. The NST

pupil has a 1600 mm diameter which is decentered 1840 mm from the optical axis

of the parent telescope, as shown in Figure 4.1d. The aberrations in the parent

telescope must be multiplied by the scale factors found in the following section to

find the aberrations caused by misalignments in the actual NST pupil.

4.3.1 ABERRATION SCALE FACTORS FOR THE OFF-AXIS NST PUPIL

Using convenient Matlab code written by Lundström & Unsbo (2007), the Zernike

coefficients of one circular (or elliptical) pupil can be converted into coefficients of

another scaled, translated, or rotated pupil. The coefficients of the Zernike poly-

nomials in the subpupil only contain orders equal to or lower than the Zernike

coefficients originally placed on the pupil. Table 4.5 shows how one unit of an aber-

ration in the NST parent pupil transforms into lower order aberrations for the actual

NST pupil. Since the spherical aberration residual in the nominal system design also

transforms into lower aberrations, such as the coma and astigmatism, its contribu-

tion must be considered as well. Spherical aberration (Z11) in the parent pupil does

not transform into trefoil in the NST pupil, so rows for Zernike polynomials Z9 and

Z10 were omitted from the table.

As seen earlier, constant coma is caused by rotating the secondary mirror about

any point other than the prime focus. The degree of freedom used in this chapter is

the M2 center of curvature. The wavefronts in Figure 4.8 shows conceptually how
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Table 4.5: Conversion of Zernike polynomials to lower order for NST pupil.

Aberration in parent telescope
Aberration Astigmatism Coma Spherical
in NST Z5 = 1 Z6 = 1 Z7 = 1 Z8 = 1 Z11 = 1

Piston Z1 0 −1.1899 0.5268 0 −0.4967
Tilt Z2 −0.5173 0 0 −0.1539 0
Tilt Z3 0 0.5173 1.0952 0 −0.2663
Focus Z4 0 0 −0.3135 0 0.3681
Astigmatism Z5 0.0918 0 0 −0.2217 0
Astigmatism Z6 0.0918 0.2217 0 −0.4886
Coma Z7 0.0278 0 −0.1227
Coma Z8 0.0278 0
Spherical Z11 0.0084

coma over the parent telescope pupil transforms into astigmatism and coma (once

piston, tip, tilt and focus are removed) for the NST pupil (a subaperture of the

larger pupil) according to the values in Table 4.5.

Parent telescope pupil

−2

0

2

NST subaperture
with

piston, tip, tilt and focus

−2

0

2

NST subaperture
without

piston, tip, tilt and focus

−0.5

0

0.5

NST pupil

Z1 = 0.5268
Z3 = 1.0952
Z4 = −0.3135
Z6 = 0.2217
Z7 = 0.0278

Z6 = 0.2217
Z7 = 0.0278

Z7 = 1

Figure 4.8: Transformation of one unit of coma from NST parent telescope pupil to
actual pupil.

Since aberrations on one larger pupil only transform to aberrations of an equal or
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lower order on a subaperture, astigmatism (Z5 or Z6) transforms into Zernike terms

1–6. However, if piston and tilt are once again removed, then only astigmatism

remains (similar to the case of coma). As another example, shown in Figure 4.9,

one unit of Z5 astigmatism on the full aperture transforms to −0.5173 units of Z2

tilt and 0.0918 units of Z5 astigmatism on the subaperture.

Parent telescope pupil

−2

0

2

NST subaperture
with

piston, tip, tilt and focus

−2

0

2

NST subaperture
without

piston, tip, tilt and focus

−0.2

−0.1

0

0.1

0.2

NST pupil

Z2 = −0.5173
Z5 = 0.0918

Z5 = 0.0918Z5 = 1

Figure 4.9: Transformation of one unit of astigmatism from NST parent telescope
pupil to actual pupil.

It is possible to completely eliminate spherical aberration in a two mirror tele-

scope by appropriate choice of conic constants and axial positions of each of the

mirrors. If there any errors in the conic constants of the mirrors in the telescope,

there will be spherical aberration (constant in field) in the final system. Spherical

aberration adds a contribution to the astigmatism and coma terms in a misaligned

system and may be considered. As a final example, shown in Figure 4.10, one unit

of Z11 on the full aperture looks like −0.1227 units of Z7 coma and −0.4886 units

of Z6 astigmatism on the subaperture. These scale factors will be multiplied by the

value for the spherical aberration (constant in field) for the NST parent telescope

system. In the particular computer model analyzed, the small amount of spheri-

cal aberration was 0.028 µm. (This spherical aberration would be zero if the conic



115

constant of the secondary mirror was decreased by 0.00019 to k = −0.83106.)

Parent telescope pupil

−2

0

2

NST subaperture
with

piston, tip, tilt and focus

−2

0

2

NST subaperture
without

piston, tip, tilt and focus

−1

0

1

NST pupil

Z11 = 1 Z6 = −0.4886
Z7 = −0.1227
Z11 = 0.0084

Z1 = −0.4967
Z3 = −0.2663
Z4 = 0.3681
Z6 = −0.4886
Z7 = −0.1227
Z11 = 0.0084

Figure 4.10: Transformation of one unit of spherical aberration from NST parent
telescope pupil to actual pupil.

4.3.2 COMBINING THE RESULTS

This section will combine the least-squares coefficients for the on-axis system and the

scaling factors for the off-axis pupil to determine the aberrations of the misaligned

off-axis NST system. Table 4.6 shows the calculations.

The total astigmatism in the misaligned off-axis NST system includes contri-

butions from a variety of source that are quadratic, linear and constant in field.

The quadratic astigmatism comes from the astigmatism in the rotationally sym-

metric parent telescope. There are two sources of the linear astigmatism: the linear

astigmatism from misalignment of the secondary and the transformed linear coma

from the rotationally symmetric parent telescope pupil. There are three sources of

constant astigmatism: the constant astigmatism from the misalignment of the sec-

ondary (which depends on the square of the misalignment), the transformed constant
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Table 4.6: Calculations for scaling aberrations in the off-axis NST. The aberrations
that exist in the nominal (rotationally symmetric) system do not change with mis-
alignment. The aberrations that scale with the misalignment are marked “/degree”
in the calculation column, while the aberrations that depend on the square of the
misalignment are given for case when the misalignment is 0.1◦.

Aberration
Field Source Parent Calculation (units are microns)
dependence Aberration

Astigmatism

Quadratic Nominal Astig. 0.0918 ∗ 0.022033 = 0.0020
Linear PFRot Astig. 0.0918 ∗ 1.403 = 0.1288 /degree
Linear CoCRot Astig. 0.0918 ∗ 1.293 = 0.1187 /degree
Constant PFRot Astig. 0.0918 ∗ −2.5 × 10−6= 0.0000 for 0.1◦

Constant CoCRot Astig. 0.0918 ∗ 0.37234 = 0.0342 for 0.1◦

Linear Nominal Coma 0.2217 ∗ −0.03571 = −0.0079
Constant CoCRot Coma 0.2217 ∗ 39.53 = 8.7638 /degree
Constant Nominal Spherical −0.4886 ∗ 0.028 = −0.0137

Coma

Linear Nominal Coma 0.0278 ∗ −0.3571 = −0.0099
Constant CoCRot Coma 0.0278 ∗ 39.53 = 1.0989 /degree
Constant Nominal Spherical −0.1227 ∗ 0.028 = −0.0034

coma from the parent telescope pupil in the misaligned system and the transformed

constant spherical aberration of the rotationally symmetric parent telescope system.

The total coma is the sum of the linear coma in the parent telescope design and

the constant coma. This constant coma comes from two sources: the constant coma

in the parent telescope induced by the misalignment and that transformed from the

spherical aberration in the axially symmetric parent telescope.

The following equation shows the sensitivity matrix for the off-axis NST (com-
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pare to Equation 4.7):

⎡
⎢⎣
C5

C6

C7

C8

⎤
⎥⎦=

⎡
⎢⎣

0.129Hx −0.129Hy 0.119Hx + 8.8 −0.119Hy

−0.129Hy −0.129Hx −0.119Hy −0.119Hx + 8.8
0 0 0 1.10
0 0 −1.10 0

⎤
⎥⎦·
⎡
⎢⎣
PFRotX
PFRotY
CoCRotX
CoCRotY

⎤
⎥⎦ .

(4.9)

If the field angles are specified in degrees, then the coefficients of Hx and Hy must

be divided by the half field of view Fr = 0.025◦, as was done for the parent telescope

equations. In this case, the result is

⎡
⎢⎣
C5

C6

C7

C8

⎤
⎥⎦=

⎡
⎢⎣

5.15Hx −5.15Hy 4.75Hx + 8.8 −4.75Hy

−5.15Hy −5.15Hx −4.75Hy −4.75Hx + 8.8
0 0 0 1.10
0 0 −1.10 0

⎤
⎥⎦·
⎡
⎢⎣
PFRotX
PFRotY
CoCRotX
CoCRotY

⎤
⎥⎦ ,
(4.10)

where the field coordinates fx = Hx Fr and fy = Hy Fr are in degrees, the Zernike

coefficients are in microns, and the misalignment rotations are in degrees.

Previously the field dependencies from the nominal design (quadratic astigma-

tism and linear coma) were not included because they had different field dependen-

cies than the ones induced by the misalignment. However the linear coma from the

nominal design also contributes to linear astigmatism. Also, the constant spherical

aberration from the nominal design contributes to the constant astigmatism and

constant coma in the off-axis system. These aberrations are small, but could be

calculated and subtracted from the measured aberrations for increased accuracy.

The aberrations are:

⎡
⎢⎣
C5

C6

C7

C8

⎤
⎥⎦

nominal

=

⎡
⎢⎣

0.0079Hx

−0.0079Hy − 0.01368
−0.00344

0

⎤
⎥⎦ . (4.11)



118

4.4 SPOT DIAGRAMS FOR THE MISALIGNED OFF-AXIS NST

Table 4.7 shows conceptually how the dominant aberrations that occur for the mis-

aligned parent telescope transform into different aberrations for the off-axis NST,

following the results in Table 4.5.

Table 4.7: Comparison of aberrations for on-axis and off-axis telescopes.

On-axis parent telescope Off-axis telescope

Constant coma Constant coma
(39.5 µm RMS/◦) (1.1 µm RMS/◦)

Constant astigmatism
(8.8 µm RMS/◦)

Constant tilt (pointing)
Constant focus (defocus)

Linear astigmatism Linear astigmatism
(56.1 or 51.2 µm RMS/◦/◦)a (5.12 or 4.76 µm RMS/◦/◦)

Linear tilt (plate scale change or rotation)

Pointing Pointing

aThe two different linear astigmatism sensitivities are for the two different types of degrees of
freedom (prime focus rotations and center of curvature rotations). See Equation 4.10.

Next, spot diagrams are observed for the off-axis NST. The degrees of freedom

used are exactly the same as those used for the parent telescope. Figure 4.11 shows

the spot diagrams for rotations about the prime focus for the off-axis NST. Here,

the secondary mirror is rotated by the same angle and the spot size exaggeration

is the same, so these figures may be directly compared to those in Figure 4.5. The

rays in this figure are exactly a subset of the rays in the Figure 4.5. Since normally

prime focus rotations result in mostly linear astigmatism, one should expect that
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in the off-axis system, the aberrations will include a linear astigmatism and a plate

scale change, according to Table 4.7. This is indeed what is shown in Figure 4.11.

(a) Positive �x rota-
tion.

(b) Negative �x rota-
tion.

(c) Positive �y rota-
tion.

(d) Negative �y rota-
tion.

Figure 4.11: Spot diagrams when secondary mirror is rotated about the focus of the
primary mirror 5.5◦. The spot diagrams shows a plate scale change for �x rotations
and image rotation for �y rotations. The full field of view is 3 arcminutes. The spot
size exaggeration is ×4. The rotations about �x show plate scale change, while the
rotations about �y show image rotation.

Figures 4.12 and 4.13 show the spot diagrams for rotations about the center of

curvature for the off-axis NST. Once again, the secondary mirror is rotated by the

same angle and the spot size exaggeration is the same, so these two figures may

be directly compared to those in Figure 4.6. Since in the parent telescope, center

of curvature rotations result in mostly constant coma, one should expect that in

the off-axis system, the aberrations will include a little bit of constant coma, a lot

of constant astigmatism and some defocus error, according to Table 4.7. Indeed,

Figure 4.12a and Figure 4.12b show elongated images throughout the field that

look like constant astigmatism with a defocus error while Figure 4.12c and Fig-

ure 4.12d show some constant coma. If the two spot diagrams in Figure 4.12a and

Figure 4.12b are refocused, then they also show some constant coma (Figure 4.13).

The constant astigmatism is no longer visible when the system is at the medial focus

for astigmatism.
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(a) Positive �x rota-
tion.

(b) Negative �x rota-
tion.

(c) Positive �y rota-
tion.

(d) Negative �y rota-
tion.

Figure 4.12: Spot diagrams when secondary mirror is rotated about its center of
curvature by 0.1◦. The full field of view is 3 arcminutes. The spot size exaggeration
is ×4.

(a) Positive �x ro-
tation, refocus of
80.1 mm.

(b) Negative �x ro-
tation, refocus of
81.1 mm.

Figure 4.13: Spot diagrams when secondary mirror is rotated about its center of
curvature by 0.1◦ and images are refocused. The full field of view is 3 arcminutes.
The spot size exaggeration is ×4.

For a general misaligned state of the off-axis NST, there is constant coma and

binodal astigmatism. The constant coma is derived from the off-axis constant coma.

The binodal astigmatism is formed by the combination of constant astigmatism,

derived from the off-axis constant coma, linear astigmatism, derived from off-axis

linear astigmatism and quadratic astigmatism. If the nodes are out of the field

of view, the binodal nature of the astigmatism might not be obvious from a spot

diagram.

As a final check, Figure 4.14a shows the wavefront map for the on-axis field
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point in the parent system when the secondary mirror is rotated about the center

of curvature by 0.1◦. As expected, this map is dominated by coma. Since center

of curvature rotations of the secondary mirror result in constant coma, all of the

field points in the system would have a similar wavefront map. Zemax reports the

RMS after tilt is removed is 3.9543 waves (where λ = 1 µm), which is very close

to the constant coma value in Table 4.4 (β1 = 3.9531 µm). Figure 4.14b shows

the wavefront map for the same misalignment with an aperture set on the primary

mirror to define the off-axis telescope. Figure 4.14b has the same 0.1◦ center of

curvature rotation, so the resulting wavefront is expected to show astigmatism and

a very small amount of coma. Zemax reports the RMS after tilt is removed is

0.8915 waves (where λ = 1 µm). The approximate RMS from this misalignment can

be found by calculating the root sum square of the two largest expected aberrations

in the off-axis NST from Table 4.6 for the on-axis field for 0.1◦ rotations about

the center of curvature. A root sum square of the astigmatism that comes from

the constant coma on the parent (0.88 µm) and the coma from the constant coma

on the parent (0.11 µm) results in 0.89 µm. (There are other contributions to the

wavefront for the off-axis NST from other effects, like the astigmatism and coma

from the spherical aberration on the parent and the constant astigmatism resulting

from the rotation, but these are small and do not significantly affect the RSS.)
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(a) NST parent telescope, dominated by coma
(RMS = 3.9543 µm).

(b) Off-axis NST, dominated by astigmatism
(RMS = 0.8915 µm).

Figure 4.14: Wavefront maps for the on axis field point when the secondary mirror
is rotated in about its center of curvature (CoCRotY = 0.1◦). The wavefront tilt
was removed from each map. The units of the color bars are microns.

4.5 EFFECT OF MISALIGNMENTS ON POINTING

In some cases, it might be easier to use knowledge of the pointing than to measure

the quantity of specific aberrations. To implement this, a laser tracker can be used

to align the focal plane to the parent axis of the primary mirror (Burge et al., 2007).

It is therefore useful to know the amount of the image shift caused by rotation of the

secondary mirror. The rotation of M2 about the optical axis and axial translation

of M2 in the �z-direction are not considered here because they do not affect the

pointing. For this section, the centroid position (for the on axis field point) will be

used as the measure of the pointing error in the system. In Zemax, the operands

CENX and CENY give the x and y coordinates of the centroid in the image plane.

Table 4.8 compares the pointing errors for rotation in both the parent telescope and
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the off-axis NST. The plate scale of the telescope (Equation 2.4) is

Plate scale =
83277.8 mm

206265 arcsec/rad
= 403.7 µm/arcsec. (4.12)

Thus for every millimeter of pointing error in Table 4.8, the pointing changes by

about 2.5 arcseconds.

Table 4.8: Pointing error (in mm) for NST.

Parent telescope Off-axis telescope
Degree of freedom Angle= 1◦ CENX CENY CENX CENY

Residual (no rotation) 0 0 0 −0.02

Prime focus PFRotX 0 −108.0 0 −108.1
rotation PFRotY 108.0 0 108.0 −0.04

Center of curvature CoCRotX 0 −11.23 0 −16.02
rotation CoCRotY 11.23 0 6.53 0.31

For the parent telescope, rotation of M2 about the coma-free point (prime focus)

results in a large pointing error (108 mm), as expected. The other effect of rotation

about prime focus in the parent telescope is linear astigmatism (Table 4.3). Since

linear astigmatism in the parent telescope corresponds to linear astigmatism, and a

plate scale change or image rotation in the off-axis telescope, no additional pointing

errors are expected in the off-axis telescope, and the pointing errors match for the

on-axis and off-axis cases.

For rotation about the center of curvature, a small pointing error (11 mm) is

observed for the parent telescope. (The pointing error for the CoC rotation in

Table 4.8 is nonzero because the table is recording the centroid pointing, and not

the paraxial pointing.) For the off-axis telescope, one should expect the pointing
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errors to be modified from the parent telescope. Since rotation about the CoC

results in primarily constant coma (Table 4.3) for the parent telescope, and this

effect translates into a constant tilt (Table 4.7) for the off-axis telescope, one should

expect the pointing error to be significantly changed. This is confirmed in Table 4.8.

4.6 CONCLUSION

In this chapter, the aberrations due to misalignments of the secondary mirror of a

rotationally symmetric Gregorian telescope (the “parent telescope”) are compared

to those of an off-axis version of the same telescope. The degrees of freedom studied

were the rotations about the coma-free point (the focus of the primary mirror) and

rotations about the center of curvature for the secondary mirror. Rotations about

the coma-free point primarily result in both linear astigmatism and pointing errors

for the parent telescope while the off-axis telescope includes the same errors, plus

a change in plate scale or image rotation. Rotations about the center of curvature

of the secondary mirror result in primarily constant coma and a small amount of

linear astigmatism, but no pointing error for the parent telescope. For the off-axis

telescope, the constant coma is converted into constant astigmatism, constant tilt

(pointing error), and defocus.
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CHAPTER 5

COMPARISON OF NODAL ABERRATION THEORY AND THE

FUNCTIONAL DESCRIPTION OF ABERRATIONS IN A MISALIGNED

RITCHEY-CHRETIEN TELESCOPE

The purpose of this chapter is to compare the Zernike polynomial description of

aberrations in a misaligned optical system with Nodal Aberration Theory (NAT)

(Thompson, 1980, 2005, 2009). The systematic treatment using wavefront coeffi-

cients is useful for quantifying the causes of aberrations for some applications and

does not conflict with the nodal theory.

The effect of misalignment or shape (figure) errors is a displacement of the aber-

ration nodes. The misalignment or shape error may be calculated from the location

of the nodes using Nodal Aberration Theory. However, another way to determine

the misalignment or shape error is to calculate mathematically the field dependence

of the aberration coefficients (shown here in this chapter for the case of astigma-

tism). In a real system, these coefficients can be measured by a wavefront sensor.

This is convenient because in practice, it is common to take measurements of the

wavefront throughout the field. One major advantage of this method, which will

be shown in this chapter, is that the changes in the coefficients are decoupled for

different causes. Wavefront measurements can be taken anywhere in the field and

the misalignments can be calculated. (This requires knowing the sensitivities of the

Zernike coefficients to each of the degrees of freedom expected to have errors, which
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can be found by perturbing the optical model on the computer.)

5.1 INTRODUCTION TO THE RITCHEY-CHRETIEN TELESCOPE

ASTIGMATISM EXAMPLES

Some examples of a Ritchey-Chretien telescope with different errors causing astig-

matism with different field dependencies will be shown. The optical model used is

the Hubble telescope (a “good design” as described by the Zemax file). The optical

model for the telescope is listed in Table 5.1 and shown in Figure 5.1. (Note that

the image formed after the secondary is observed on a curved focal plane. At first,

this seems impractical because curved detectors are hard to make, but in practice,

there are multiple instruments packages with additional relay optics. Curving the

image plane alters the Zernike coefficient for focus, which is not studied here.) The

half field of view of the telescope is 0.233◦ or 14 arcminutes and the wavelength used

is λ = 586.56 nm.

Table 5.1: Hubble Space Telescope (Good design).

Surface Name Radius Thickness Semi-Diameter Conic

Primary (stop) −11040 −4906.071 1200.0 −1.002299
Secondary −1358 6406.200 155.0 −1.49686
Image −631.079

Figure 5.2 shows spot diagrams for the aligned telescope. The Zemax spot

diagram is on the left and the Code V spot diagram is on the right. The spot sizes

are exaggerated in each, but by different amounts.

Examples will show variations of this system that are dominated by different

astigmatism field dependences and some that have approximately balanced amounts
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(a) Zemax model.

Hubble Telescope Scale: 0.03 SM   20-Oct-09 

757.58  MM

(b) Code V model.

Figure 5.1: Hubble Space Telescope optical model.

(a) Zemax model (200× exaggeration). (b) Code V model.

Figure 5.2: Hubble Space Telescope spot diagrams. The size of the Airy disk is
shown in the center of the field of the Zemax spot diagram.
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of astigmatism. The astigmatism throughout the field will be shown as a representa-

tion of the coefficients, as recorded in Zemax and analyzed by Matlab and as full

field displays from Code V. The different examples studied are listed in Table 5.2.

Table 5.2: Astigmatism examples studied in this chapter.

Description Astigmatism Nodal behavior Orientation
(dominating field of lines
dependence)

1 Nominal system Quadratic One (in center) Radially-
outward

2 Large shape error Constant None observed Parallel
(astigmatism) on
primary

3 Small shape error Constant Binodal (nodes Field-
(astigmatism) on + Quadratic symmetric asymmetric
primary about origin)

4 Large misalignment Quadratic Binodal (nodes Field-
of secondary + Linear not symmetric asymmetric

+ Constant about origin)

5 Smaller misalignment Quadratic Binodal (nodes Field-
of secondary + Linear not symmetric asymmetric

about origin)

The nodal behavior of each system will be discussed. Astigmatism in general

has a binodal form. For any location in the field, the value of the astigmatism

coefficient is proportional to the product of the two distances from that field point

to each of the two nodes. The locations of the nodes depend on the details of the

system design and alignment.
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5.1.1 QUADRATIC ASTIGMATISM IN THE NOMINAL OPTICAL DESIGN

The first example shows the quadratic astigmatism that is native to the axially-

symmetric optical system.

Example 1: Native astigmatism in the nominal optical design

The nominal system is a well-corrected, rotationally-symmetric optical system. One

can say that the two nodes both overlap at the center of the field and as a result, the

small amount of astigmatism that exists in the system has a quadratic dependence

on the field. This can be seen through the length of the line images in the 2-D

plots in Figure 5.3. In Figure 5.3, the astigmatism is plotted as an “Astigmatic

Line Image” from Code V and as the coupled coefficients for the fringe Zernike

coefficients (Z5 and Z6). The relative length of the lines through the field in each of

these two figures is equivalent, but the orientation of each individual line rotates by

90◦. The “Astigmatic line image” in Code V is calculated through a Coddington

ray trace (which depends on paraxial quantities) while the “Fringe Zernike Pair” is

calculated through the coefficients that are fit in the pupil. Since the orientations

of the lines rotate by 90◦, the two figures appear like the orientations of the line

images on either side of the medial focus. (These line images are formed on curved

images planes, such as the ones labeled “sagittal” and “tangential” in Figure 3.8,

that come together for the on-axis field.) Figure 5.4 shows 1-D slices of Figure 5.3

that are clearly quadratic.

The uncoupled plots for the Zernike coefficients are shown in Figure 5.5. The

2-D plots show the magnitude of the coefficients, but their signs are not clear. In
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(a) 2-D “Astigmatism line image.”
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(b) 2-D “Fringe Zernike pair Z5 and Z6.”

Figure 5.3: 2-D Quadratic astigmatism in Hubble Space Telescope design (Exam-
ple 1: no misalignment) in Code V. The astigmatism node on-axis is shown with
a red dot.
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(b) 1-D “Fringe Zernike pair Z5 and Z6.”

Figure 5.4: 1-D Quadratic astigmatism in Hubble Space Telescope design (Exam-
ple 1: no misalignment) in Code V.
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Code V, these fringe Zernike terms are Z5 = ρ2 cos(2φ) and Z6 = ρ2 sin(2φ).
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(a) 2-D “Fringe Zernike Coefficient Z5.”
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(b) 2-D “Fringe Zernike Coefficient Z6.”

Figure 5.5: Fringe Zernike coefficients for Hubble Space Telescope (Example 1: no
misalignment) in Code V.

The Matlab representation of the Zernike standard coefficients for astigmatism,

as recorded by Zemax, is shown in Figure 5.6. The standard Zernike coefficients in

Zemax are given by Z5 = ρ2 sin(2φ) and Z6 = ρ2 cos(2φ), so Z5 and Z6 are switched

from the fringe Zernike polynomials in Code V. The “Total C5” in Figure 5.6 has

the same field dependence as shown in the Code V fringe Zernike Z6 (Figure 5.5b).

Similarly, the “Total C6” in Figure 5.6 has the same field dependence as shown

in the Code V fringe Zernike Z5 (Figure 5.5a). Figure 5.6 also shows how the

magnitude of these recorded coefficients are split into constant, linear and quadratic

contributions throughout the field by a least-squares fit to the equations of Tessieres
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in Table 3.4.
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Figure 5.6: Astigmatism coefficients throughout the field in the Hubble Space Tele-
scope Example 1. Quadratic astigmatism dominates and one node is seen on-axis.
(The plots show an infinitesimal amount of linear astigmatism, which come from
limitations in the numerical calculations.)

The coefficients (from a least-squares fit to equations in Table 3.4) for astigma-

tism and coma in the nominal Hubble Space Telescope design are listed in Table 5.3.

These coefficients are for the case when the field is normalized to unity in the equa-

tions. As expected, only the terms with subscript “0” (meaning for the rotationally

symmetric system) are nonzero. (The other terms are essentially zero.) Since this

telescope has a Ritchey-Chretien design, which is aplanatic, it is corrected for spheri-

cal aberration and coma. The limiting aberration expected is quadratic astigmatism,

which is the largest coefficient value listed in Table 5.3.

Figure 5.6 shows the magnitude of the astigmatism coefficients, but these values

can also be plotted as line images where the length of the line is proportional to
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Table 5.3: Astigmatism and coma coefficients in waves (λ = 586.56 nm) from
Tessieres’s equations (Table 3.4) for Example 1.

Coefficient Aberration name Value

α0 Quadratic astigmatism 0.61747
α1 Linear astigmatism 1 0
α2 Linear astigmatism 2 0
α3 Constant astigmatism 1 0
α4 Constant astigmatism 2 0
β0 Linear coma −0.012668
β1 Constant coma 1 0
β2 Constant coma 2 0

the total astigmatism (root sum square of the Z5 and Z6 components) and the

orientation of the line is given by one half the arctangent of the ratio of the two

components. Figure 5.7 shows how the coefficients in Table 5.3 turn into line images.

Here, only quadratic astigmatism in visible.
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Figure 5.7: Astigmatism and coma in Example 1, separated by field dependence,
calculated from coefficients. The astigmatism node on-axis is shown with a red dot.
The Hx and Hy fields are normalized to the half field of view of 0.233◦.
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5.1.2 CONSTANT ASTIGMATISM FROM PRIMARY MIRROR BENDING

If the primary mirror (entrance pupil) has an astigmatism shape error, then this

astigmatism from the surface is added to all of the points in the field. Since all

of the fields are equally affected, the induced astigmatism is constant in the field.

Examples 2 and 3 show the effect of adding an astigmatism shape error to the

primary mirror is constant astigmatism. Example 2 shows a large shape error so

the constant astigmatism dominates, while Example 3 shows a more realistic shape

error where the total astigmatism is a sum of the constant and native quadratic

components.

Example 2: Constant astigmatism from large primary mirror bending

error

In this example, the astigmatism shape error on the primary mirror was chosen to be

sufficiently large, so that the constant astigmatism will dominate over the residual

quadratic astigmatism of the aligned system. In Zemax, three waves of error in

Z5 =
√

6ρ2 sin(2φ) using a “Zernike Standard Phase” surface on the primary mirror

results in the spot diagram shown in Figure 5.8. The normalizing radius for the

Zernike polynomial term is the same radius as that of the primary mirror (1200 mm).

(An alternate way to create this surface is to use a “Zernike Standard Sag” surface.

Since the wavefront error doubles upon reflection, the astigmatism coefficient for the

sag to create the equivalent error should be 1.5 waves = 0.008813 mm.) The spot

diagram is for an image plane 20 mm behind focus to show the line images. There

are two nodes (as there will always be for astigmatism), but both nodes are out of
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the field of view and not seen.

Figure 5.8: Spot diagram showing constant astigmatism for the Hubble Space Tele-
scope with an astigmatism error on the primary mirror (Example 2). (The spots
are shown at a defocused image plane 20 mm behind focus and are exaggerated by
50×.)

In Code V, 0.00216 mm of Z6 astigmatism are placed on the primary mirror

with a Zernike polynomial surface. (This includes the normalization factor of
√

6

which is not included in Code V for the Zernike polynomial surface.) Figures 5.9

and 5.10 show the results. Constant astigmatism results in line images of the same

length and orientation throughout the field. The magnitude of the astigmatism is

shown in Figure 5.10. Here, a parabolic shape is seen (from the quadratic native

astigmatism), but the y-axis scales show that the overall effect is mostly constant

through the field.

The coefficients for constant, linear and quadratic astigmatism were found from

the Zemax model using Matlab and are listed in Table 5.4. All of the numbers

are the same as for the nominal design, except for the constant astigmatism term

for Z5. The Matlab plots are shown in Figure 5.11 and Figure 5.12.



136

Hubble Telescope

SM         11-Dec-09

ASTIGMATIC LINE IMAGE
vs

FIELD ANGLE IN OBJECT SPACE

Minimum = 1.3163
Maximum = 1.9822
Average = 1.6595
Std Dev = 0.1449

11mm

-0.3000 -0.2000 -0.1000 0.0000 0.1000 0.2000 0.3000

X Field Angle in Object Space - degrees

-0.3000

-0.2000

-0.1000

0.0000

0.1000

0.2000

0.3000

Y
 
F
i
e
l
d
 
A
n
g
l
e
 
i
n
 
O
b
j
e
c
t
 
S
p
a
c
e
 
-
 
d
e
g
r
e
e
s

(a) 2-D “Astigmatism line image.”
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(b) 2-D “Fringe Zernike pair Z5 and Z6.”

Figure 5.9: 2-D Constant astigmatism in Hubble Space Telescope, with simulated
primary mirror astigmatism shape error in Code V. There are no nodes within the
field of view.
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Figure 5.10: 1-D Constant astigmatism in Hubble Space Telescope, with simulated
primary mirror astigmatism shape error in Code V.
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Table 5.4: Coefficients in waves (λ = 586.56 nm) for three waves of constant astig-
matism added to Hubble primary mirror (Example 2).

Coefficient Aberration name Value

α0 Quadratic astigmatism 0.61747
α1 Linear astigmatism 1 0
α2 Linear astigmatism 2 0
α3 Constant astigmatism 1 −3
α4 Constant astigmatism 2 0
β0 Linear coma −0.012668
β1 Constant coma 1 0
β2 Constant coma 2 0
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Figure 5.11: Astigmatism coefficients from the Hubble Space Telescope Example 2.
Constant astigmatism (from the Z5 term) dominates. (The plots show an infinites-
imal amount of linear astigmatism, which come from limitations in the numerical
calculations.)
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Figure 5.12: Astigmatism and coma in Example 2, separated by field dependence,
calculated from coefficients. The Hx and Hy fields are normalized to the half field
of view of 0.233◦.

Example 3: Native astigmatism in the optical design with a modest

amount of astigmatism from the primary mirror bending

In this example, the primary shape error (−0.61747 waves) is chosen so that the con-

stant astigmatism equals the quadratic astigmatism at the edge of the field (0.233◦).

This results in two positions at the edge of the field where the astigmatism cancels.

Thus, two nodes are observed at positions that are symmetric about the origin

(where the field angle is zero). The astigmatism coefficients found using Zemax

and Matlab are listed in Table 5.5. All of the values are the same as for the nom-

inal design, except for the constant astigmatism term for Z5. The Matlab plots

are shown in Figure 5.13 and Figure 5.14.

It is important to note that the new field distribution can be calculated as the

sum of the two effects:

1. Quadratic astigmatism, native to the design. This is fully described by one
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Table 5.5: Coefficients in waves (λ = 586.56 nm) for constant astigmatism added to
Hubble primary mirror in Example 3.

Coefficient Aberration name Value

α0 Quadratic astigmatism 0.61747
α1 Linear astigmatism 1 0
α2 Linear astigmatism 2 0
α3 Constant astigmatism 1 −0.61747
α4 Constant astigmatism 2 0
β0 Linear coma −0.01266
β1 Constant coma 1 0
β2 Constant coma 2 0
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Figure 5.13: Astigmatism coefficients from the Hubble Space Telescope Example 3.
Binodal astigmatism (seen in the top left plot) is produced by a combination of
quadratic and constant astigmatism. (The plots show an infinitesimal amount of
linear astigmatism, which come from limitations in the numerical calculations.)
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Figure 5.14: Astigmatism and coma, separated by field dependence, calculated from
coefficients. Binodal astigmatism may be seen in the top left plot. The astigmatism
nodes are shown with red dots. The Hx and Hy fields are normalized to the half
field of view of 0.233◦.

coefficient, and it does not change as the constant astigmatism is added.

2. Constant astigmatism. This is in general described with two coefficients (one

each for the 0◦ and 45◦ astigmatism contributions).

The binodal effect is created by a linear sum of these.

5.1.3 LINEAR ASTIGMATISM FROM SECONDARY MIRROR

MISALIGNMENT

In Example 2, the magnitude of the primary mirror shape error was chosen so

that the resulting constant astigmatism dominates over the quadratic astigmatism,

which is native to the original design. In order to produce linear astigmatism, the

secondary mirror must be misaligned. However, this perturbation also produces

constant astigmatism. These contributions are predicted by Thompson’s equation:
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W ( �H, �ρ) =
1

2

(
W222

�H2 − 2 �H �A222 + �B2
222

)
· �ρ 2. (5.1)

For this design, it is not possible to choose a large misalignment such that the linear

astigmatism is the dominating astigmatism field dependence in the system. For

small misalignments, the added linear astigmatism (from the �A222 term) is small

compared to the native quadratic astigmatism. As the amount of misalignment

increases, the amount of linear astigmatism also increases linearly. This is because

the vector �A222 scaling the astigmatism component that is linear in field depends

linearly on the misalignment. In particular, the misalignment causes the field center

to move off-axis, according to the perturbation vector �σ in the equation �A222 =∑
j W222j�σj . The constant astigmatism from the misalignment grows with the square

of the misalignment ( �B2
222 =

∑
j W222j�σ

2
j ). As a result, there is no misalignment

that can be chosen to show linear misalignment which is large compared to both the

quadratic and the constant astigmatism. The following two examples show how the

coefficients depend on the magnitude of the misalignment. Of course, constant coma

will also be generated by this degree of freedom, but that will not be emphasized

here.

As shown in the previous two examples, constant astigmatism causes the astig-

matic line images to have the same orientation and length throughout the field. The

new field dependence introduced in the next two examples is linear astigmatism. The

system can not be perturbed such that the total astigmatism has only linear field

dependence, but the linear contribution can be seen when the total astigmatism is

divided into its components.
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For linear astigmatism, the length of the line images grows linearly as a function

of the field radius, and the orientation varies throughout the field. Linear astig-

matism line images always have the same field-asymmetric shape, but the overall

rotation of the lines throughout the field may change (i.e. see Figure 4.5) depend-

ing on the direction of the misalignment that caused the linear astigmatism and

whether the focus is at the sagittal or tangential image surface. One may call this

“field-asymmetric, field-linear astigmatism” (Thompson et al., 2008), to be more

descriptive. This long name is not needed to distinguish it from the case of “field-

symmetric, field-linear astigmatism” because that aberration can not exist. A sym-

metric shape is impossible (for linear field dependence), based on the argument that

the magnitude of the astigmatism at some field point is the product of the two

distances from the field point to each of the nodes.

Example 4: Constant and linear astigmatism from relatively large

secondary mirror misalignment combined with native quadratic astig-

matism

In this example, the secondary mirror is misaligned by a relatively large amount

(decenter in �x by 10 mm). This produces both constant and linear astigmatism

contributions and causes the astigmatism line images to become binodal, as shown

in the Code V images in Figure 5.15. However, now the nodes are not symmetric

about the origin anymore due to the addition of the linear astigmatism component.

The coefficients for this system, found using Zemax and Matlab, are listed

in Table 5.6. The linear coma (β0) and quadratic astigmatism (α0) terms slightly
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(a) 2-D “Astigmatism line image.”
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(b) 2-D “Fringe Zernike pair Z5 and Z6.”

Figure 5.15: 2-D constant, linear and quadratic astigmatism in Hubble Space Tele-
scope, with simulated secondary mirror misalignment in Code V.
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changed from the nominal amounts. This is the nonlinear effect of the square of the

misalignment becoming significant. The Matlab plots are shown in Figure 5.16

and Figure 5.17.

Table 5.6: Coefficients in waves (λ = 586.56 nm) for Hubble Space Telescope Ex-
ample 4 with a 10 mm secondary mirror misalignment in the �x-direction.

Coefficient Aberration name Value

α0 Quadratic astigmatism 0.61795
α1 Linear astigmatism 1 −0.21655
α2 Linear astigmatism 2 0
α3 Constant astigmatism 1 0
α4 Constant astigmatism 2 0.11973
β0 Linear coma −0.015939
β1 Constant coma 1 −5.077
β2 Constant coma 2 0
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Figure 5.16: Astigmatism coefficients from the Hubble Space Telescope Example 4.
Binodal astigmatism (top left plot) is produced by a combination of constant, linear
and quadratic astigmatism. The nodes are no longer symmetric about the origin
due to the linear component.
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Figure 5.17: Astigmatism and coma, separated by field dependence, calculated from
coefficients. Binodal astigmatism may be seen in the top left plot. (The astigmatism
nodes are shown with red dots.) The Hx and Hy fields are normalized to the half
field of view of 0.233◦.
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Example 5: Native astigmatism in the optical design with a modest

amount of linear astigmatism from secondary mirror misalignment

Now the secondary mirror is misaligned in the �x-direction by 0.1 mm. This is a

smaller amount to show the change in the fit coefficients. In terms of nodes, there

are two again (as there will always be for astigmatism), but since the misalignment

is so small, the nodes are both very close to the origin, as shown by the red dots in

Figure 5.18. Since the nodes are close together, they are hard to distinguish with

the plots with 21 points across the pupil diameter in Figure 5.18 and practically

impossible to see with the 7 points across the pupil diameter in Figure 5.19. Since

the combination of linear astigmatism and quadratic astigmatism causes binodal

behavior, the knowledge that there is a linear astigmatism contribution (from either

Table 5.7 or Figure 5.19) tells us that there must be two nodes for the astigmatism.

The coefficients for this system, found using Zemax and Matlab, are listed in

Table 5.7 and plotted in Figures 5.19 and 5.20. The linear coma (β0) and quadratic

astigmatism (α0) terms now are much closer to the nominal amounts (different

from Example 4). The perturbation amount in this example is 100× smaller than

in Example 4. As a result, one would expect the linear astigmatism coefficient

(α1) and constant coma 1 (β1) terms to be 100× smaller. The ratios were for

α1 −0.21655/ − 0.0021613 = 100.1943 and for β1 −5.077/ − 0.050775 = 99.9902.

One should expect the aberration that depends on the square of the perturbation,

constant astigmatism 2 (α4) to be 1002× or 10000× smaller than in Example 4.

The actual ratio was 0.11973/1.1876 × 10−5 = 10082. Thus, the system behaves as

expected.
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(a) 2-D “Astigmatism line image.”
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(b) 2-D “Fringe Zernike pair Z5 and Z6.”

Figure 5.18: 2-D constant, linear and quadratic astigmatism in Hubble Space Tele-
scope, with small simulated secondary mirror misalignment in Code V. The astig-
matism nodes are shown with red dots.

Table 5.7: Coefficients in waves (λ = 586.56 nm) for Hubble Space Telescope Ex-
ample 5 with a 0.1 mm secondary mirror misalignment in the �x-direction.

Coefficient Aberration name Value

α0 Quadratic astigmatism 0.61748
α1 Linear astigmatism 1 −0.0021613
α2 Linear astigmatism 2 0
α3 Constant astigmatism 1 0
α4 Constant astigmatism 2 1.1876e−5
β0 Linear coma −0.01266
β1 Constant coma 1 −0.050775
β2 Constant coma 2 0
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Figure 5.19: Astigmatism coefficients from the Hubble Space Telescope Example 5.
Although the astigmatism is binodal here, the resolution is not high enough to show
the two separate nodes in the top left plot The binodal nature of the astigmatism
can be inferred by observing that the astigmatism has both quadratic and linear
field dependent contributions.
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Figure 5.20: Astigmatism and coma, separated by field dependence, calculated from
coefficients. The two nodes for the astigmatism in the top left plot are shown with
red dots. The Hx and Hy fields are normalized to the half field of view of 0.233◦.
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5.2 DISCUSSION OF NODAL ABERRATION THEORY

The effects of misalignments are aberration fields that depend in a repeatable, un-

derstandable way based on the misalignment. This field can have some locations

where the value of the aberration is zero. These are the nodes, which depend on

the misalignment. The number of nodes expected depends on the aberration under

consideration. This chapter considered the case of astigmatism, which may have

two nodes, as it is more interesting than the case of coma which will have only one

node.

Because astigmatism has two nodes, it is treated as “binodal.” However, some-

times this is apparent and sometimes it is not. If both nodes occur together for the

on-axis field or if the nodes are not very far apart, then they appear as only one

node. Some systems can be found where one node is in the field of view and the

other is out of the field. And sometimes, neither of the nodes may be in the field

of view. Using the node locations for calculating misalignments is possible, but not

the only method.

For a two mirror system, the secondary mirror can be aligned. If only tilts and

decenters are considered, there are four degrees of freedom (considering both �x and

�y misalignments). These four misalignments result mainly in four effects: constant

coma (two directions) and linear astigmatism (two directions). The secondary mirror

can be corrected by first fixing the coma (two variables: Z7 and Z8 at one field).

Then the secondary mirror can be rotated about its coma-free point to correct the

remaining astigmatism (Z5 and Z6). Nodal Aberration Theory requires that the

astigmatism be measured at three fields to determine the misalignments or shape



150

errors causing astigmatism (Schmid et al., 2008). The astigmatism is determined

by the shape and orientation of a defocused image. The nodes are not required to

be in the field of view for this method to work.

Alternatively, these four degrees of freedom can be corrected in one step by

a least-squares fit to the field dependent functions. There are five astigmatism

coefficients (α0–α4) according to Tessieres’s notation, or:

• Constant astigmatism, mostly from the mirror bending (but also affected by

misalignment), two components

• Linear field dependent astigmatism from the secondary mirror alignment, two

components, and

• Quadratic astigmatism from the native design, described by a single parame-

ter.

Two Zernike polynomials (Z5 and Z6) measured at three field point provide six

measurements to solve for the five coefficients. This number of required field points

to determine the astigmatism is in agreement with Nodal Aberration Theory. If the

native quadratic astigmatism is known, and if the primary is known to be perfect,

then the wavefront at a single field point, described with two Zernike coefficients,

is needed to quantify the linear field dependent astigmatism, thus the secondary

mirror misalignment. The three coma coefficients (β0–β2) can be found by four

measurements (Z7 and Z8 each at two fields). In practice, multiple points are used

with a least-squares fit to reduce the coupling from noise.
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This Zernike polynomial wavefront decomposition method is powerful because it

can be extended to systems with more degrees of freedom. If there are more mirrors,

then there will be more aberrations that become important, so other measurements

need to be made to calculate focal plane tilt (Z4) and/or higher order Zernike

polynomials (Z9, Z10, Z11 etc.) The correct number of wavefront measurements

need to be made to account for the number of unknowns in the equations. Once the

Zernike polynomials that need to be considered are determined, only the number of

variables in the equation need to be counted and then the appropriate number of

measurements can be taken to solve for them. Additional measurements will help

reduce the noise by 1/
√
n, where n is the number of measurements.

It has been argued that the Cassegrain telescope has binodal astigmatism and

that only the three-mirror anastigmat (TMA) design will suffer linear field depen-

dent astigmatism. It should be clear from the above analysis that the two nodes in

the two mirror design are described by the two components: quadratic and linear

field dependent astigmatism. These have different causes and different effects. The

usefulness of the method presented here is the ability to decouple these. By fitting

the coefficients to data, the linear field dependent astigmatism contribution is quan-

tified in a simple way. There exists a one-to-one relationship between this linear field

dependent astigmatism and secondary mirror misalignment. This relationship is in-

dependent of the correction of the quadratic field dependence, thus the treatment

of this form is identical for a TMA as a Cassegrain design. The net combination of

terms and the nodal appearance may be different, but the cause and effect of the

linear field dependent astigmatism is the same. (A similar relationship exists for the
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combined effect of constant and quadratic or linear astigmatism, which also creates

nodal behavior.)

The systematic Zernike representation of the field dependent aberrations is cor-

rect, complete, and useful. It is fully consistent with the nodal treatment. The

systematic description of the field dependence predicts the nodes, but does not give

them special significance. This in no way detracts from other work that focuses on

the nodes. It simply provides a different way to describe the field dependence that

may be useful.

In addition, no significance is placed on the orientation of the astigmatic lines

in a defocused image. For systems with many degrees of freedom (more than three

mirrors), the images may be so aberrated that it is not possible to determine the

orientation of the astigmatism in the presence of other aberrations. The orientation

of the line image may be calculated from the Zernike coefficients measured by the

wavefront sensor, but there is no reason to do this.

Astigmatism was treated completely in this chapter to provide a clear example.

The Zernike polynomial decomposition is general. All higher order terms are treated

in the same way. Likewise, it would be possible to find the zeros or nodes for all cases.

Like the case of astigmatism, it may be possible to describe the field dependence

using nodes. But like the case of astigmatism, a complete description that does not

give special significance to the nodes is both correct and useful.



153

CHAPTER 6

AN ORTHOGONAL SET OF FIELD-DEPENDENT ABERRATIONS

This chapter begins in Section 6.1 with a review of the concept of orthogonality, as

applied to polynomials. Zernike polynomials, described in Section 6.2, are an exam-

ple of orthogonal polynomials commonly used in optics. For this reason, Tessieres

(2003) modified the equations describing the possible field-dependent aberrations in

a misaligned system from Thompson’s wave expansion form into a form using Zernike

polynomials over the pupil, as seen in Chapter 3. However, the field-dependent aber-

rations developed by Tessieres, as reviewed in Section 6.3, are not orthogonal over

the field, which limits their usefulness. Therefore, an alternate set of polynomials,

orthogonal over both the field and pupil, is introduced in Section 6.4.

These orthogonal polynomials are based on double Zernike polynomial expan-

sions using products of Zernike polynomials in field space and Zernike polynomials

in pupil space. The polynomials introduced are an efficient basis for describing sys-

tems with tilted and decentered elements because they match the field-dependent

aberrations that are induced by misalignment. In order to do this, two double

Zernike polynomial terms will be required in the function when the Zernike polyno-

mial in either the field or the pupil has azimuthal dependence. The functions in the

new orthogonal basis are compared to the field-dependent aberrations predicted by

Thompson in Section 6.5. Section 6.6 describes completing this basis set of func-

tions. Next, the field-dependent aberrations caused by bending or shape errors on
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any mirror in the optical system are discussed in Section 6.7. The orthogonal double

Zernike polynomials are shown to be a useful basis for describing these errors, as

well.

Section 6.8 includes a summary of the orthogonal functions that depend linearly

on the misalignments. These are the terms that will be most useful when doing

a least-squares fit of the misalignments to the wavefront sensor measurements to

determine the current misalignment state of the system. Chapter 6 concludes in

Section 6.9 with the results of a numerical simulation listing coefficients for the pro-

posed orthogonal functions in a misaligned system. It is shown that the aberrations

scale with the misalignments in the system as expected.

6.1 INTRODUCTION TO ORTHOGONAL POLYNOMIALS

Orthogonal polynomials are of practical use in many applications. Many books

have been written about orthogonal polynomials, but often these are very mathe-

matical and hard for an engineer or scientist to digest. Fortunately, at least one

comprehensible book has been written by Beckmann (1973).

Oftentimes, one wishes to expand a function (perhaps representing measured

data) into other functions. An example of this is a Taylor series that expands the

function g(x) into a system of expansion functions, such as

g(x) = C0 + C1 f1(x) + C2 f2(x) + ..., (6.1)

where the Cn are the coefficients weighting the expansion functions fn(x) =

{1, x, x2, ...}. Expansion functions can also be dependent on any number of vari-
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ables. An example of this in optics is a expansion that depends on the two pupil

coordinates, ρ and φ. The Seidel aberration function (Equation 3.5) expands a

wavefront into aberration terms for spherical aberration, coma, astigmatism, focus

and distortion:

W (ρ, φ) = a40 ρ
4 + a31 ρ

3 cosφ+ a22 ρ
2 cos2 φ+ a20 ρ

2 + a11 ρ cosφ, (6.2)

recalling that the individual terms were discussed in Chapter 3. Neither

of the sets of functions in these two examples (fn = {1, x, x2, ...} or

{ρ4, ρ3 cosφ, ρ2 cos2 φ, ρ2, ρ cosφ, ...}) is orthogonal, so their use is limited because

the coefficient values depend on the number of terms in the fit.

Orthogonal functions are often preferable because the coefficient of any term can

be calculated directly from the following inner product without requiring a least-

squares fit (Beckmann, 1973):

Cn =
1

h2
n

∫ b

a

g(x)fn(x) dx. (6.3)

In Equation 6.3, Cn is again the coefficient of the nth function fn(x). The functions

are from an orthogonal basis set, each with norm hn, and g(x) is the function to be

fit (e.g. the measured data). The functions are orthogonal over the line segment

a ≤ x ≤ b. For a basis set of one-dimensional functions {f1(x), f2(x), ...} that are

orthogonal in the interval from a to b, the orthogonality relation is:

∫ b

a

fm(x)fn(x) dx = hn
2 δmn, (6.4)
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where δmn is the Kronecker delta:

δmn =

{
0, for m �= n;

1, for m = n.
(6.5)

The functions are considered orthogonal based on the analogy with vector alge-

bra. Two vectors are orthogonal if and only if their scalar product vanishes. There

are infinite different sets of functions that are orthogonal. For example the system

{6, 12 cosx, 1970 cos 2x, ...} is orthogonal because the system {1, cos x, cos 2x, ...}

is orthogonal. If the functions fn(x) with norms hn are orthogonal, then the func-

tions fn(x)/hn are orthonormal. The act of specifying the multiplicative constants

(or the norms hn) is called standardizing the system. Normalization is a special case

of standardization when all the norms are set equal to unity. This type of orthogonal

system is called orthonormal.

Another important consideration of orthogonal systems is completeness. To be

able to represent any physical system using a sum of orthogonal functions, the set

of orthogonal functions needs to be complete. For example, the set of functions

{cosx, cos 2x, cos 3x} is incomplete because there are physical functions that no

combination of terms can possibly represent, such as sin x. A complete set of func-

tions, such as {1, cosx, cos 2x, cos 3x, ..., sin x, sin 2x, sin 3x...} in this example, is

needed to represent a function by its Fourier expansion.

For a two dimensional function, an integral, similar to Equation 6.4, defines the

orthogonality over some area. In optics, usually this area is a unit circle defining
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the pupil, which results in the following integral:

∫ 2π

0

∫ 1

0

fm(ρ, φ) fn(ρ, φ) ρ dρ dφ = δnm, (6.6)

where the functions fn(ρ, φ) are orthonormal. However, orthogonality over other

areas, like rectangular regions, annular circles (Mahajan, 1981), or polygons (such

as hexagons (Upton & Ellerbroek, 2004; Mahajan & Dai, 2006)), may be chosen

depending on the application. This usually occurs when the pupil or optical surface

(if using Zernike polynomials to describe a surface measured during the optical test)

is not circular.

6.2 ORTHOGONALITY OF ZERNIKE POLYNOMIALS

Similarly to Equation 6.1, the wavefront describing the aberrations in an optical

system can be written as a sum of polynomials:

W (ρ, φ) =

n∑
j=1

Cj Zj(ρ, φ), (6.7)

where the functions Zj(ρ, φ) are Zernike polynomials. (This is the same equation as

described in Section 3.7.) When the pupil is a complete circle, the coefficients Cj in

Equation 6.7 are independent of the number of terms n in the fit. Since the Zernike

polynomials are orthogonal over a unit circle, the following equation holds:

1

π

∫ 2π

0

∫ 1

0

Zi(ρ, φ)Zj(ρ, φ) ρ dρ dφ = δij . (6.8)
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The 1
π

is included in the orthogonality integral to change the normalization such

that ∫ 2π

0

∫ 1

0
Zi(ρ, φ)Zj(ρ, φ) ρ dρ dφ∫ 2π

0

∫ 1

0
ρ dρ dφ

= δij . (6.9)

This is done so that the expansion coefficient Cj of a given Zernike polynomial term

is equal to the rms value of the term. An equation similar to Equation 6.3 exists in

2D form, where W (ρ, φ) replaces g(x) and Zj(ρ, φ) replaces fn(x):

Cj =
1

π

∫ 2π

0

∫ 1

0

W (ρ, φ)Zj(ρ, φ) ρ dρ dφ. (6.10)

There are many varieties of numbering schemes and normalizations used for

Zernike polynomials, as mentioned in Appendix F, but all different groups of Zernike

polynomials are composed of the same orthogonal functions.

6.3 ABERRATIONS FOR MISALIGNED SYSTEMS USING ZERNIKE

POLYNOMIALS

Equation 6.7 describes a single optical surface or the wavefront aberration for just

one chosen field angle in an optical system. However, functions can be written to de-

scribe the aberrations of an optical system at any field angle by including terms for

the field dependence. In his thesis, Tessieres (2003) described the wavefront aberra-

tions that are possible in a tilted and decentered system throughout the whole field

by describing the Hx and Hy dependence of the (previously constant) coefficients of
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the Zernike polynomials, in the form of

W (ρ, φ,Hx, Hy) =

n∑
i=1

Ci(Hx, Hy)Zi(ρ, φ). (6.11)

He compiled the functions for third-order aberrations and for fifth order aberrations

(Tessieres, 2003). As a reminder, systems with third-order aberrations may be

described using Zernike polynomial terms for field curvature (i = 4), astigmatism

(i = 5, 6) and coma (i = 7, 8). The indices in parentheses are for the standard

Zernike polynomial ordering (Noll, 1976). Some of the Zernike polynomials have

the same radial dependence, but varying azimuthal dependence (sinφ or cosφ).

For example, Z7(ρ, φ) = ρ3 sinφ and Z8(ρ, φ) = ρ3 cosφ both have the same ρ3-

dependence, but different azimuthal dependence (sinφ or cosφ). There are some

Zernike polynomials that are radially symmetric and have no dependence on angle,

but the rest of the terms come in pairs with sine and cosine dependence. For the

Zernike polynomials that do come in pairs, the Greek letter coefficients of Tessieres

are always coupled. For example, the linear coma coefficient β0 describes both the

Hy field dependence of Z7(ρ, φ) and the Hx dependence of Z8(ρ, φ). Or for the case

of astigmatism, recalling the example in Chapter 3 for a misaligned system, the

coefficients C5 and C6 are described by the functions:

C5(Hx, Hy) = 2α0HxHy + α1Hy + α2Hx + α3 (6.12)

C6(Hx, Hy) = α0 (Hx
2 −Hy

2) + α1Hx − α2Hy + α4 (6.13)
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when considering third-order aberrations. The term α0 describes the quadratic

astigmatism that is present in a rotationally symmetric system, while the α1 and

α2 terms describe the two components of linear astigmatism and the α3 and α4

terms describe the two components of constant astigmatism in the misaligned sys-

tem. When considering fifth-order aberrations (from W422), the equations for the

coefficients C5 and C6 of the Zernike terms Z5(ρ, φ) and Z6(ρ, φ) have a modified

form and more higher power field terms (up to 4th order in field) must be included:

C5(Hx, Hy) = 2χ0 (HxHy
3 +Hx

3Hy) + χ1 (3Hx
2Hy +Hy

3)

+ χ2 (Hx
3 + 3HxHy

2) + χ3 (Hx
2 +Hy

2) + χ5 2HxHy

− χ6Hy + χ7Hx + χ8Hy + χ9Hx + χ10,

(6.14)

C6(Hx, Hy) = χ0 (Hx
4 −Hy

4) + 2χ1Hx
3 − 2χ2Hy

3

+ χ4 (Hx
2 +Hy

2) + χ5 (Hx
2 −Hy

2) + χ6 Hx

+ χ7Hy + χ8Hx − χ9Hy + χ11.

(6.15)

The coefficients α0–α4 calculated previously are no longer meaningful. Addition-

ally, when fifth order aberrations are considered, more functions must be added to

describe the coefficients for trefoil (i = 9, 10), fifth-order field curvature (i = 11),

oblique spherical aberration (i = 12, 13) and fifth-order coma (i = 16, 17).
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6.4 EXAMPLE DERIVATIONS OF ORTHOGONAL FIELD-DEPENDENT

ABERRATIONS

Using functions Sj(ρ, φ, h, θ) that are orthogonal over the pupil and the field as in

the equation

∫ 2π

0

∫ 1

0

∫ 2π

0

∫ 1

0

Si(ρ, φ, h, θ)Sj(ρ, φ, h, θ) ρ dρ dφ h dh dθ = δij (6.16)

converts the wavefront sum in Equation 6.11 into the following form:

W (ρ, φ, h, θ) =
n∑

j=1

CjSj(ρ, φ, h, θ). (6.17)

Functions such as this, which allow the coefficients Cj to be independent of the

number of terms included, will be derived in this section.

In order to have an efficient basis for describing the field-dependent aberrations,

the low order orthogonal functions should correspond directly to the aberration co-

efficients, given as Greek letters by Tessieres (2003). The first step is to write the

function that describes each Greek letter coefficient in Tessieres’ equations (listed

in Table 3.4). The next step is to change the (Hx, Hy)-dependence into (h, θ)-

dependence and convert the resulting equations into Zernike notation. To demon-

strate this, the five orthogonal functions for astigmatism — quadratic (1×), linear

(2×) and constant (2×) with field — are derived in this section. The functions for

the other aberrations are derived in Appendix J.

For the case of quadratic astigmatism, collect all the terms from Equations 6.12
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and 6.13 with contributions for α0:

Wα0 terms only = 2HxHy Z5(ρ, φ) + (Hx
2 −Hy

2)Z6(ρ, φ)

= 2h2 sin θ cos θ Z5(ρ, φ) + (h2 cos2 θ − h2 sin2 θ)Z6(ρ, φ)

= h2 sin 2θ Z5(ρ, φ) + h2 cos 2θ Z6(ρ, φ)

S(ρ, φ, h, θ) = Z5(h, θ)Z5(ρ, φ) + Z6(h, θ)Z6(ρ, φ).

(6.18)

For linear astigmatism in one direction, the terms with contributions from α1 are:

Wα1 terms only = Hy Z5(ρ, φ) +Hx Z6(ρ, φ)

= h sin θ Z5(ρ, φ) + h cos θ Z6(ρ, φ)

S(ρ, φ, h, θ) = Z3(h, θ)Z5(ρ, φ) + Z2(h, θ)Z6(ρ, φ),

(6.19)

and the linear astigmatism in the other direction has contributions from α2:

Wα2 terms only = Hx Z5(ρ, φ) −Hy Z6(ρ, φ)

= h cos θ Z5(ρ, φ) − h sin θ Z6(ρ, φ)

S(ρ, φ, h, θ) = Z2(h, θ)Z5(ρ, φ) − Z3(h, θ)Z6(ρ, φ).

(6.20)

Constant astigmatism, which has no field dependence, is described by Zernike

piston terms in field, such that:

Wα3 terms only = Z5(ρ, φ)

S(ρ, φ, h, θ) = Z1(h, θ)Z5(ρ, φ)

(6.21)
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Wα4 terms only = Z6(ρ, φ)

S(ρ, φ, h, θ) = Z1(h, θ)Z6(ρ, φ).

(6.22)

The functions Z5(h, θ)Z5(ρ, φ) + Z6(h, θ)Z6(ρ, φ) (for quadratic astigmatism),

Z3(h, θ)Z5(ρ, φ) + Z2(h, θ)Z6(ρ, φ) (for linear astigmatism), Z2(h, θ)Z5(ρ, φ) −
Z3(h, θ)Z6(ρ, φ) (for linear astigmatism), Z1(h, θ)Z5(ρ, φ) (for constant astigma-

tism), and Z1(h, θ)Z6(ρ, φ) (for constant astigmatism) are the orthogonal functions

S(ρ, φ, h, θ) for third-order astigmatism in a misaligned system. The remaining

functions are derived in Appendix J and summarized in Section 6.5.

6.5 SUMMARY OF ORTHOGONAL FIELD-DEPENDENT ABERRATIONS

The final results, compiled in Tables 6.1–6.7, list the functions describing combina-

tions of Zernike polynomials in pupil and field space that are possible in misaligned

systems. Each aberration (in pupil space) is given its own table. The functions in

Tables 6.1–6.7 are ordered according to increased field dependence. Deciding how to

order these polynomials is not a trivial task. As was seen in Appendix F, there are

many different ways to order Zernike polynomials, which are polynomials of only

two indices; it is that much more unnatural to order polynomials with four index

terms.

The aberrations that come in pairs in pupil space (coma, astigmatism, trefoil,

etc.) are combined into one table for each pair. In addition, these functions are

combined with the Zernike polynomials in field space that come in pairs. The
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rotationally symmetric aberrations that do not come in pairs, such as piston (i = 1),

focus/field curvature (i = 4), and spherical aberration (i = 11), contain just one

term for the orthogonal function, as shown in Tables 6.1 and 6.5 and in the rows

containing Z1(h, θ) or Z4(h, θ) in the other tables.

Table 6.1: Polynomials orthogonal over field and pupil space for focus terms Z4(ρ, φ).

Function Tessieres Thompson

Z1(h, θ)Z4(ρ, φ) γ0, γ3, ψ0, ψ3 W220M
, B220M

, W420M
, B420M

,
(cont.) ψ8, δ0, ν0 D420M

, W240M
, W040

Z2(h, θ)Z4(ρ, φ) γ1, ψ1, ψ6, δ2 �A220M
, �A420M

, �C420M
, �A240M

Z3(h, θ)Z4(ρ, φ) γ2, ψ2, ψ7, δ1 �A220M
, �A420M

, �C420M
, �A240M

Z4(h, θ)Z4(ρ, φ) γ0, ψ0, ψ3, δ0 W220M
, W420M

, B420M
, W240M

Z5(h, θ)Z4(ρ, φ) ψ4
�B420M

Z6(h, θ)Z4(ρ, φ) ψ5
�B420M

Z7(h, θ)Z4(ρ, φ) ψ2
�A420M

Z8(h, θ)Z4(ρ, φ) ψ1
�A420M

Z11(h, θ)Z4(ρ, φ) ψ0 W420M
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Table 6.2: Polynomials orthogonal over field and pupil space for astigmatism terms
Z5(ρ, φ) and Z6(ρ, φ).

Function Tessieres Thompson

Z1(h, θ)Z5(ρ, φ) α3, χ3, χ10, η4
�B222, �B422, �D422, �B242

Z1(h, θ)Z6(ρ, φ) α4, χ4, χ11, η3
�B222, �B422, �D422, �B242

Z2(h, θ)Z5(ρ, φ) + Z3(h, θ)Z6(ρ, φ) χ7
�C422

Z2(h, θ)Z5(ρ, φ) − Z3(h, θ)Z6(ρ, φ) α2, χ2, χ9, η1
�A222, �A422, �C422, �A242

Z3(h, θ)Z5(ρ, φ) + Z2(h, θ)Z6(ρ, φ) α1, χ1, χ8, η2
�A222, �A422, �C422, �A242

Z3(h, θ)Z5(ρ, φ) − Z2(h, θ)Z6(ρ, φ) χ6
�C422

Z4(h, θ)Z5(ρ, φ) χ3
�B422

Z4(h, θ)Z6(ρ, φ) χ4
�B422

Z5(h, θ)Z5(ρ, φ) + Z6(h, θ)Z6(ρ, φ) α0, χ0, χ5, η0 W222, W422 B422, W242

Z7(h, θ)Z5(ρ, φ) + Z8(h, θ)Z6(ρ, φ) χ1
�A422

Z8(h, θ)Z5(ρ, φ) − Z7(h, θ)Z6(ρ, φ) χ2
�A422

Z9(h, θ)Z5(ρ, φ) + Z10(h, θ)Z6(ρ, φ) χ1
�A422

Z10(h, θ)Z5(ρ, φ) − Z9(h, θ)Z6(ρ, φ) χ2
�A422

Z13(h, θ)Z5(ρ, φ) + Z12(h, θ)Z6(ρ, φ) χ0 W422
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Table 6.3: Polynomials orthogonal over field and pupil space for coma terms Z7(ρ, φ)
and Z8(ρ, φ).

Function Tessieres Thompson

Z1(h, θ)Z7(ρ, φ) β1, ξ1, ξ4, ξ9, κ2
�A131, �A331M

, �C331M
, �A151

Z1(h, θ)Z8(ρ, φ) β2, ξ2, ξ5, ξ10, κ1
�A131, �A331M

, �C331M
, �A151

Z2(h, θ)Z7(ρ, φ) + Z3(h, θ)Z8(ρ, φ) ξ6 �B331M

Z3(h, θ)Z7(ρ, φ) + Z2(h, θ)Z8(ρ, φ) β0, ξ0, ξ3, κ0 W131,W331M
,B331M

,W151

Z3(h, θ)Z7(ρ, φ) − Z2(h, θ)Z8(ρ, φ) ξ7 �B331M

Z4(h, θ)Z7(ρ, φ) ξ1, ξ4 �A331M

Z4(h, θ)Z8(ρ, φ) ξ2, ξ5 �A331M

Z5(h, θ)Z7(ρ, φ) + Z6(h, θ)Z8(ρ, φ) ξ2 �A331M

Z6(h, θ)Z7(ρ, φ) − Z5(h, θ)Z8(ρ, φ) ξ1 �A331M

Z7(h, θ)Z7(ρ, φ) + Z8(h, θ)Z8(ρ, φ) ξ0 W331M

Table 6.4: Polynomials orthogonal over field and pupil space for trefoil terms Z9(ρ, φ)
and Z10(ρ, φ).

Function Tessieres Thompson

Z1(h, θ)Z9(ρ, φ) μ5
�C333

Z1(h, θ)Z10(ρ, φ) μ6
�C333

Z2(h, θ)Z9(ρ, φ) − Z3(h, θ)Z10(ρ, φ) μ4
�B333

Z3(h, θ)Z9(ρ, φ) + Z2(h, θ)Z10(ρ, φ) μ3
�B333

Z5(h, θ)Z9(ρ, φ) + Z6(h, θ)Z10(ρ, φ) μ2
�A333

Z6(h, θ)Z9(ρ, φ) − Z5(h, θ)Z10(ρ, φ) μ1
�A333

Z9(h, θ)Z9(ρ, φ) + Z10(h, θ)Z10(ρ, φ) μ0 W333
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Table 6.5: Polynomials orthogonal over field and pupil space for spherical aberration
terms Z11(ρ, φ).

Function Tessieres Thompson

Z1(h, θ)Z11(ρ, φ) ν0, δ0, δ3 W040, W240M
, B240M

Z2(h, θ)Z11(ρ, φ) δ2 �A240M

Z3(h, θ)Z11(ρ, φ) δ1 �A240M

Z4(h, θ)Z11(ρ, φ) ν0, δ0 W040, W240M

Table 6.6: Polynomials orthogonal over field and pupil space for oblique spherical
terms Z12(ρ, φ) and Z13(ρ, φ).

Function Tessieres Thompson

Z1(h, θ)Z12(ρ, φ) η3
�B242

Z1(h, θ)Z13(ρ, φ) η4
�B242

Z2(h, θ)Z12(ρ, φ) + Z3(h, θ)Z13(ρ, φ) η2
�A242

Z3(h, θ)Z12(ρ, φ) − Z2(h, θ)Z13(ρ, φ) η1
�A242

Z6(h, θ)Z12(ρ, φ) + Z5(h, θ)Z13(ρ, φ) η0 W242

Table 6.7: Polynomials orthogonal over field and pupil space for secondary coma
terms Z16(ρ, φ) and Z17(ρ, φ).

Function Tessieres Thompson

Z1(h, θ)Z16(ρ, φ) κ1
�A151

Z1(h, θ)Z17(ρ, φ) κ2
�A151

Z2(h, θ)Z16(ρ, φ) + Z3(h, θ)Z17(ρ, φ) κ0 W151
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The previous tables only included the terms for the third and fifth order aberra-

tions. If higher order aberrations are included, the list of functions becomes longer.

Double Zernike polynomial expansions in field and pupil space have previously

been proposed in the literature. These publications did not propose grouping the

double Zernike terms together when they have the same coefficients as done here, so

these publications require more coefficients and more functions overall to describe

the same wavefront aberrations. In addition, the papers did not contain such a

thorough analysis of the aberrations possible in a misaligned system and their de-

pendences on the amount of the misalignment. When the optical systems under

consideration do not contain too many degrees of freedom, fewer functions, as listed

in the papers, are sufficient. These papers are reviewed in Appendix L.

6.6 COMPLETING THE BASIS

One complete basis of orthogonal functions could be one that has each of the Zernike

polynomials in field space multiplied by each of the polynomials in pupil space.

However, the functions listed in Section 6.5 are expressed in pairs of terms that are

combinations of the terms sharing the same radial dependence. This was done in

order to match the low order aberrations generated by misalignment. This allows

fewer coefficients to describe a misaligned system.

In general, if the field dependence is described by the Zernike polynomials

Zk(h, θ) and Zl(h, θ) which have the same radial dependence, but different azimuthal

dependence (varying by a dependence on either sine or cosine) and if the pupil de-

pendence is described by the Zernike polynomials Zi(ρ, φ) and Zj(ρ, φ) which have
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the same radial dependence, but different azimuthal dependence, then there are

four possible combinations to describe the resulting double Zernike pairs. These are

Zk(h, θ)Zi(ρ, φ), Zk(h, θ)Zj(ρ, φ), Zl(h, θ)Zi(ρ, φ) and Zl(h, θ)Zj(ρ, φ). In a system

misaligned in one direction, only two of these functions occur and they each have

the same coefficient. Instead of having two functions where the coefficients have

the same value, and two functions with coefficients of zero, there can be one func-

tion with a nonzero coefficient and three functions with coefficients of zero. These

functions are:

Zk(h, θ)Zi(ρ, φ) + Zl(h, θ)Zj(ρ, φ),

Zk(h, θ)Zi(ρ, φ) − Zl(h, θ)Zj(ρ, φ),

Zl(h, θ)Zi(ρ, φ) + Zk(h, θ)Zj(ρ, φ), and

Zl(h, θ)Zi(ρ, φ) − Zk(h, θ)Zj(ρ, φ),

where (i and j) and (k and l) are pairs of Zernike polynomials that only differ by

their sine or cosine dependence. (The orthogonality of these functions is shown in

Appendix M.)

All four functions are needed to form a mathematically complete basis. The func-

tions, as they were listed in Tables 6.1–6.7, are not complete. For example, secondary

astigmatism which depends quadratically in field in a rotationally symmetric system

(from W242) is described by the function Z6(h, θ)Z12(ρ, φ)+Z5(h, θ)Z13(ρ, φ), but in

order to complete the basis of terms with this combination of field and pupil depen-

dence, Z6(h, θ)Z12(ρ, φ)−Z5(h, θ)Z13(ρ, φ), Z5(h, θ)Z12(ρ, φ)+Z6(h, θ)Z13(ρ, φ) and
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Z5(h, θ)Z12(ρ, φ)−Z6(h, θ)Z13(ρ, φ) are needed also. (In reality, it is not possible to

write in a list all of the functions to complete the basis because there are infinitely

many of them when increasingly higher orders of field and pupil dependence are

considered.)

The functions to complete the basis that are not listed in Section 6.5 may still

be possible due to misalignments. However, the terms not listed are expected to be

very small. By considering increasingly higher orders of field dependencies (more

�H · �H terms so the first subscript of the aberration increases by two: W222, W422,

W622 etc. for the case of astigmatism), it is possible to create any of the functions

throughout the field in the entire basis for any given aberration.

6.7 ORTHOGONAL ABERRATIONS INDUCED BY SHAPE ERRORS

It is not uncommon for a mirror in a telescope to have the wrong surface shape.

Figure errors may be left in the optical surface after the fabrication process is com-

pleted. Or because large mirrors are often relatively thin (for weight or thermal

reasons), they may be able to bend easily. The low order bending modes of a mirror

resemble Zernike polynomials. For example, a mirror can easily bend in astigmatism

or trefoil, especially if there are three mounts supporting the mirror. These surface

shape errors usually increase as the size of the mirror increases because it is harder

to make and support these large mirrors, which are usually made as thin as possible

to reduce the overall weight and amount of glass necessary.

The largest mirror in a telescope is the primary mirror, which is also usually

the entrance pupil of the optical system. This means that the shape error on the
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primary mirror affects all of the field angles equally. For example, if there is an

astigmatism shape error on the primary, there will be constant astigmatism mea-

sured throughout the field and if there is a coma shape error on the primary, there

will be constant coma measured throughout the field. (Since constant coma is eas-

ily induced by mirror misalignments, this shape error can be accommodated by

intentionally misaligning another mirror in the system, as mentioned previously in

Chapter 4.)

The next generation of telescopes has increasingly larger secondary or tertiary

mirrors. Thus, the bending errors for mirrors not at a pupil in the optical system

will become more important. The effect that shape errors on these mirrors have on

the aberrations in the optical system needs to be understood as well. Since these

mirrors are not at a pupil, finding the effect is not as straightforward as primary

mirror bending errors. The aberrations observed are different from the shape error

itself because the footprint of the beam for an off-axis field point only covers part

of the secondary or tertiary mirror. This is exactly the same consideration as in

Chapter 4 for the case of an off-axis telescope viewed as part of a symmetric parent

telescope. The aberration that exists in the parent telescope always turns into

aberrations that are lower order, as shown in Table 4.5. However, in the case of a

bending error on mirrors not at the stop, the footprint of the beam moves around the

surface, depending on the field angle, and a simple table with conversion constants

(like Table 4.5) can not be written. The scaling factors for the lower order Zernike

polynomials terms induced by bending errors include dependence on the field angle

(Hx and Hy). These dependencies were derived by Tessieres (2004) in a report,
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Figure 6.1: Schematic representation for an off-axis beam. The large circle represents
a mirror away from the stop of the system. The small circle in gray represents an
off-axis beam. Figure courtesy of Tessieres (2004).

where he explains the process in detail. Basically, the Zernike polynomials were

written in a vector form Z(�r, ı̂, ĵ) and the equation �r = a �ρ+ c �H, which represents

the location of a ray hitting a mirror away from the pupil, was substituted for �r.

The functions were expanded with the new terms and terms containing each Zernike

polynomial were combined together. The coefficient a represents the the ratio of the

diameter of the beam footprint on the mirror to the diameter of the mirror while

the coefficient c represents the ratio of displacement on the mirror to displacement

in the field. The coefficients a and c are constants for each mirror within an optical

system and can be calculated by tracing the chief and marginal rays (Tessieres,

2004). For a mirror at an entrance pupil (e.g. a primary mirror) in a telescope,

a = 1 and c = 0. For the other mirrors, 0 < a < 1 and 0 < c < 1. This schematic

representation for an off-axis beam is shown in Figure 6.1.
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Tessieres (2004) lists the Zernike polynomials in vector form and the results for

the effect of those bending errors for the first 37 terms. For convenience, the first

11 are repeated in Appendix N. By expressing the field dependence as Zernike

polynomials in field space, the orthogonal double Zernike polynomials to describe

the aberrations can be written. These are shown for the first 11 bending modes in

Table 6.8. The effects of the shape errors on Z2 and Z3 were included by Tessieres,

but they are not reproduced here because they correspond to distortion, or mapping

errors, which are not easily measured by a wavefront sensor. However, bending

errors do indeed create distortion. This is expected because the distortion terms (Z2

and Z3) are very low Zernike polynomials and shape errors for high order Zernike

polynomials (for mirrors not at a pupil) produce lower order errors at the exit

pupil. The table includes a factor of two due to the wavefront error doubling upon

reflection.

Table 6.8 shows that the effect of a shape error of a mirror surface in an optical

surface is described well by the double Zernike functions. Each Zernike polynomial

shape error transforms into lower order observed Zernike polynomial aberrations

that are described cleanly by a numerical constant and the values a and c, which

are intrinsic to the mirror in the optical system. Since the basis of double Zernike

functions is complete, it can describe any aberration resulting from any cause. How-

ever, these functions are very convenient because they match the effect of the shape

error very well. (In other words, it does not take 10 or 100 functions or more to

describe the result.)

Some interesting observations can be made from Table 6.8. The first observation
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Table 6.8: Orthogonal polynomials induced by mirror bending. The coefficients a
and c describe the size and position of the beam on a mirror away from the stop.

Bending mode Orthogonal functions Compensated
by alignment?

Z4 2 a2 Z1(h, θ)Z4(ρ, φ) ✓ (Axial)

Z5 2 a2 Z1(h, θ)Z5(ρ, φ)

Z6 2 a2 Z1(h, θ)Z6(ρ, φ)

Z7 2 a3 Z1(h, θ)Z7(ρ, φ) ✓ (Tilt/decenter)

2
√

3 a2 c [Z2(h, θ)Z5(ρ, φ) − Z3(h, θ)Z6(ρ, φ)]

2
√

6 a2 c Z3(h, θ)Z4(ρ, φ)

Z8 2 a3 Z1(h, θ)Z8(ρ, φ) ✓ (Tilt/decenter)

2
√

3 a2 c [Z3(h, θ)Z5(ρ, φ) + Z2(h, θ)Z6(ρ, φ)]

2
√

6 a2 c Z2(h, θ)Z4(ρ, φ)

Z9 2 a3 Z1(h, θ)Z9(ρ, φ)

2
√

3 a2 c [Z2(h, θ)Z5(ρ, φ) + Z3(h, θ)Z6(ρ, φ)]

Z10 2 a3 Z1(h, θ)Z10(ρ, φ)

2
√

3 a2 c [Z3(h, θ)Z5(ρ, φ) − Z2(h, θ)Z6(ρ, φ)]

Z11 2 a4 Z1(h, θ)Z11(ρ, φ) ✓ (Axial)

2
√

10 a3 c [Z3(h, θ)Z7(ρ, φ) + Z2(h, θ)Z8(ρ, φ)]

4
√

5 a2 c2 [Z5(h, θ)Z5(ρ, φ) + Z6(h, θ)Z6(ρ, φ)]

4
√

5 a2 c2 Z4(h, θ)Z4(ρ, φ)

2
√

5 a2 [
√

3(a2 − 1) + 2 c2]Z1(h, θ)Z4(ρ, φ)
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is one that should be expected: For the case of a mirror at the pupil (a = 1 and

c = 0), the only effect of the shape error is the same aberration constant throughout

the field (dependence on Z1(h, θ)). The second observation is that a shape error

always results in focus (Z4(ρ, φ)) and/or astigmatism (Z5(ρ, φ) and Z6(ρ, φ)) errors.

For a coma shape error (Z7 or Z8) on a mirror not at a pupil, the result is

constant coma, linear astigmatism and focal plane tilt. The linear astigmatism has

the same functional form (Z2(h, θ)Z5(ρ, φ) − Z3(h, θ)Z6(ρ, φ) or Z3(h, θ)Z5(ρ, φ) +

Z2(h, θ)Z6(ρ, φ)) as the linear astigmatism which can be induced by and depends

linearly on the misalignment of an element in the optical system. (See the lines with

�A222 in Table 6.2.) In addition, constant coma and focal plane tilt also are field-

dependent aberrations that match what is expected in a misaligned system (i.e.

depend linearly on the misalignment according to �A131M
or �A220M

, respectively).

Thus, a small coma shape error on a mirror really can be compensated by intentional

misalignment. (Large shape errors would require large misalignments to compensate.

If the misalignment required to compensate is too large, then the other aberrations

that are induced and grow by the cube of the misalignment may become large as

well.)

For a trefoil shape error (Z9 or Z10) on a mirror not at a pupil, the result is

constant trefoil and linear astigmatism. According to the field center theory, it is

possible to induce constant trefoil by misalignment, but it depends on the vector

�C333 (as seen in Table 6.4, which depends on the cube of misalignment). This means

only very minute amounts of constant trefoil can be induced by misalignment, while

other aberrations come in much more quickly. If constant trefoil is observed in a
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Figure 6.2: Astigmatism line images throughout the field when there is trefoil shape
error on a mirror not at the stop. (This particular image, courtesy of Tessieres
(2004) shows the effect for trefoil on the tertiary mirror in a 3-mirror telescope.)

system, then it is a pretty safe assumption that some mirror has a trefoil shape

error. The linear astigmatism caused by a trefoil shape error (Z2(h, θ)Z5(ρ, φ) +

Z3(h, θ)Z6(ρ, φ) or Z3(h, θ)Z5(ρ, φ)−Z2(h, θ)Z6(ρ, φ)) has the same functional form

as the linear astigmatism that can only be caused by the vector �C422. Since this is a

�C vector, it has a very small dependence on the misalignment. The form of the linear

astigmatism induced by a trefoil shape error on a mirror has a different characteristic

shape than the linear astigmatism caused by misalignment (e.g. Figure 4.5) when

plotted as line images throughout the field, as shown in Figure 6.2.

For a spherical aberration shape error on a mirror in the optical system, the result

is constant spherical aberration, linear coma, quadratic astigmatism and quadratic

focus. The linear coma and the quadratic astigmatism have exactly the same form

as those aberrations that exist in rotationally symmetric optical system. (These

aberrations depend on the terms W040, W131, W222 and W220M
in Tables 6.1–6.5.)
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6.7.1 COMPENSATION OF SHAPE ERRORS ON ONE MIRROR BY SHAPE

ERRORS ON OTHER MIRRORS

If there is astigmatism (Z5 or Z6) shape error on one of the mirror surfaces in the

optical system, then constant astigmatism is the one and only aberration produced

by that shape error. Thus, if the right amount of astigmatism shape error on another

mirror in the system is induced (i.e. by the actuators supporting the mirror), the

error can be completely compensated.

If there is a coma shape error (Z7 or Z8) on a mirror, then constant coma,

linear astigmatism and focal plane tilt are produced in the system. If the con-

stant coma from one mirror’s shape error is corrected by inducing a coma shape

error on one of the other mirrors or by misalignment, then the overall constant

coma in the system will be corrected. However, the linear astigmatism and focal

plane tilt induced by these shape errors will not automatically cancel. The form

of the linear astigmatism induced by coma (Z2(h, θ)Z5(ρ, φ) − Z3(h, θ)Z6(ρ, φ) and

Z3(h, θ)Z5(ρ, φ)+Z2(h, θ)Z6(ρ, φ)) is the same as that which is induced by misalign-

ment. Therefore, the linear astigmatism can be corrected by rotating a mirror about

its coma-free point, and the linear focus error (focal plane tilt) can be corrected by

tilting the focal plane.

If there is a trefoil shape error on one mirror, then there is constant trefoil in the

system (as measured in the exit pupil). This constant trefoil can be corrected by

inducing trefoil on one of the other mirrors. Each trefoil shape error also contributes

some amount of linear astigmatism. However, the form of the linear astigmatism

induced (Z2(h, θ)Z5(ρ, φ) +Z3(h, θ)Z6(ρ, φ) and Z3(h, θ)Z5(ρ, φ)−Z2(h, θ)Z6(ρ, φ))
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is not possible to produce from misalignments. This error will remain uncorrected

in the system once the trefoil is corrected. (It is still helpful to correct the constant

trefoil, even if linear astigmatism is remaining because any constant aberration is

detrimental for all field angles, while linear aberrations are small throughout the

center of the field and are larger only towards the edge of the field.)

6.8 SUMMARY OF FIELD DEPENDENT ABERRATIONS THAT DEPEND

LINEARLY ON MISALIGNMENT

This section includes a summary of the orthogonal field dependent aberrations that

are induced by and depend linearly on the misalignment. These are the terms that

depend on the �A vectors for each of the aberrations ( �A220M
, �A222, �A131 etc.). Ta-

ble 6.9 was hinted at near the end of Chapter 3. In Chapter 3, the particular field

dependencies were not given, as they are in this table. (For example, in Chapter 3,

there was no discussion of whether the quadratic coma that is expected in a mis-

aligned system is radially symmetric or not. These are the functions that are useful

to fit to the data while performing system alignment.
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Table 6.9: Orthogonal field dependent aberrations that depend linearly on the mis-
alignment. The aberrations with check marks in the column labeled “New?” have
not been discussed in prior work.

Function Description New?

Z2(h, θ)Z4(ρ, φ) Focal plane tilt
Z3(h, θ)Z4(ρ, φ) Focal plane tilt
Z7(h, θ)Z4(ρ, φ) Cubic focus ✓

Z8(h, θ)Z4(ρ, φ) Cubic focus ✓

Z2(h, θ)Z5(ρ, φ) − Z3(h, θ)Z6(ρ, φ) Linear astigmatism
Z3(h, θ)Z5(ρ, φ) + Z2(h, θ)Z6(ρ, φ) Linear astigmatism
Z7(h, θ)Z5(ρ, φ) + Z8(h, θ)Z6(ρ, φ) Cubic astigmatism ✓

Z8(h, θ)Z5(ρ, φ) − Z7(h, θ)Z6(ρ, φ) Cubic astigmatism ✓

Z9(h, θ)Z5(ρ, φ) + Z10(h, θ)Z6(ρ, φ) Cubic astigmatism ✓

Z10(h, θ)Z5(ρ, φ) − Z9(h, θ)Z6(ρ, φ) Cubic astigmatism ✓

Z1(h, θ)Z7(ρ, φ) Constant coma
Z1(h, θ)Z8(ρ, φ) Constant coma
Z4(h, θ)Z7(ρ, φ) Quadratic coma ✓

Z4(h, θ)Z8(ρ, φ) Quadratic coma ✓

Z5(h, θ)Z7(ρ, φ) + Z6(h, θ)Z8(ρ, φ) Quadratic coma ✓

Z6(h, θ)Z7(ρ, φ) − Z5(h, θ)Z8(ρ, φ) Quadratic coma ✓

Z5(h, θ)Z9(ρ, φ) + Z6(h, θ)Z10(ρ, φ) Quadratic trefoil ✓

Z6(h, θ)Z9(ρ, φ) − Z5(h, θ)Z10(ρ, φ) Quadratic trefoil ✓

Z2(h, θ)Z11(ρ, φ) Linear spherical aberration ✓

Z3(h, θ)Z11(ρ, φ) Linear spherical aberration ✓

Z2(h, θ)Z12(ρ, φ) + Z3(h, θ)Z13(ρ, φ) Linear oblique spherical aberration ✓

Z3(h, θ)Z12(ρ, φ) − Z2(h, θ)Z13(ρ, φ) Linear oblique spherical aberration ✓

Z1(h, θ)Z16(ρ, φ) Constant secondary coma ✓

Z1(h, θ)Z17(ρ, φ) Constant secondary coma ✓
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6.9 NUMERICAL SIMULATIONS OF MISALIGNED SYSTEMS

In this section, some orthogonal field-dependent coefficients are listed for the Hubble

Space Telescope with a misaligned secondary mirror. In this example, the secondary

mirror is misaligned in the �x-direction by both 0.1 mm and 1 mm for comparison,

in order to show linearity. Coefficients will be listed for terms that exist for the

rotationally symmetric system and for terms that vary linearly with the misalign-

ment. In Tables 6.1–6.7, there are 11 terms that occur in a rotationally symmetric

system and these 11 coefficients are shown in Table 6.10. In Table 6.9, there are 24

terms that vary linearly in misalignment. However, for misalignments in only one

direction, half of the terms will be zero. Thus, only 12 terms that depend linearly

on the mirror misalignment are listed in Table 6.10 to conserve space.

The terms for constant focus, quadratic focus, quartic focus, quadratic astigma-

tism, linear coma, cubic coma, and constant spherical aberration are expected in

a rotationally symmetric system. These terms can be found to be approximately

the same across all of the columns. As the misalignment grows, these terms may

change from their nominal value because these terms also have contributions that

depend on the cube of the misalignment. One can see, by comparing the columns

for 0.1 mm and 1 mm, that the values for 1 mm have a larger departure from the

nominal value than the 0.1 mm terms. This is to be expected and not simply nu-

merical errors in the calculation of the coefficients. The terms that are zero for the

nominal system were those chosen to be included in the table because they depend

linearly on the misalignment. These terms include focal plane tilt (linear focus),

cubic focus, linear astigmatism, cubic astigmatism, constant coma, quadratic coma,
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and linear spherical aberration. The values for these terms may be observed to

change by a factor of ten from the 0.1 mm column to the 1 mm column. Whenever

a function depends linearly on the misalignment, it also depends on the cube of the

misalignment. For small misalignments, the nonlinearity is small, but it becomes

larger for larger misalignments as expected. This nonlinearity explains why some

of the terms do not differ by exactly a factor of ten. If the two misalignments had

been chosen to be 1 mm and 10 mm, there would be even more variation between

the columns.
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Table 6.10: Orthogonal field dependent aberration coefficients for the Hubble Tele-
scope with misaligned secondary mirror in the �x-direction. The coefficient units are
waves of 587.6 nm.

Function Nominal �x decenter �x decenter
0.1 mm 1 mm

Z1(h, θ)Z4(ρ, φ) −0.04381 −0.04378 −0.04157
Z2(h, θ)Z4(ρ, φ) 0 −0.001274 −0.01271
Z4(h, θ)Z4(ρ, φ) −0.04668 −0.04668 −0.04684
Z8(h, θ)Z4(ρ, φ) 0 0.0001717 0.001722
Z10(h, θ)Z4(ρ, φ) 0 0.0001121 0.001118
Z11(h, θ)Z4(ρ, φ) −0.03020 −0.03020 −0.03000

Z3(h, θ)Z5(ρ, φ) + Z2(h, θ)Z6(ρ, φ) 0 −0.002245 −0.02245
Z5(h, θ)Z5(ρ, φ) + Z6(h, θ)Z6(ρ, φ) 0.5481 0.5481 0.5481
Z7(h, θ)Z5(ρ, φ) + Z8(h, θ)Z6(ρ, φ) 0 −0.0002945 −0.002945
Z9(h, θ)Z5(ρ, φ) + Z10(h, θ)Z6(ρ, φ) 0 −0.0002727 −0.002727
Z13(h, θ)Z5(ρ, φ) + Z12(h, θ)Z6(ρ, φ) 0.1131 0.1131 0.1131

Z1(h, θ)Z8(ρ, φ) 0 −0.05080 −0.5080
Z3(h, θ)Z7(ρ, φ) + Z2(h, θ)Z8(ρ, φ) −0.008121 −0.008121 −0.008160
Z4(h, θ)Z8(ρ, φ) 0 −0.003402 −0.03402
Z5(h, θ)Z7(ρ, φ) + Z6(h, θ)Z8(ρ, φ) 0 3.946 × 10−5 3.945 × 10−4

Z7(h, θ)Z7(ρ, φ) + Z8(h, θ)Z8(ρ, φ) −0.004264 −0.004265 −0.004271

Z1(h, θ)Z11(ρ, φ) −0.0005678 −0.0005679 −0.0005801
Z2(h, θ)Z11(ρ, φ) 0 8.795 × 10−6 8.736 × 10−5

Z4(h, θ)Z11(ρ, φ) −0.0003897 −0.0003897 −0.0003897

Z2(h, θ)Z12(ρ, φ) + Z3(h, θ)Z13(ρ, φ) 0 2.064 × 10−6 1.988 × 10−5

Z6(h, θ)Z12(ρ, φ) + Z5(h, θ)Z13(ρ, φ) −0.0002035 −0.0002032 −0.0002033

Z1(h, θ)Z16(ρ, φ) 0 0.0001468 0.001467
Z2(h, θ)Z16(ρ, φ) + Z3(h, θ)Z17(ρ, φ) −0.004073 −0.004073 −0.004082
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The aberration coefficients can be recorded for a range of values for the secondary

mirror misalignment. Then the coefficients can be sorted according to whether they

are expected to be constant, linear or quadratic with the value of the misalignment.

The measured coefficients are plotted for the orthogonal double Zernike polynomial

functions in Figures 6.3–6.5. Plots are included with both regular (linear) axes and

either semi-log or log-log axes.

Figure 6.3 shows the aberration coefficients for a range of misalignments that

depend on W in Tables 6.1–6.7. These coefficients are constant for a range of

misalignments, however when the misalignment is large enough, the higher order

effect (from the �B terms) becomes visible. These lines correspond to terms that

have nonzero values in Table 6.10. The highest two lines, constant at 0.55 and

at 0.11, correspond to the quadratic astigmatism (W222) and quartic astigmatism

(W422) terms. The coefficients shown are the same on the linear and semi-log plots.

Figure 6.4 shows the aberration coefficients for a range of misalignments that

depend on the �A vectors in Tables 6.1–6.7. These coefficients depend linearly on

the misalignment. This can be seen by the linear plots on the left. The right side

of Figure 6.4 shows the absolute value of the coefficients in a log-log plot. (The

absolute value is taken because it is impossible to find the logarithm of negative

values.) All of the curves have a slope of one on the log-log plot. The curve that is

separate from the rest (purple line passing through (1, -0.5) in the linear graph on

the left) corresponds to constant coma Z1(h, θ)Z8(ρ, φ) which depends on �A131.

Figure 6.5 shows the aberration coefficients for a range of misalignments that

depend on the �B vectors in Tables 6.1–6.7 without any W terms. These coefficients
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Figure 6.3: The orthogonal field-dependent aberration coefficients that exist in a
rotationally symmetric system (due to W terms) for the HST with a secondary
mirror misalignment. These coefficients have primarily a constant dependence on
the value of the perturbation. As the perturbation becomes large, the nonlinearity
is viewable for some of the terms.
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Figure 6.4: The orthogonal field-dependent aberration coefficients that depend lin-
early on the misalignment (due to �A terms), shown for the HST with a secondary
mirror misalignment. These coefficients have primarily a linear dependence on the
perturbation. As the perturbation becomes large, the nonlinearity is viewable for
some of the terms.
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Figure 6.5: The orthogonal field-dependent aberration coefficients that depend
quadratically on the misalignment (due to �B terms), shown for the HST with a
secondary mirror misalignment. These coefficients have primarily a quadratic de-
pendence on the perturbation. As the perturbation becomes large, the nonlinearity
is viewable for some of the terms.

depend quadratically on the misalignment. All curves have a slope of two in the

log-log plot. The curve with the largest values corresponds to constant astigmatism

Z1(h, θ)Z6(ρ, φ) which depends on �B222.

6.10 FINAL COMMENTS ON CHOICE OF BASIS FUNCTIONS

The pupil terms for the functions proposed in Chapter 6 could be annular Zernike

polynomials for the case of many of the reflective telescopes presented here. How-

ever, since vignetting changes the shape of the pupil for large field angles, annular

Zernike polynomials do not exactly describe the pupil shape either. Regular circu-

lar Zernike polynomials will work fine in many cases when the obscuration is small.

In addition, when Zernike polynomials are sampled numerically, they are not com-

pletely orthogonal anyway (see Mahajan’s chapter in Malacara (2007)). Also, many

telescope systems use rectangular detectors, so circular Zernike polynomials are not
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orthogonal over the field. Legendre polynomials are a better choice for a rectangular

field.
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CHAPTER 7

LINEAR ANALYSIS OF SYSTEMS WITH MULTIPLE DEGREES OF

FREEDOM

An optical system can be aligned by measuring wavefront data to infer the current

misalignment state of the system. To solve this inverse problem, a least-squares fit of

the misalignment to the measured data determines the misalignment. This type of

numerical method may be used to align optical systems. If the sensitivity matrix is

ill-conditioned, then small errors in the measured data can result in a poor solution

of the alignment state of the system. A singular value decomposition (SVD) of the

sensitivity matrix can be used to condition the matrix to get better results. This

method is described mathematically in Section 7.1.

A singular value decomposition (SVD) of the sensitivity matrix gives an orthog-

onal set of aberration modes and the corresponding orthogonal combinations of

misalignments that cause them. This information can be used to align the optical

system. An SVD method was successfully used to align a complex microlitho-

graphic system (Chapman & Sweeney, 1998). The Large Synoptic Survey Telescope

(LSST) and the James Webb Space Telescope (JWST) plan to use an SVD align-

ment approach. Not just large budget projects can use SVD for alignment: Code V

implemented a SVD alignment solution in the code for anyone to use. A numeric

solution using SVD will always work, if done correctly. However, this method may

be difficult to use if one does not understand how noise couples into the system. It
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is important to use the SVD to gain physical insight into the system. This helps

achieve an understanding on the important degrees of freedom in the system. This

physical insight is introduced in Section 7.2, using two different example systems.

The first example in Section 7.2.1 uses a simple mechanical rod and spring system

to illustrate the meaning of each of the three matrices resulting from the SVD. The

second example, in Section 7.2.2, uses a Gregorian telescope to discuss the SVD

of a sensitivity matrix in an optical alignment problem. This example serves to

bridge the gap between the very simple mechanical rod and spring example and the

discussion of a complex alignment problem, the alignment of the four-mirror wide

field corrector of the Hobby-Eberly Telescope, discussed in Chapter 8.

7.1 INTRODUCTION TO USING SINGULAR VALUE DECOMPOSITIONS IN

LINEAR SYSTEMS ANALYSIS

A system of linear equations can be written as

Ax = b, (7.1)

where A has m rows and n columns (m×n matrix), x is an n×1 vector, and b is an

m× 1 vector. If A and b are known, x may be found using the following equation:

x = A−1b. (7.2)

If the matrix A has more rows than columns, then the system of linear equations

is over-determined. (i.e. A (m × n matrix), where m > n.) When the system
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is over-determined, a least-squares solution may be found for x. The least-squares

solution is the solution for x that yields the smallest residual error. If the residual

vector r for some x is

r = b− Ax, (7.3)

then the vector x̂, which is an approximation to x and gives the smallest possible

residual, is the least-squares solution:

||r|| = ||b− Ax̂|| ≤ ||b− Ax|| for all x, (7.4)

where ||r|| indicates the norm (or length) of the vector r. A least-squares solution for

an over-constrained system always exists (i.e. some value of ||r|| has to be smallest),

however there may be multiple solutions for x̂ with the same residual. (Thus, x̂ is

not unique.) However, out of all of these different possible solutions x̂, one of them

will have the smallest norm ||x̂||. This solution is unique and is found by multiplying

each side of Equation 7.1 by the transpose of A and then solving for x̂:

AT Ax̂ = AT b, (7.5)

(
AT A

)−1 (
AT A

)
x̂ =

(
AT A

)−1
AT b, (7.6)

x̂ = A+b, (7.7)

where A+ is the pseudoinverse of A. A matrix A is ill-conditioned, if small changes

in b lead to relatively large changes in the solution x̂. Ill-conditioned matrices are

those that have zero or extremely small singular values, which will be explained in
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more detail later in this section. SVD is a technique that can be used to find useful

solutions for x when either the A or the AT A matrix is ill-conditioned.

In Chapter 4, Equation 7.1 was expressed as Z = MA where Z is a vector of

Zernike coefficients (used in place of b) that are caused by a vector A describing the

alignment state of the system (used in place of x). The sensitivity of the resulting

Zernike coefficients to the system alignment is described by the matrix M . This

notation will be used for the rest of the chapter.

Any real matrix M can be decomposed uniquely into orthogonal matrices U

and V using an SVD:

M = USV T . (7.8)

If M is size m× n, then U is m×m, S is m× n and V is n× n. S is a diagonal

matrix composed of non-negative real values. The matrix is ordered such that the

values decrease in size (S = diag(s1, s2, . . . , sn)). Since there are only n singular

values in S (because there is one in each column), one can define an “economy” or

“reduced” SVD such that S is a square matrix of size n× n:

S =

⎡
⎢⎢⎣
s1 0 . . . 0
0 s2 . . . 0
...

...
. . .

...
0 0 . . . sn

⎤
⎥⎥⎦ , (7.9)

where s1 ≥ s2 ≥ . . . ≥ sn. In the case of the economy SVD, then U is now m × n

and V is n× n.

If any values si are zero, then the matrix M is singular. If any values si are

very small, then the matrix M is ill-conditioned. If this is the case, then the inverse
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of M (or inverse of MT M in an over-constrained system) does not give workable

solutions. In an optical system, this would mean that if there is a small change in

the measured Zernike coefficients (in vector Z), then large changes in the solution

of the required alignment changes in A may occur.

If M is a n× n nonsingular matrix, then its inverse may be expressed as

M−1 = V S−1UT , (7.10)

where S−1 = diag( 1
s1
, 1

s2
, . . . , 1

sn
), or:

S−1 =

⎡
⎢⎢⎢⎣

1
s1

0 . . . 0

0 1
s2

. . . 0
...

...
. . .

...
0 0 . . . 1

sn

⎤
⎥⎥⎥⎦ . (7.11)

This matrix shows why small (or zero) singular values cause such problems in com-

puting the inverse of a matrix: the inverse of a very small number is very large, or

even infinite if the “small” number is precisely zero. These large numbers lead to

problems in Equation 7.11. One way to handle this is to set all the small singular

values below some small threshold t to have no effect in the system. The value of

the threshold t needs to be carefully chosen for each system to achieve the desired

result. When this is done, the SVD may be used to approximate the inverse of the

matrix M :

M+ =
(
USV T

)−1
= V S−1

0 UT , (7.12)

where the values of the diagonal of S−1
0 are 1/si if si > t or 0 otherwise. This

pseudoinverse is known as the Moore-Penrose Inverse (Barrett & Myers, 2004). The
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singular value decomposition is an operation standard in every major mathematical

software package.

7.2 PHYSICAL INSIGHT INTO THE SINGULAR VALUE DECOMPOSITION

The SVD in Section 7.1 is a useful technique for dealing with inverse problems

when the system is ill-conditioned. However, using SVD is not just a mathematical

trick to approximate the least-squares solution in an ill-conditioned system. It

is a technique that can be used to gain insight into the physical system. In an

optical system, a singular value decomposition of the sensitivity matrix reveals the

orthogonal aberration modes of the system and how they are caused (i.e. what

combination of misalignments). An SVD is useful for determining which modes

of the system can be seen, measured and corrected. The actual singular values

(or the ratios between them) give information about the dynamic range and signal

to noise required for the measurement system to be able to see all the different

modes. In practice, this insight is needed to carefully choose how many orthogonal

control modes of the system should be corrected (or equivalently, how to choose the

appropriate threshold t).

Before the SVD of the system sensitivity matrix M can be performed, the sen-

sitivity matrix of the system itself must be found. The sensitivity matrix can be

found by physically perturbing the system or by calculating the expected sensitivi-

ties using a model. Using a model to calculate the sensitivity matrix is a practical

method because it does not involve actually touching the system and is the method

used in this dissertation. Calculating the sensitivities from a model does not intro-
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duce errors due to noise, but may not capture subtle differences between the actual

system and the model. These differences become very important when controlling

modes with small singular values.

Each column of the sensitivity matrix is a record of the effect of one individual

degree of freedom. The aberrations due to misalignments of an optical system can

be found by direct simulation and collected into a sensitivity matrix for the system.

The sensitivity matrix describes the aberrations due to each degree of freedom being

incorrect individually.

Each of the three matrices U , S and V gives useful information about the

modes that can be controlled in the system. Overall, they describe the independent

“effects” in the system that are most easily produced (largest effect for the smallest

cause), and the “causes” of those effects. One way to remember the difference

between U and V is to notice that U and “effect” both start with vowels and V

and “cause” both start with consonants. The modes of the system are cause/effect

pairs that are completely orthogonal, or decoupled from every other mode. These

control modes of the system are decoupled from each other because the columns

of the U and V matrices are orthogonal. Each column of the U and V matrices

corresponds to a control mode that has some strength given by the appropriate

singular value from S. For example, the first column of U is a combination of

effects in the system that is caused by the combination of causes listed in the first

column of V . This is true in general for all of the column vectors in U and V :

Mvi = siui. (7.13)
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These control modes will be described in the following subsections using first a

mechanical system and then an optical system.

7.2.1 A MECHANICAL SYSTEM SVD EXAMPLE

In this section, a simple example is used to show the meaning of the SVD. Consider

the rod and spring system shown in Figure 7.1 where the rod is supported by two

springs (with spring constants kA and kB) at its endpoints (positions A and B). In

this system, the rod is sitting on top of the springs, but not fixed to the springs.

(Thus, if a force pushes down on the rod at point B, the position (height) of the

rod at point A is unchanged.) For this model system, the sensitivity matrix and

its singular value decomposition (SVD) are found for different arrangements of the

positions of the two forces.

kA kB

BA

F1 F2

Figure 7.1: Rod and spring mechanical system example. Two forces F1 and F2 act
on a rod and the overall effect is that points A and B on the rod move up and down
by some amount depending on the magnitudes and locations of the forces.

A sensitivity matrix for this system can be determined by putting one unit of

force into F1 and examining the effect on the height of the rod in positions A and

B (xA and xB) and then putting one unit of force into F2 and looking at the effect

of xA and xB. The total motion of each point (A and B) is the sum of the motion
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due to each of the forces. The first part is linear algebra:

xA = aF1 + b F2 (7.14)

xB = c F1 + d F2 (7.15)

where a, b, c, and d are constants that depend on the spring constants and the

locations of the forces. These two equations can be written in matrix form:

(
xA

xB

)
=

(
a b
c d

)(
F1

F2

)
. (7.16)

The abcd matrix is the sensitivity matrix, denoted by M . Equation 7.16 can also

be expressed as x = MF , where x is a vector containing the two displacements

xA and xB and F is a vector containing the magnitudes of the two forces (F1 and

F2). M may be determined from a model of this system, or in real life by doing

one perturbation at a time and taking measurements. The units of the sensitivity

matrix are determined by the other two vectors. For example, if the displacement

x is in meters (m) and the force F is in Newtons (N), then the sensitivity matrix is

in units of meters per Newton (m/N).

Different configurations of the positions of the two forces will be considered for

this rod and spring system example.

Force configuration I

In this first configuration, the two forces act on the opposite ends of the rod at

positions A and B, as shown in Figure 7.2. The forces act on the spring that is



196

directly underneath and assume that the effect on the displacement of the rod at

positions A and B is completely decoupled.

We have the normal equations for a spring F1 = kA xA and F2 = kB xB. There-

fore: (
xA

xB

)
=

( 1
kA

0

0 1
kB

)(
F1

F2

)
. (7.17)

The sensitivity matrix is in units of inverse spring constants. (The spring constant

has units of [N/m], so the sensitivity matrix has units of [m/N].) Now for simplifi-

cation, if kA = kB = 1, then the sensitivity matrix is:

M =

(
1 0
0 1

)
. (7.18)

In this example, the sensitivity matrix describes the position of the rod relative

to its nominal position. That is, with zero force, the displacement is zero. Likewise,

in the optical systems considered later, the sensitivity matrix describes the changes

in aberrations that result from misalignments. The aberrations will be nonzero when

the misalignments are zero due to residual design aberrations, but the sensitivity

kA kB

BA

F1                         F2

Figure 7.2: First configuration of forces examined for the rod and spring system
example. Force one pushes on the rod directly over point A and force two pushes
on the rod directly over point B.
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matrix describes the change in the aberration due to the misalignment. For example,

here the sensitivity matrix values describe the change in the displacement over the

change in the force:

mij =
Δxj

ΔFi
. (7.19)

An SVD of the sensitivity matrix in Equation 7.18 results in the following three

matrices:

U =

(
1 0
0 1

)
V =

(
1 0
0 1

)
S =

(
1 0
0 1

)
. (7.20)

The matrices U and V are not necessarily unique, but the resulting modes are

unique. The difference between the different possible U and V matrices is that the

signs of the modes may be different. For example, another mathematical software

package gives the decomposition of the identity matrix as:

U =

(−1 0
0 −1

)
V =

(−1 0
0 −1

)
S =

(
1 0
0 1

)
. (7.21)

These matrices describe the same control modes, with different signs. The

signs of the vectors do not matter because they mean the bar moves in the other

direction when you pull instead of push. The singular values describing the modes

are unchanged, and the modes are listed in the same order, so the S matrix is

unique.

One should observe that the U and V matrices are both row and column or-

thonormal, as they should be. One useful check is that multiplying the matrices

together gives you the original sensitivity matrix back. In this case (with all iden-
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tity matrices), the result is obvious:

USV T = M =

(
1 0
0 1

)
. (7.22)

The inverse of the sensitivity matrix is:

M−1 =

(
1 0
0 1

)
. (7.23)

The meanings of each of the matrices in the SVD are listed in Table 7.1.

Table 7.1: SVD matrix definitions.

Name Description Units

U This is the results or “effect matrix.” It
contains the values of the displacement
of the rod at points A and B. In the
next optical example (Section 7.2.2), it
contains the aberration modes.

The U matrix is unitless.

V This is the “cause matrix.” It contains
the configuration vectors which describe
what needs to be done in the system to
get the results in the U matrix. In this
example, it contains the magnitude of
the forces, but it will be mirror misalign-
ments in the next example.

The V matrix is unitless.

S This matrix contains the singular values,
which give the strength of the control
modes, in decreasing order along the di-
agonal of the matrix. The singular values
may be extracted and listed in a vector.

The singular values have
units of meters/Newton for
the rod and spring exam-
ple.

The example using the first configuration of forces is trivial, but it is still helpful

to examine U , S and V anyway.
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A B

u1 u2

v1(1) = 1

v1(2) = 0

v2(2) = 1

v2(1) = 0

Figure 7.3: Resulting control modes from SVD of sensitivity matrix for the first
force configuration of the rod/spring system. The nominal position of the rod is
shown in black. The first mode (u1) from the SVD causes the bar to move as shown
in red. This is caused by the forces in the vector v1, shown by the vertical maroon
lines ending in “×.” The second mode (u2) from the SVD causes the bar to move
as shown in blue. This is caused by the forces in the vector v2, shown by the dark
blue vertical lines, ending in circles.

Column one of the U matrix (u1) is the “effect” that corresponds to the “cause”

in column one of the V matrix (v1). The vector ui gives a displacement vector

containing two elements (xA and xB) while vi gives the forces (F1 and F2 that

create that displacement. u1 and v1 show that pushing down at A with one unit of

force in vector F1, results in one unit of displacement at A. This is mode one:

u1 =

(
1
0

)
v1 =

(
1
0

)
. (7.24)

Mode one is depicted in red in Figure 7.3. The vertical maroon lines ending

with an “×” show the position and normalized size of the forces F1 and F2. Since

v1(1) = 1, there is a one unit force downward at point A (v1(1) = F1 = 1) and since

v1(2) = F2 = 0, there is no force at point B.

The other columns u2 and v2 show that pushing down at B with one unit of

force in vector F2, results in one unit of displacement at B. This is mode two:

u2 =

(
0
1

)
v2 =

(
0
1

)
. (7.25)
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Mode two is depicted in blue in Figure 7.3. The blue bar moves down at B because

of force two (v2(2) = F2 = 1). The mode two forces are shown by the vertical blue

lines ending in a circle.

The singular values in a vector form are

s =

(
1
1

)
(7.26)

and in matrix form are

S =

(
1 0
0 1

)
. (7.27)

Since the singular values are equal, both modes are equally easy to produce and

control in the system, which is obvious from the symmetry in this case.

Other configurations of force locations

Five other configurations of forces, along with the first configuration, are shown in

Tables 7.2 and 7.3.

In the second configuration, the two forces act each 1/3 the way from the edges

of the rod. Each force acts 2/3 on the spring that is closest and 1/3 on the spring

that is farther away. An SVD of this sensitivity matrix results in one up/down

mode (mode one shown in red) and one rotational mode (mode two shown in blue).

The forces act equally in opposite directions for the rotational mode and equally in

the same direction for the up/down mode. The singular value for the up and down

mode is larger by a factor of three than the rotational mode, so it takes less total

force to produce one normalized unit of effect (motion of the rod).
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Table 7.2: Table of rod/spring examples–first set.

Configuration I Configuration II Configuration III

kA

A B

F2

kB

F1

kA

A  B

F1 F2

kB kA

A  B

F1,F2

kB

M

(
1 0
0 1

) (
0.667 0.333
0.333 0.667

) (
0.5 0.5
0.5 0.5

)

M−1

(
1 0
0 1

) (
2 −1
−1 2

)
Does not exist

U

(−1 0
0 −1

) (−0.707 0.707
−0.707 −0.707

) (−0.707 −0.707
−0.707 0.707

)

S

(
1 0
0 1

) (
1 0
0 0.333

) (
1 0
0 0

)

V

(−1 0
0 −1

) (−0.707 0.707
−0.707 −0.707

) (−0.707 −0.707
−0.707 0.707

)
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In the third configuration, the two forces both act in the exact middle of the

rod. Each force acts 1/2 on each spring. An SVD of this sensitivity matrix results

again in one rotational mode and one up/down mode. The forces act equally in

opposite directions for the rotational mode and equally in the same direction for the

up/down mode. However, in this case the singular value for the second (rotational)

mode is zero, which means that this mode is impossible to control. This makes

sense considering the physical system. Pushing down in exactly the middle of the

rod, will definitely move the rod downward (mode one), but it will be impossible

to control the rotation of the rod (mode two). Since the singular value is zero,

the inverse of the sensitivity matrix can not even be calculated. In this case, the

Moore-Penrose inverse can be calculated. The important step in the Moore-Penrose

inverse calculation is the calculation of the S−1
0 matrix. Since s2 = 0 is below the

threshold, and the value of 1/s2 is infinite, the control of this mode should set to

zero by setting 1/s2 = 0 in S−1
0 :

M+ = V S−1
0 UT (7.28)

=

(−0.707 −0.707
−0.707 0.707

)(
1 0
0 0

)(−0.707 −0.707
−0.707 0.707

)T

(7.29)

=

(
0.5 0.5
0.5 0.5

)
. (7.30)

Since the inverse matrix does not have any minus signs, it means that there is no

possibility of trying to control the rotational mode (which has F1 pushing down at

the same time F2 is pulling up), as expected since that mode was set to zero in

the S−1
0 matrix. The total force applied is split equally between F1 and F2. The
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columns and the two modes of the pseudoinverse matrix are degenerate.

In the fourth configuration, the first force is on the end of the rod and completely

acts on the spring underneath, while a second force pushes in the middle of the rod

and acts equally on both springs. An SVD of this sensitivity matrix results in

two modes that both rotate and move up and down. The singular values are both

nonzero, so the inverse sensitivity matrix can be calculated and both modes can be

controlled.

Table 7.3: Table of rod/spring examples–second set.

Configuration IV Configuration V Configuration VI

kA

A   B

F2

kB

F1

kA

A  B

F1,F2

kB kA

A   B

F2

kB

F1

M

(
1 0

0.5 0.5

) (
0.51 0.49
0.49 0.51

) (
0.88 0.12
0.29 0.71

)

M−1

(
1 0
1 2

) (
25.5 −24.5
24.5 25.5

) (
1.203 −0.203
0.492 1.492

)

U

(−0.851 0.526
−0.526 −0.851

) (−0.707 −0.707
−0.707 0.707

) (−0.801 0.599
−0.599 0.801

)

S

(
1.144 0

0 0.437

) (
1 0
0 0.02

) (
1.021 0

0 0.578

)

V

(−0.973 0.23
−0.23 −0.973

) (−0.707 −0.707
−0.707 0.707

) (−0.86 0.51
−0.51 −0.86

)
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In the fifth configuration, the two forces act almost in the middle of the rod, so

it is similar to the third configuration. (F1 is located 49% of the way from point A

to point B, while F2 is located 49% of the way from point B to point A.) As in

the third configuration, an SVD of this sensitivity matrix results in one rotational

mode and one up/down mode. The forces still act equally in opposite directions

for the rotational mode and equally in the same direction for the up/down mode.

However, this time, the second singular value is small, but nonzero. Although the

inverse of the sensitivity matrix can be calculated, it could be hard to control the

solution, since the second singular value is so small. The inverse of the sensitivity

matrix contains fairly large numbers, compared to the other examples. This means

that large forces are required, which essentially have a very small effect, to control

movement of the rod. The singular value for the second mode for the 50× smaller

than the first singular value. If both the measurement system and the forces have

a dynamic range of at least 50, then both modes can be controlled. Without that

dynamic range, errors could be amplified by a factor of 50.

If only the up and down mode is controlled, then the pseudoinverse matrix can

be calculated, as for Configuration 3. In this case, 1/s2 is set to zero in the S−1
0

matrix and the inverse is calculated:

M+ = V S−1
0 UT (7.31)

=

(−0.707 −0.707
−0.707 0.707

)(
1 0
0 0

)(−0.707 −0.707
−0.707 0.707

)T

(7.32)

=

(
0.5 0.5
0.5 0.5

)
. (7.33)
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The values in M+ in Equation 7.33 are much smaller than those in Table 7.3 for

M−1 in this configuration. Practically, this means much smaller forces are required

to create almost the same effect.

The sixth configuration shows a case for somewhat randomly chosen force po-

sitions. The modes can still be calculated and the numbers look random, but the

modes can still be understood in exactly the same way as all of the other configu-

rations studied. For example, the modes can still be drawn and the columns of U

V are still normalized to unity, even though it is not immediately obvious:

√
0.862 + 0.512 = 1 (7.34)

√
0.802 + 0.602 = 1. (7.35)

7.2.2 AN SVD EXAMPLE USING A GREGORIAN TELESCOPE

In this section, an SVD analysis is shown for a simple two-mirror Gregorian telescope

system. The telescope used will be the axisymmetric parent version of the New Solar

Telescope, presented in Table 4.1. The flowchart indicating the steps in this analysis

is shown in Figure 7.4.

Finding the sensitivity matrix can be done by physically perturbing the system,

or by using an optical model (preferred choice). In this method, the degrees of free-

dom of the system are perturbed one at a time and the resulting Zernike polynomial

aberration coefficients are recorded throughout the field. In this example, the same

degrees of freedom are used as in Chapter 4: x and y rotations of the secondary

mirror about both its center of curvature and the prime focus. Because four degrees
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ZEMAX

MATLAB

Initial telescope design

Record aberrations macro

Record Zernike coefficients of nominal system throughout field to file

For i = 1 to # of degrees of freedom:

• Perturb mirror

• Record resulting Zernike coefficients throughout field to file

MATLAB script

For i = 1 to # of degrees of freedom:

• Load file with Zernike coefficients throughout field

• Create column of sensitivity matrix containing the difference of 
all the Zernike coefficients throughout the field from the nominal 
system for that degree of freedom

Find SVD of sensitivity matrix.

• Plot the wavefront maps for each mode throughout the field (U)

• Plot the singular values (S)

• Plot the configuration of mirrors for each mode (V)

Fit the orthogonal functions to the resulting aberration modes

Figure 7.4: Block diagram describing the process of recording the aberrations in a
misaligned optical system to find the sensitivity matrix and to analyze the resulting
modes from an SVD of this matrix.
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of freedom are perturbed, the sensitivity matrix has four columns. Eight Zernike

coefficients (Z4–Z11) are recorded throughout the field at a grid of 121 field angles.

Thus, the number of rows of the sensitivity matrix is 968.

The units of the singular value matrix S are the same as those used for the sensi-

tivity matrix. For example, in the previous example, the units were meters/Newton.

In general, the matrix has units of aberration per misalignment. In this example,

the unit of the misalignment is rotation angle, so the units of S are microns/0.1◦.

(The two different degrees of freedom are rotations about two different points: the

center of curvature and the prime focus.)

Since the size of M is 968 × 4, U is also 968 × 4. Mathematically, U is size

968 × 968. However, since there are only four degrees of freedom, there can be at

most four nonzero singular values and four resulting control modes. Since the modes

that exist in columns 4–958 of the U matrix cannot be controlled, there is no reason

to record them and the “economy” SVD is used. Therefore, U is 968×4 and S and

V are both 4 × 4 matrices.

The four singular values correspond to the amount of aberration that can be

induced by a normalized amount of each of the four different modes. In this example,

since there are equal perturbations in each direction (x and y) for each degree of

freedom (prime focus rotations and center of curvature rotations), there should be

modes that occur in pairs that are the same, except in the direction of rotation.

Each mode in a pair that only differs in the direction should be equally easy to

control. Thus, we expect the singular values to come in pairs. This is true and is

shown in Figure 7.5.
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Figure 7.5: Singular values of the axisymmetric Gregorian telescope. The vertical
scales depends on the normalization of the U and V matrices.
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The first two singular values are 43.528 and 43.525. The second two singular

values are 1.3817 and 1.3815. Thus, the singular values still numerically decrease

down the matrix. The ratio of the first two singular values to the second two are

43.53/1.282 = 33.95. This ratio is similar to the ratio of the sensitivities found

for constant coma to linear astigmatism in Chapter 4 and shows approximately how

much more sensitive the system is to constant coma compared to linear astigmatism.

Each column of the U matrix from the SVD contains the eight Zernike poly-

nomial coefficients to describe the wavefront at the grid of 121 field points. The

aberrations that we expect to be able to control in the system are constant coma

and linear astigmatism. These indeed show up as the control modes of the system

in the U matrix when the wavefront map is created from the Zernike coefficients.

(Instead of plotting the wavefront maps for such a fine sampling of field points,

the orthogonal functions of Chapter 6 are fit to the resulting data and then these

functions are used to calculate and plot the wavefront maps at a grid of field points

seven across.) These modes are shown in Figure 7.6.

The V vectors are shown in Figure 7.7. The first two modes consist of center

of curvature rotations in the x and y directions. This is expected because this

degree of freedom was shown in Chapter 4 to produce a large amount of constant

coma. The second two modes are composed of prime focus rotations. These are the

degrees of freedom shown in Chapter 4 to produce linear astigmatism only with no

contribution to constant coma.

As mentioned previously, the orthogonal double Zernike function coefficients can

be fit to the aberration data describing the modes in the U matrix. When this is
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(a) Mode 1: constant coma (from u1). (b) Mode 2: constant coma (from u2).

(c) Mode 3: linear astigmatism (from u3). (d) Mode 4: linear astigmatism (from u4).

Figure 7.6: Aberration modes from the U matrix.

done, most of the resulting functions are very small or zero. The constant coma and

linear astigmatism functions have the largest coefficients, as expected. When the

modes are expressed in this manner, the vectors from the columns in the U and V
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(a) Mode 1: center of curvature rotation (from
v1).
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(b) Mode 2: center of curvature rotation (from
v2).
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(c) Mode 3: prime focus rotation (from v3).
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(d) Mode 4: prime focus rotation (from v4).

Figure 7.7: Configuration modes from the V matrix.

matrices are no longer normalized to one. Alternatively, the orthogonal functions

can be fit to the measured data throughout the field and the sensitivity matrix us-

ing those coefficients can be formed. All field dependent Zernike polynomials up

to Z13(h, θ) and pupil dependent Zernike polynomials up to Z11(ρ, φ) were included

(even the ones not expected, just for simplification in code), and the resulting sen-



212

sitivity matrix is of size 104× 4. An SVD of the matrix results in exactly the same

modes in the same order of constant coma and linear astigmatism. However, now

the coefficients in the U and V matrices are normalized. Constant coma, linear

astigmatism and the functions with the the next largest coefficients are listed in

Table 7.4 for comparison.

Table 7.4: Coefficients for the orthogonal functions from the SVD analysis of the
NST sensitivity matrix.

Mode

Function 1 2 3 4 RSS

Z1(h, θ)Z4(ρ, φ) −0.02 0.00 0.01 0.00 0.02
Z2(h, θ)Z4(ρ, φ) −0.02 0.02 −0.02 0.02 0.04
Z3(h, θ)Z4(ρ, φ) 0.02 0.02 0.02 0.02 0.04
Z2(h, θ)Z5(ρ, φ) − Z3(h, θ)Z6(ρ, φ) 0.02 0.02 0.70 0.70 0.98
Z3(h, θ)Z5(ρ, φ) + Z2(h, θ)Z6(ρ, φ) −0.02 0.02 −0.70 0.70 0.98
Z7(h, θ)Z5(ρ, φ) + Z8(h, θ)Z6(ρ, φ) 0.00 0.00 −0.09 0.09 0.13
Z8(h, θ)Z5(ρ, φ) − Z7(h, θ)Z6(ρ, φ) 0.00 0.00 0.09 0.09 0.13
Z9(h, θ)Z5(ρ, φ) − Z10(h, θ)Z6(ρ, φ) 0.00 0.00 −0.08 0.08 0.12
Z10(h, θ)Z5(ρ, φ) + Z9(h, θ)Z6(ρ, φ) 0.00 0.00 −0.08 −0.08 0.12
Z1(h, θ)Z7(ρ, φ) −0.70 −0.70 0.02 0.02 0.99
Z1(h, θ)Z8(ρ, φ) 0.70 −0.70 −0.02 0.02 0.99
Z4(h, θ)Z7(ρ, φ) −0.05 −0.05 0.00 0.00 0.07
Z4(h, θ)Z8(ρ, φ) 0.05 −0.05 0.00 0.00 0.07
Z11(h, θ)Z7(ρ, φ) −0.09 −0.09 0.00 0.00 0.13
Z11(h, θ)Z8(ρ, φ) 0.09 −0.09 0.00 0.00 0.13

Other aberrations result from the configuration vectors in the V matrices in

addition to constant coma and linear astigmatism, but they are not controllable.

This is indicated by the value of the root sum square (RSS) across all the modes.

Constant coma and linear astigmatism which are controllable, as shown by the

value of RSS being approximately one. Even with no prior understanding of the

aberrations caused by misalignments, this can be determined by the singular value
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decomposition.

The result of this study is that since the only aberrations that are controllable are

constant coma and linear astigmatism, only these four Zernike coefficients actually

need to be measured when performing alignment of this system. Also, since the

field dependence of these aberrations is low order (constant and linear for coma and

astigmatism, respectively), then only a few points in the field need to be measured.

As few as three fields are needed to determine a constant field dependence and a

linear field dependence in each of the x and y directions.

Therefore, this system can be described by a sensitivity matrix M with only 12

rows, not the 968 or 104 used for the example.
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CHAPTER 8

SVD OF THE INFLUENCE MATRIX FOR THE HOBBY-EBERLY

TELESCOPE WIDE FIELD CORRECTOR

This chapter investigates the orthogonal control modes resulting from a singular

value decomposition (SVD) of the influence matrix of the system. The numeri-

cal analysis of the HET WFC optical design, given in Chapter 2, is performed in

this chapter using Zemax and Matlab. Matrices resulting from the SVD of the

influence matrix describe the orthogonal set of aberrations that may be caused by

misalignment of the WFC, the combination of mirror misalignments that cause these

aberrations and the sensitivities that relate the two effects. These control modes

will be examined in detail in this chapter.

8.1 OVERVIEW OF METHOD

The influence matrix is a record of the Zernike polynomial coefficients describing

the wavefront aberrations (in the pupil) throughout the field for all of the degrees of

freedom. Each column of this matrix is an influence function or vector that describes

the aberrations throughout the field for one misalignment degree of freedom. Thus,

the number of columns in the matrix is equal to the number of degrees of freedom

in the system. The number of rows of the influence matrix depends on how many

Zernike polynomials are used to describe the wavefront and at how many field points.

For the purposes of an investigative study, it is worthwhile to measure “too many”
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aberrations on a finely sampled grid of field points. This ensures that the most

sensitive field dependent aberrations are discovered in the control modes found by

SVD of the influence matrix.

Calculating the control modes can be done in one of two ways. In the first

method, an SVD of the influence matrix is calculated after it is expressed in the

basis of orthogonal double Zernike polynomial coefficients. In the second method,

the SVD of the influence matrix is calculated and then the resulting control modes

are put in the basis of orthogonal field-dependent functions. Once the control modes

are found in terms of the basis of the double Zernike polynomial coefficients, then

the most sensitive double Zernike functions can be chosen to be included in the

sensitivity matrix M . The process of finding the sensitivity matrix is shown in

Figure 8.1. The values that describe the sizes of the matrices in Figure 8.1 are listed

in Table 8.1.

Table 8.1: Values describing the sizes of the influence, control and sensitivity ma-
trices.

Variable Description

n number of field points
z index of largest Zernike coefficient measured
d number of alignment degrees of freedom
fI number of orthogonal functions calculated from data
fM number of orthogonal functions used in the sensitivity matrix M

d ≤ fM ≤ fI

It is important that the alignment sensitivity matrix is expressed in the basis

of orthogonal double Zernike functions because the correct functions can be chosen

that have a linear dependence on the misalignment. It is not helpful to include
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Figure 8.1: Process of calculating the alignment sensitivity matrix.

effects, like constant astigmatism, that depend on the square of the misalignment

in the sensitivity matrix because the mathematical calculation of the misalignments

from the measured aberrations assumes linearity. Note that this alignment process

will still work for a non-linear system, but more iterations are required with the

sensitivities of each non-linear effect re-calculated at each iteration if the non-linear

effects are important. This method for choosing the aberrations for the alignment

degrees of freedom was not used in Chapter 4, since there were so few degrees of

freedom and the resulting aberrations that depended linearly on the misalignment

were already understood. The expected aberrations were constant coma and linear

astigmatism and these were just put directly into a sensitivity matrix. Thus, when

there are many degrees of freedom and many field-dependent aberrations, it is im-

portant to separate the aberrations that depend linearly on the misalignment and
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those that do not.

Once the important field-dependent aberration modes are known, only these

aberrations need to be measured in the as-built system to generate the maximum

likelihood estimate of the misalignment state of the system. (Therefore the num-

ber of Zernike coefficients z and the number of field points measured d only need

to be large enough to calculate the coefficients of orthogonal double Zernike field

dependent functions that are used in M and are not necessarily as large as when

the original analysis was done to choose what should go in M .) The maximum like-

lihood estimate comes from a least-squares fit of the alignment degrees of freedom

to the aberration vector Z. If the matrix M has small singular values, the inverse

of M may require conditioning, as described in Chapter 7. The conditioning may

be done using SVD and in this case, an appropriate threshold needs to be found,

depending of the signal to noise of the system that measures that wavefront data.

This process is shown in Figure 8.2.

In general, a least-squares fit of the alignment degrees of freedom to the aberra-

tion vector Z results in a vector of values for adjusting the alignment of every degree

of freedom. Since some of the degrees of freedom are not as helpful in actually re-

moving the measured aberrations, they may only require very small adjustments

that do not significantly improve the system. There is a process, described in detail

by Chapman & Sweeney (1998), that may be used to choose the optimum degrees

of freedom to use as compensators.
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Figure 8.2: Process of calculating the alignment state.

8.2 INFLUENCE MATRIX

To do the numerical analysis, the Zernike coefficients across the field resulting from

perturbing each of the individual degrees of freedom of the four mirrors were recorded

as text files using a Zemax macro. A Matlab script was written to load these files

and generate the influence matrix. Matlab was also used to find the singular value

decomposition of the matrix and then examine the results. (This is the same process

as shown in Table 7.4.)

8.2.1 PERTURBATIONS

Each of the 25 columns in the sensitivity matrix corresponds to a different misalign-

ment. (The primary mirror position is not perturbed since it only affects pointing.)

The 25 degrees of freedom, which are listed in Table 8.2, include perturbations of
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Table 8.2: Degrees of freedom for the HET WFC alignment sensitivity matrix.

Number Degree of freedom Units

20 Five degrees of freedom for each of the four mirrors
in the corrector:

x and y tilt 0.5 arcseconds
x and y decenter 1 µm
axial position error 1 µm

2 Rigid body motion of the entire WFC, including the
focal plane (controlled by the hexapod in the actual
system)

x and y tilt 0.01◦

3 Focal plane rigid body motion
x and y tilt 0.01◦

axial position (focus) adjustment 0.1 mm

25 Total

all four mirrors in the corrector, and rigid body motions of the entire corrector and

of the focal plane.

This analysis assumes misalignment perturbations only (e.g. no mirror bending

or shape errors). All of the mirrors are assumed to be fabricated correctly with

the appropriate radius of curvature and conic constant or asphericity. In general,

additional columns could be included in the sensitivity matrix to find and correct

these shape errors, as well, if active control of the mirror surface is available.

Magnitudes of perturbations for the degrees of freedom

As discussed in Chapter 7, the units of the singular value matrix S are the same as

those used for the sensitivity matrix. In general, the matrix has units of aberration

per misalignment. Since the misalignment degrees of freedom are a combination

of distances and angles, the sensitivity matrix and singular values matrix for HET
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is neither waves/µm or waves/arcsecond, but can be considered as waves/unit per-

turbation, where the unit perturbation depends on the amount of the misalignment

simulated. Singular value decompositions of matrices with mixed units are discussed

by Chapman & Sweeney (1998) and Descour et al. (2000). One way to deal with this

is to assume the units are waves (or microns) per unit perturbation. If the pertur-

bation is an angle, the 1 unit perturbation is an angular unit (degrees, arcminutes,

arcseconds or radians, as desired). If the perturbation is a decenter, then the 1 unit

perturbation is a distance unit (meters or microns). For this analysis, the units of

angular and distance perturbations are found in Table 8.2.

The particular results of the SVD depend on the magnitudes of the perturbations

in Zemax. For this analysis, the perturbations of the tilt and decenters of the

mirrors were chosen to be very small: the tilts were 0.5 arcseconds about the vertex

and the decenters were 1 µm. This was done so that the resulting coefficients would

be exceedingly small for the double Zernike functions that depend on the square

or cube of the misalignment. Therefore, when the SVD of the influence matrix is

calculated, it would not appear like these modes are controllable. The axial positions

of each of the four mirrors had the same perturbations as the vertex decenters in x

or y; that is, 1 µm.

If the tilt of the entire WFC and the tilt of the focal plane used exactly the

same small perturbations as for the mirrors, there would be a very small effect

on the aberration coefficients measured throughout the field. If we take the limit,

and assume that the coefficients are precisely zero, then this degree of freedom has

no effect in the system in the SVD and the singular value is zero. However, the
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system, in actuality, is sensitive to these degrees of freedom, which is why they can

be used as compensators. In addition, these degrees of freedom result in, almost

purely, the same field-dependent aberrations that are largest for the other degrees

of freedom, so they are very good compensators. The tilt of the entire WFC results

in constant coma, while focal plane tilt, not surprisingly, results in focal plane tilt.

In order for these aberrations to show up in the lower order (most-sensitive) control

modes, the aberration coefficients in the influence matrix must be recorded for larger

perturbations. The entire WFC and individual focal plane tilt degrees of freedom

were each perturbed by 0.1◦.

For the same reason, the axial position of the focal plane was perturbed with a

larger value than for the decenters. Perturbing the position by 1 mm resulted in

constant defocus showing up as mode 3 in the system. For other cases investigated

and not included here, with larger axial perturbations of the focal plane (and/or

smaller tilts of the WFC), constant defocus was the first mode from the SVD.

8.2.2 ABERRATIONS IN TERMS OF ZERNIKE COEFFICIENTS

The rows of the sensitivity matrix contain the Zernike coefficients for all of the

field points under consideration. For this analysis, the z = 12 Zernike polynomial

coefficients considered (to describe the pupil dependence) are those from Chapter 6.

These include focus (Z4), astigmatism (Z5 and Z6), coma (Z7 and Z8), trefoil (Z9

and Z10), spherical aberration (Z11), secondary astigmatism (Z12 and Z13), and

secondary coma (Z16 and Z17). Each of these aberrations in the exit pupil are

described by Zernike polynomials that are up to quartic in field dependence. Thus,
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a 7×7 grid of field points is sufficient to capture these field dependences. Therefore,

the number of rows in the influence matrix is equal to n×z = 49 fields×12 coefficients

= 588 rows.

Measuring all 12 of these aberrations in the pupil using a 7×7 grid ensures that

all the coefficients for the 24 aberrations in Table 6.9 that depend linearly on the

misalignment can be found. In addition, 11 aberrations in rotationally symmetric

systems (from terms with W in Tables 6.1–6.7) can be found. These 35 aberrations

are more than sufficient to calculate the major effects from 25 degrees of freedom.

8.3 SINGULAR VALUE DECOMPOSITION OF THE ALIGNMENT

SENSITIVITY MATRIX

This section investigates the contents of the three matrices (U , S, and V ) resulting

from the SVD of the influence function in the basis of the orthogonal double Zernike

coefficients. The vectors from the matrices for each mode are plotted in a way to

show what the numbers mean. All of the plots for the control modes are provided

in Appendix O.

8.3.1 U MATRIX

Each of the columns in the U matrix (588× 25 when using the economy SVD) is a

singular vector that lists the Zernike coefficients across each of the 49 field points.

Each of these resulting particular combinations of field-dependent aberrations is an

aberration mode. Since U is a column orthogonal matrix, the aberration modes

are orthogonal. They also form a complete basis set. That is, combinations of
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(a) HET SVD mode 1. (b) HET SVD mode 2.

Figure 8.3: Wavefront maps across the field showing constant coma from the first
and second control modes.

the aberration modes describe all the possible aberrations that can result from

misalignments of the WFC.

The first two modes are the easiest ones to control and they each correspond

to constant coma. These aberrations are shown in Figure 8.3. The coefficients for

the orthogonal double Zernike functions from control modes 1 and 2 are shown in

Figure 8.4, and the result shows clearly that the modes are composed of constant

coma: Z1(h, θ)Z7(ρ, φ) and Z1(h, θ)Z8(ρ, φ). The color blue in the plots of the

double Zernike coefficients in Figure 8.4 indicates that a mode occurs in a non-

rotationally symmetric system, while the color red indicates a function that occurs

in a rotationally symmetric system.

The third mode, shown in Figure 8.5, corresponds to defocus and is the next most

easy to control. The coefficients for the orthogonal functions for control mode 3 are



224

−1

−0.5

0

0.5

1
Z

2
Z

4
Z

3
Z

4
Z

7
Z

4
Z

8
Z

4

Z
2
Z

5
−

Z
3
Z

6
Z

3
Z

5
+

Z
2
Z

6
Z

7
Z

5
+

Z
7
Z

6
Z

8
Z

5
−

Z
7
Z

6

Z
9
Z

5
+

Z
1
0
Z

6
Z

1
0
Z

5
−

Z
9
Z

6
Z

1
Z

7
Z

1
Z

8
Z

4
Z

7

Z
4
Z

8
Z

5
Z

7
+

Z
6
Z

8
Z

6
Z

7
−

Z
5
Z

8
Z

5
Z

9
+

Z
6
Z

1
0

Z
6
Z

9
−

Z
5
Z

1
0

Z
2
Z

1
1

Z
3
Z

1
1

Z
2
Z

1
2

+
Z

3
Z

1
3

Z
3
Z

1
2
−

Z
2
Z

1
3

Z
1
Z

1
6

Z
1
Z

1
7

Z
1
Z

4
Z

4
Z

4

Z
1
1
Z

4
Z

5
Z

5
+

Z
6
Z

6
Z

1
3
Z

5
+

Z
1
2
Z

6
Z

3
Z

7
+

Z
2
Z

8
Z

7
Z

7
+

Z
7
Z

8

Z
1
Z

1
1

Z
4
Z

1
1

Z
6
Z

1
2

+
Z

5
Z

1
3

Z
2
Z

1
6

+
Z

3
Z

1
7

V
al

ue
 o

f c
oe

ffi
ci

en
t

Orthogonal coefficients from U for mode 1

(a) HET SVD mode 1.
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(b) HET SVD mode 2.

Figure 8.4: Coefficients showing constant coma from the first and second control
modes.
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shown in Figure 8.5, where indeed primarily constant defocus is seen, with a little

bit of quadratic and quartic defocus.

The fourth and fifth modes can be identified as focal plane tilt, as shown in

Figure 8.6. The coefficients for this mode, shown in Figure 8.7, reveals primarily

focal plane tilt in these modes.

All 25 of the orthogonal aberration modes across all 49 of the field points and

their fits to the double Zernike functions are shown in Appendix O.
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(a) HET SVD mode 3.
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(b) HET SVD mode 3.

Figure 8.5: Defocus from third control mode.
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(a) HET SVD mode 4. (b) HET SVD mode 5.

Figure 8.6: Wavefront maps across the field showing focal plane tilt from fourth and
fifth control modes.
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(a) HET SVD mode 4.

−1

−0.5

0

0.5

1

Z
2
Z

4
Z

3
Z

4
Z

7
Z

4
Z

8
Z

4

Z
2
Z

5
−

Z
3
Z

6
Z

3
Z

5
+

Z
2
Z

6
Z

7
Z

5
+

Z
7
Z

6
Z

8
Z

5
−

Z
7
Z

6

Z
9
Z

5
+

Z
1
0
Z

6
Z

1
0
Z

5
−

Z
9
Z

6
Z

1
Z

7
Z

1
Z

8
Z

4
Z

7

Z
4
Z

8
Z

5
Z

7
+

Z
6
Z

8
Z

6
Z

7
−

Z
5
Z

8
Z

5
Z

9
+

Z
6
Z

1
0

Z
6
Z

9
−

Z
5
Z

1
0

Z
2
Z

1
1

Z
3
Z

1
1

Z
2
Z

1
2

+
Z

3
Z

1
3

Z
3
Z

1
2
−

Z
2
Z

1
3

Z
1
Z

1
6

Z
1
Z

1
7

Z
1
Z

4
Z

4
Z

4

Z
1
1
Z

4
Z

5
Z

5
+

Z
6
Z

6
Z

1
3
Z

5
+

Z
1
2
Z

6
Z

3
Z

7
+

Z
2
Z

8
Z

7
Z

7
+

Z
7
Z

8

Z
1
Z

1
1

Z
4
Z

1
1

Z
6
Z

1
2

+
Z

5
Z

1
3

Z
2
Z

1
6

+
Z

3
Z

1
7

V
al

ue
 o

f c
oe

ffi
ci

en
t

Orthogonal coefficients from U for mode 5

(b) HET SVD mode 5.

Figure 8.7: Coefficients showing focal plane tilt from fourth and fifth control modes.
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8.3.2 S MATRIX

The S matrix (25 × 25) is the diagonal matrix that contains the singular values.

There is only one singular value in each column, so there are only 25 singular values.

The singular values quantify how sensitive the system is to a particular combination

of misalignments. The most sensitive aberration mode is listed first and so forth,

which means the singular values are always listed in decreasing order. The modes

corresponding to the lowest index singular values are those most easily controlled.

The ratios between the singular values describe the dynamic range required by the

measurement system to be able to detect all the modes of interest. The lowest

order modes will have large amounts of those aberrations because the system is very

sensitive to those combinations of degrees of freedom while the highest order modes

will have only small amounts of aberrations because the system is less sensitive

to those degrees of freedom. The measurement system must be able to measure

aberrations in quantities that vary by orders of magnitude. The exact dynamic

range required will depend on the number of modes required to be corrected in

order to achieve the specification in the optical system. The singular values are

plotted in Figure 8.8.

In Figure 8.8, the modes that correspond to aberrations caused by the degrees

of freedom that cause the optical system to become non-symmetric come in pairs

because each aberration can be caused by perturbations in either the x or y direction.

These pairs have almost exactly the same singular value because they are equally

controllable and they are observed as the flat steps in Figure 8.8. However, when

the aberration is caused by a rotationally symmetric degree of freedom (such as
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Figure 8.8: HET SVD singular values.

defocus of the focal plane) the mode does not have a partner (for example modes 3

and 8). The highest order control modes correspond to a mixture of all the degrees

of freedom and do not come in pairs.

8.3.3 V MATRIX

The V matrix (25 × 25) describes the misalignments required to generate the or-

thogonal aberration modes in the U matrix. Each column of V is a singular vector

for a different mode and each row in V represents one of the misalignment degrees

of freedom.

The misalignment degrees of freedom for the first five control modes are shown

in Figures 8.9–8.9, while the remaining control modes are included in Appendix O.

Modes 1 and 2 (Figure 8.9), which are constant coma, are caused by tilt of the
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entire wide field corrector. This degree of freedom is expected to cause constant

coma because the entire WFC is similar to the secondary mirror in a two mirror

telescope. Mode 3, which is defocus, is caused by axial defocus of the detector

(Figure 8.9). Modes 4 and 5, which are focal plane tilt, are caused by tilting the

focal plane (Figure 8.9).
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(a) HET SVD mode 1.
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(b) HET SVD mode 2.

Figure 8.9: Required degrees of freedom to produce HET control modes.
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(c) HET SVD mode 3.

Figure 8.9: Continued.
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(d) HET SVD mode 4.
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(e) HET SVD mode 5.

Figure 8.9: Continued.



235

8.4 SUMMARY OF RESULTING MODES FROM SVD

For reference, Table 8.3 summarizes each of the modes discussed previously and

those that are only included in the appendix.

Table 8.3: Summary of HET control modes.

Mode Main aberration Misalignment

1, 2 Constant coma WFC Tilt
3 Defocus Focal plane axial position
4, 5 Focal plane tilt Focal plane tilt
6, 7 Lin. astig. M4 and M5: tilt/decenter
8 Lin. coma, quad. astig. M4 and M5: axial
9, 10 Const. sec. coma, Lin. sec. astig M2 and M3: tilt
11 Const. spherical, + other axial sym. M2 and M3: axial
12, 13 Mixture non-sym Mixture non-sym
14 Const. spherical, + other axial sym. M3–M5 axial
15, 16 Mixture non-sym Mixture non-sym
17–25 Mixture Mixture

8.5 VARIATIONS ON THE SENSITIVITY MATRIX

In another investigation, after each of the degrees of freedom was perturbed by the

Zemax macro, an optimization of the tilt of the entire WFC was done to correct the

constant coma. In this case, the merit function was the Zernike coma (coefficients Z7

and Z8) for the on-axis field angle. Then the aberration coefficients were recorded,

as normal, into the influence matrix and the SVD was calculated. The control modes

that resulted from this were practically the same modes as found previously. One

of the only differences is that when the aberration coefficients are examined for the

individual tilt and decenter degrees of freedom for the mirrors, the effect without

the constant coma is more easily seen.
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In general, tilt and decenter misalignments of M2 and M3 result in constant

coma among other aberrations. When the constant coma is corrected by motion

of the entire WFC on the hexapod, then smaller aberrations remain. In general,

tilt and decenter misalignments of M4 and M5 do not result in very much constant

coma. Therefore, these degrees of freedom can not be compensated by the WFC

rigid body motion and were found to have high sensitivities in a previous study

(Hvisc & Burge, 2008). The remaining aberrations in all four mirrors M2–M5, after

coma is corrected, are focal plane tilt and linear astigmatism. Sometimes the sign

of the focal plane tilt and linear astigmatism are the same and sometimes they are

not. This is shown in Figure 8.10.
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Figure 8.10: Aberrations when degrees of freedom are perturbed and the system is
corrected for constant coma with the WFC rigid body hexapod tilt.
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Figure 8.10: Continued.
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Figure 8.10: Continued.
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Figure 8.10: Continued.
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8.6 WHAT SHOULD GO IN THE SENSITIVITY MATRIX?

In Section 8.5, it was discussed that the order of the modes is somewhat arbitrary,

depending on the magnitudes of the perturbations used in the lens design program.

(The relative magnitudes of the perturbations for the different degrees of freedom

used in the analysis should represent the relative “pain” of the different adjustments.

For example, perhaps the perturbation used for the sensitivity matrix SVD can

be some small percentage of the total range of motion of that degree of freedom,

when the actual system components are known.) Based on that, and the results of

Table 8.3, it is still not obvious what orthogonal double Zernike polynomial functions

should be chosen to go in the sensitivity matrix used for the system alignment.

Table 8.4 lists the RSS of the values of the coefficients for the double Zernike

functions from the first 14 modes. This number of modes was chosen because it rep-

resents an approximate number of modes that might be corrected. If an orthogonal

double Zernike function was completely controllable by the degrees of freedom in

the system (using those 14 modes), the RSS value would be one. The table is listed

in order of decreasing RSS value. The functions for the sensitivity matrix should be

chosen from closer to the top of the list. The number of functions chosen should be

at least equal to the number of degrees of freedom, so there are at least an equal

number of measurements as variables in the solution for the alignment vector. It is

not harmful to include more orthogonal double Zernike functions. After some point,

however, it is not very helpful either. In addition, this consideration should take

place for the rotationally-symmetric and non-rotationally symmetric degrees of free-

dom individually. (It is not possible to make corrections of the tilts and decenters
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using wavefront data for axially symmetric system coefficients, for example.)

Another consideration when choosing the functions to include in the sensitivity

matrix is the particular field-dependences of the functions. Most of the functions

near the top of the list in Table 8.4 are either constant or linear in field. These

functions can be measured with only three field points in the system. When there

is quadratic field-dependence for the function, four or five field angle measurements

are needed. Further down the table, there are functions with cubic or quartic depen-

dence on the field. Since these functions require increasingly many field measure-

ments to determine the coefficients and this increases the difficultly in testing the

system, it may make more sense to choose an aberration with less sensitivity, but a

lower overall field dependence. For example, linear spherical aberration Z2Z11 and

Z3Z11 would require only three field measurements, which is easier than measuring

the quadratic coma in Z5Z7 + Z6Z8 and Z6Z7 − Z5Z8.
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Table 8.4: RSS of coefficients across modes 1–14.

Description Orthogonal function RSS for modes 1–14 Axial?

Linear astig. Z3Z5 + Z2Z6 0.986
Linear astig. Z2Z5 − Z3Z6 0.986
Linear focus Z2Z4 0.985
Linear focus Z3Z4 0.985
Defocus Z1Z4 0.983 axial
Constant coma Z1Z8 0.983
Constant coma Z1Z7 0.983
Constant spher. aber. Z1Z11 0.976 axial
Linear coma Z3Z7 + Z2Z8 0.975 axial
Quadratic astig. Z5Z5 + Z6Z6 0.813 axial
Linear sec. astig. Z2Z12 + Z3Z13 0.762
Linear sec. astig. Z3Z12 − Z2Z13 0.761
Constant sec. coma Z1Z17 0.682
Constant sec. coma Z1Z16 0.674
Quadratic coma Z5Z7 + Z6Z8 0.466
Quadratic coma Z6Z7 − Z5Z8 0.465
Quadratic focus Z4Z4 0.407 axial
Quadratic coma Z4Z7 0.323
Quadratic coma Z4Z8 0.323
Linear spher. ab. Z2Z11 0.304
Linear spher. ab. Z3Z11 0.304
Quartic astig. Z13Z5 + Z12Z6 0.254 axial
Cubic focus Z7Z4 0.252
Cubic focus Z8Z4 0.252
Quartic astig. Z13Z5 − Z12Z6 0.232
Cubic astig. Z8Z5 − Z7Z6 0.211
Cubic astig. Z7Z5 + Z7Z6 0.210
Quartic focus. Z11Z4 0.209 axial
Cubic astig. Z9Z5 + Z10Z6 0.198
Cubic astig. Z10Z5 − Z9Z6 0.198
Quartic coma Z11Z8 0.197
Quartic coma Z11Z7 0.197
Quadratic trefoil Z5Z9 + Z6Z10 0.187
Quadratic trefoil Z6Z9 − Z5Z10 0.185
Linear sec. coma Z2Z16 + Z3Z17 0.180 axial
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8.7 CONCLUSIONS

This chapter provided an introduction to using singular value decomposition to ex-

amine the aberration control modes of a complex optical system. The SVD showed

which aberrations result from different combinations of degrees of freedom. The

aberrations that were most significant were investigated and the most likely aberra-

tions that would be used in the sensitivity matrix used in the estimate of the align-

ment of the system were listed. The actual field-dependent aberration functions

required depend on how many modes will be controlled and this in turn depends

on the specific characteristics of the dynamic range of the system that measures the

wavefront aberrations in real life (i.e. wavefront sensor). This was not investigated

here and remains a topic for future work.
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CHAPTER 9

CONCLUSION

This dissertation provided a thorough investigation of the aberrations that occur in

misaligned reflective optical systems. Tilting or decentering elements in an optical

system results in degradation to the performance. This performance degradation

must be predicted in order to choose tolerances before the system is built that will en-

able the system to meet the performance specifications. Predicting the performance

is a type of forward problem and was performed using a Monte Carlo analysis for

the Hobby-Eberly Telescope (HET) Wide Field Corrector (WFC). After a system

is built, wavefront measurements throughout the field give information about the

alignment state of the system. Determining the alignment from measured data is a

type of inverse problem and is the main concentration of this dissertation.

The analytical form of the aberrations in optical systems was studied, and a new

basis was proposed to describe the functional form of the aberrations that occur in

the pupil and the field. The aberration functions in the two-term double Zernike

basis separate cleanly into aberrations that occur in an rotationally-symmetric sys-

tem and those that occur in non-rotationally symmetric systems. From the theory,

some aberration functions were predicted to depend directly on the misalignment,

while others were predicted to depend on the square or cube of the misalignment.

These dependencies were confirmed by simulations of an optical system in a lens

design program. While the main concentration of this dissertation was telescope
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systems that are misaligned, this basis of functions may also be useful for designing

optical systems that are intentionally off-axis. There is more work that can be done

to investigate the usefulness of the double Zernike functions while designing off-axis

systems and plenty of room for studying the usefulness for refractive systems. Since

the basis is complete, it will necessarily be able to describe the field-dependent aber-

ration functions that result in refractive systems. However, the terms that depend

linearly on the misalignment and those that depend nonlinearly on the misalignment

could be coupled differently.

The double Zernike basis set presented here was found to be useful in describing

the aberrations that occur to mirror shape errors in the system as well. The aber-

rations possible from shape errors sometimes can be compensated by misalignments

(for example astigmatism or coma), and sometimes they can not (for trefoil). This

means that the aberrations due to misalignment are a subset of those possible from

shape errors.

When actually performing a least-squares fit of the system misalignment to the

data, the functions that depend linearly on the misalignment should be the ones that

are used in the sensitivity matrix. Sometimes the inverse of the sensitivity matrix

needed to calculate the misalignments may have small singular values. In this case,

measurement noise will be amplified by the least-squares fit. In order to create a

better inverse (pseudoinverse) to use for calculations, singular value decomposition

(SVD) techniques can be used. Some simple examples were given to show what

the SVD means before moving on to a system with many degrees of freedom. An

SVD analysis of the HET WFC was performed to study the control modes of the
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system. The aberrations that were most easily controlled in this system were found

for a given number of modes, but, there is not a general solution that describes the

important modes that occur in different types of system. This may depend on the

number of elements, the field of view of the system or even the obscuration ratio.

In addition, there may be some flexibility in choosing the modes that can be

included in the sensitivity matrix. In order to calculate the field-dependent part

of the function, multiple field measurements must be made. In a real-life system,

that means having multiple wavefront sensors or interferometers available or moving

them around in the field to measure Zernike coefficients. This adds complexity to

the system test. Including functions that are higher order in pupil, but lower order

in field, can simplify the system test. More work can be done to investigate the

practicality or sensitivity of using these lower-order functions in field. In reality,

it will depend on the signal to noise ratio in the particular wavefront-measuring

system. However, it may be possible to come up with general rules for different

ranges of systems.
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APPENDIX A

HET WFC MONTE CARLO PROCEDURE

Monte Carlo (MC) simulations are used to predict the statistical effect of tolerances

on the degrees of freedom in a system by simulating a large number of random

systems that meet all tolerances. For this system, the MC trials are performed

in Zemax using the tolerancing functions with a custom tolerancing script. In

one trial, each degree of freedom is randomly perturbed to some number, within a

uniform distribution of values allowed by the tolerance. The compensators (which

are the five degrees of freedom of the entire WFC with focal plane) are optimized to

minimize the rms spot size at a collection of points in the field (on axis and at four

at (±5 arcmin, ±5 arcmin)). The resulting (80%, 85% and 90%) encircled energy

spot sizes of this system are then recorded for some points in the field.

Summary of Monte Carlo Procedure

1. Fill out tolerance data editor in Zemax for the all of the toleranced degrees of

freedom.

(a) Make sure the min and max tolerances entered are the same values with

opposite signs.

2. Run the Zemax tolerancing routine.
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(a) Can do a sensitivity analysis if desired (takes longer, but advantage is

that the values of the tolerances are recorded in the file).

(b) Run Monte Carlo analysis using a tolerance script.

i. # of trials should be at least n2, where n is the number of degrees

of freedom.

ii. The criterion should be a user script with the following steps:

A. Define the compensators.

B. Load the merit function for optimization (rms spot size at five

field points).

C. Optimize the system.

D. Perturb the compensators (if desired).

E. Load the merit function used for evaluation (encircled energy

across the field).

F. Print the encircled energy across the field (values from certain

rows of the merit function) to the results window.

(c) Save the data from the window that opens with the results at the end of

the Monte Carlo analysis into a text file.
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APPENDIX B

ZEMAX MACRO FOR HET WFC

! This tolerance script is used to run the Monte Carlo simulation for
! the HET WFC file "HET OE 002 MC.zmx"
! Stacie Manuel
! April 28, 2009
! ===================================================================

! clear any existing compensators for a clean start
CLEARCOMP

! Load the merit function for optimization
LOADMERIT 5field_rmsspot.mf

! define the compensators
COMP 4 0
CPAR 4 1
CPAR 4 2
CPAR 4 3
CPAR 4 4

! optimize Automatic
OPTIMIZE

! Then perturb the compensators
! 15um cases:
PERTURB 0 4 0 0 1 0 -0.015 0.015
PERTURB 1 4 1 0 1 0 -0.015 0.015
PERTURB 1 4 2 0 1 0 -0.015 0.015
PERTURB 1 4 3 0 1 0 -0.001229 0.001229
PERTURB 1 4 4 0 1 0 -0.001229 0.001229

! Load the encircled energy merit function

LOADMERIT EE_2009.MF



251

! Report the Encircled energies
REPORT "80% field 1 = " 2
REPORT "80% field 2 = " 3
REPORT "80% field 3 = " 4
REPORT "80% field 4 = " 5
REPORT "80% field 5 = " 6
REPORT "85% field 1 = " 7
REPORT "85% field 2 = " 8
REPORT "85% field 3 = " 9
REPORT "85% field 4 = " 10
REPORT "85% field 5 = " 11
REPORT "90% field 1 = " 12
REPORT "90% field 2 = " 13
REPORT "90% field 3 = " 14
REPORT "90% field 4 = " 15
REPORT "90% field 5 = " 16
REPORT "EFFL = " 17

LOADMERIT 5field_rmsspot.mf
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APPENDIX C

MATLAB CODE FOR THE HET WFC FORWARD PROBLEM

C.1 GETHET EE.M MATLAB CODE

This function analyzes one Zemax file with Monte Carlo tolerance results to find the

resulting encircled energy diameter across the field for different confidence levels.

function [conf]=getHET EE(d)

Output = readtext2(d);
% Figure out how big the loaded file is: The total number of rows
% changes depending on whether or not there is a sensitivity analysis
% and the number of degrees of freedom toleranced.
[r,c]=size(Output);

%% Find where certain things are located in the loaded data
% The following lines put a text space in the empty cells of the
% Output. This makes some commands of searching for rows that things
% happen easier
for i=1:r

for j=1:c
if isempty(Output{i,j})

Output{i,j}=' ';
end

end
end

% Look for certain rows in the text. (Result is a cell array empty
% everywhere except where the strings are found.)
e = strfind(Output(:,1), 'Evaluating');
l = strfind(Output(:,6),'lens');
s = strfind(Output(:,1), 'Sensitivity')';
f = strfind(Output(:,1), 'Fields');

% The next for loop extracts the indices. It is long is because
% I don't see a command like isempty that works for an entire cell
% array. (i.e. It can only return '1' or '0', not a cell array of '1's
% and '0's.)
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count = 0; count2 = 0;
for i = 1:r

% where the evaluation results are (both sensitivities and MC)
if isempty(e{i})==0

count=count+1;
liste(count)=i;

end
% where the only Monte Carlo trials are
if isempty(l{i})==0

count2=count2+1;
trials(count2)=i;

end
% if a sensitivity analysis is there
if isempty(s{i})==0

sens=i;
end
% where the fields are listed
if isempty(f{i})==0

fieldloc=i;
end

end

% nom is where the nominal system is evaluated
nom=liste(1); % It's the first one evaluated

% liste is where the sensitivities are evaluated
liste = setdiff(liste, trials); % removes MC trials from the list
liste=liste(2:end);% removes the nominal system evaluation

% trials is where the MC systems are evaluated
% (no modification from above calculation needed)

%% Get the field points
xfield = zeros(1,5);
yfield = zeros(1,5);

for i = 1:5
xfield(i) = str2double(Output{fieldloc+1+i,2});
yfield(i) = str2double(Output{fieldloc+1+i,3});

end

% Multiply field by 60 to put into arcminutes
field = 60*sqrt(xfield.ˆ2 + yfield.ˆ2);
field=[field field field];
%% Get the nominal performance numbers
NominalMF = str2double(Output{nom+17,4}); %The nominal merit function

% Find the nominal EE for all the field points (More interesting for
% Monte Carlo analysis)
NominalEE = zeros(1,5);
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for i = 1:15
NominalEE(i) = str2double(Output{nom+i,5});

end

% Convert the um radius of the EE to arcseconds diameter
NominalEE = NominalEE/88.4784968;

%% Monte Carlo Analysis
% Don't perform MC analysis if not done in Zemax
if exist('trials','var')

ntrials = length(trials); % Find the number of Monte Carlo trials
% If you want to investigate the effect of using a smaller number
% of trials than in the data, change ntrials here.
%ntrials = 173;

% Gather all the data from the Monte Carlo trials into matrices
% For the: Encircled energy, Effective focal length, Compensators

% Preallocate variables
EE=zeros(ntrials,15); % 15 columns (for 5 fields, 3 different EEs)
EFFL=zeros(ntrials,1);
thicknesscomp=zeros(ntrials,1);
xdeccomp=zeros(ntrials,1);
ydeccomp=zeros(ntrials,1);
xtiltcomp=zeros(ntrials,1);
ytiltcomp=zeros(ntrials,1);

for i = 1:ntrials
for j = 1:15

EE(i,j)=str2double(Output{trials(i)+j,5});
end
EFFL(i)=str2double(Output{trials(i)+j+1,3});
thicknesscomp(i)=str2double(Output{trials(i)+j+3,3});
xdeccomp(i)=str2double(Output{trials(i)+j+4,6});
ydeccomp(i)=str2double(Output{trials(i)+j+5,6});
xtiltcomp(i)=str2double(Output{trials(i)+j+6,6});
ytiltcomp(i)=str2double(Output{trials(i)+j+7,6});

end

labels = {'EFFL';'thickness';'xdec';'ydec';'xtilt';'ytilt'}';
E=[EFFL, thicknesscomp, xdeccomp,ydeccomp,xtiltcomp,ytiltcomp];
stdminmaxmean = [std(E)', min(E)',max(E)',mean(E)']';

% Convert the um radius of the EE to arcseconds diameter
EE = EE/88.4784968;

% Define the requirement: (because it will be plotted later)
fieldreq=[0 5 11]; EEreq = [0.45 0.45 0.8];
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if strcmp(d,'35 0 align manu windows.TXT')
% Histogram Analysis
figure('Position',[50 50 1000 200])
for i = 1:5

subplot(1,5,i),hist(EE(:,10+i)),
title([num2str(field(10+i)),' arcmin field'])
h=max(hist(EE(:,10+i)));
axis([0 1 0 h])
hold on, plot([NominalEE(10+i),NominalEE(10+i)],[0,h],'r'),
hold off
ylabel('# trials'),xlabel('90% EE (arcsec)')

end

% Range for histogram plots
r1=max([−min(xdeccomp) −min(ydeccomp)...

max(xdeccomp) max(ydeccomp)]);
r2=max([−min(xtiltcomp) −min(ytiltcomp)

max(xtiltcomp) max(ytiltcomp)]);
figure
subplot(2,3,1), hist(thicknesscomp(:)),
title('Thickness compensator')
subplot(2,3,2), hist(xdeccomp(:)),
title('decenter x compensator'),axis([−r1 r1 0 inf])
subplot(2,3,5), hist(ydeccomp(:)),
title('decenter y compensator'),axis([−r1 r1 0 inf])
subplot(2,3,3), hist(xtiltcomp(:)),
title('tilt x compensator'),axis([−0.05 0.05 0 inf])
subplot(2,3,6), hist(ytiltcomp(:)),
title('tilt y compensator'),axis([−0.05 0.05 0 inf])
subplot(2,3,4), hist(EFFL(:)),
title('Effective Focal Length'),

end

% Plot the cumulative distributions
allEE=EE;
allnominalEE=NominalEE;

for ii=1:3

index=1+(ii−1)*5;
EE=allEE(:,index:index+4);

NominalEE=allnominalEE(:,index:index+4);

x = linspace(0,max(EE(:)),30);

for i = 1:5
n elements(i,:) = histc(EE(:,i),x);
c elements(i,:) = cumsum(n elements(i,:))/ntrials;

end
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if (ii==3)&&(strcmp(d,'35 0 align manu windows.TXT'))
figure, plot(x,c elements,[0,1],[0.9, 0.9],'k:')
xlabel('90% EE diameter (in arcseconds)')
ylabel('Confidence Level')
legend([num2str(field(1)), ' arcmin'],...

[num2str(field(2)), ' arcmin'],...
[num2str(field(3)), ' arcmin'],...
[num2str(field(4)), ' arcmin'],...
[num2str(field(5)), ' arcmin'],'Location','Southeast')

title(['Cumulative probabilities for the spot size'...
' histograms'])

end

% Find the 25%, 50%, 75%, 90% and 98% Confidence Levels
for i = 1:5

conf25(i) = interp1q(c elements(i,:),x',0.25);
conf50(i) = interp1q(c elements(i,:),x',0.5);
conf75(i) = interp1q(c elements(i,:),x',0.75);
conf90(i) = interp1q(c elements(i,:),x',0.90);
conf95(i) = interp1q(c elements(i,:),x',0.95);
conf98(i) = interp1q(c elements(i,:),x',0.98);

end
conf=[conf25;conf50;conf75;conf90;conf95;conf98];

end
end

C.2 READTEXT2.M MATLAB CODE

The function readtext2.m is required by getHET EE.m.

function Output = readtext2(root)

% Location of Data File should be given in root

% Open File and count the number of rows in the file
fid=fopen(root);
nRows=0;
while 1

iString=fgetl(fid);
if ¬ischar(iString)

break
end
nRows=nRows+1;

end
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% Return to beginning of file
fseek(fid,0,'bof');

% Preallocate for speed (May need >20 at some point)
Output=cell(nRows,20);

% For each row, assign each space delimitted object to a cell in the
% "Output" matrix
for iRow=1:nRows

iCol=1;
% Temporary storage of the first object
% Note: the space delimitter used here can be replaced by any
% delimitter
[TempOutput,Rem]=strtok(fgetl(fid),' ');
% If there is now data on this row, then assign the first object
% to be an underscore
if (length(TempOutput) == 0)

TempOutput=' ';
end
% Build the "Output" matrix this will be the first column of the
% iRow−th row
Output(iRow,iCol)=cellstr(TempOutput);
% Repeat this only using Rem as the total string and incrementing
% the iCol counter
while length(Rem) > 0

iCol=iCol+1;
[TempOutput,Rem]=strtok(Rem,' ');
Output(iRow,iCol)=cellstr(TempOutput);

end
end

C.3 HET MC ANALYSIS OCT09.M MATLAB CODE

This script compiles all of the different Monte Carlo results to find and plot the

expected system performance.

%% HET MC Analysis Oct09.m
% Written by Stacie Manuel

%% Close all plots and clear all old data
close all
clear all
%% Set flag for saving figures
p = 0; % To save the figures as .eps files, set p = 1.
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% Location for the figures to be saved:
mypath=['C:\Documents and Settings\shvisc\My Documents\',...

'My dissertation\The best staciethesis\MATLAB\HET Forward\'];
%% Start timer
tic
%%
field = [0,2.7,5.4,8.1,10.998;];
%% Nominal Performance
nominal=[0.2533,0.2289,0.193,0.3184,0.584;];
nominal5=[nominal;nominal;nominal;nominal;nominal;nominal];
%% Mirror fabrication
MC Fabr=getHET EE('35 0 manu.txt');
Fab = real(sqrt(MC Fabr.ˆ2−nominal5.ˆ2));
%% Alignment
MC Alignm=getHET EE('35 0 align.TXT');
Align = real(sqrt(MC Alignm.ˆ2−nominal5.ˆ2));
%% Window
MC Window=getHET EE('35 0 windows.TXT');
MC Window2=getHET EE('35 0 windows pt5arcminwedge.TXT');
Window = real(sqrt(MC Window.ˆ2 − nominal5.ˆ2)); %1 arcmin wedge
Window2 = real(sqrt(MC Window2.ˆ2 − nominal5.ˆ2)); % 1/2 arcmin wedge
%% Nominal + Alignment + Fabrication + windows
AlignManuold = sqrt(nominal5.ˆ2 + Fab.ˆ2 + Align.ˆ2 + Window.ˆ2);
MC AlignManu=getHET EE('35 0 align manu windows.TXT');
MC AlignManu 8comp=[0.2143,0.1899,0.1874,0.3041,0.5749;...

0.2285,0.2041,0.198,0.32,0.5982;...
0.2461,0.2239,0.2086,0.3453,0.6252;...
0.2672,0.2493,0.2217,0.3666,0.6512;...
0.2839,0.2716,0.2351,0.374,0.6679;...
0.2939,0.285,0.2493,0.3901,0.6946;];

%% Assembly and Operation
AssOp = 0.25*Align;
%% Compensators −15um accuracy
MC Compen=getHET EE('35 0 align manu windows 15um.TXT');
Comp = real(sqrt(MC Compen.ˆ2 − MC AlignManu.ˆ2));
%% Polishing and figuring
PolFig=[0.25,0.25,0.25,0.25,0.25];
PolFig5 = [PolFig;PolFig;PolFig;PolFig;PolFig;PolFig];
%% Temperature effects
MC Pos Temp=getHET EE('35 0 align manu windows 15um pos temp.TXT');
Pos Temp = real(sqrt(MC Pos Temp.ˆ2 − MC Compen.ˆ2));

MC Neg Temp=getHET EE('35 0 align manu windows 15um neg temp.TXT');
Neg Temp = real(sqrt(MC Neg Temp.ˆ2 − MC Compen.ˆ2));

Temp = max(Pos Temp,Neg Temp);
%% WFC Angle change effects
MC deg26pt5=getHET EE('26pt5 0 align manu windows 15um.TXT');
deg26=real(sqrt(MC deg26pt5.ˆ2 − MC Compen.ˆ2));
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MC deg43pt5=getHET EE('43pt5 0 align manu windows 15um.TXT');
deg43=real(sqrt(MC deg43pt5.ˆ2 − MC Compen.ˆ2));

MC deg35 8pt5=getHET EE('35 8pt5 align manu windows 15um.TXT');
deg35 8pt5=real(sqrt(MC deg35 8pt5.ˆ2 − MC Compen.ˆ2));

MC deg41 6=getHET EE('41 6 align manu windows 15um.TXT');
deg41 6=real(sqrt(MC deg41 6.ˆ2 − MC Compen.ˆ2));

MC deg29 6=getHET EE('29 6 align manu windows 15um b.TXT');
deg29 6=real(sqrt(MC deg29 6.ˆ2 − MC Compen.ˆ2));

Angle1 = max(deg26,deg43);
Angle2 = max(deg35 8pt5,deg41 6);
Angle2 = max(deg29 6,Angle2);
Angle = max(Angle1,Angle2);
%% RSS
Total = sqrt(nominal5.ˆ2 + Align.ˆ2 + Fab.ˆ2 + AssOp.ˆ2 + Comp.ˆ2 +...

Temp.ˆ2 + Angle.ˆ2 + PolFig5.ˆ2 + Window.ˆ2);
%% Specification
f = [0 5 11];
y = [0.45 0.45 0.8];
%% Graphs
labels.x='Field Radius (in arcminutes)';
labels.y='90% Encircled Energy Diameter (in arcseconds)';
text=['25% confidence';'50% confidence';'75% confidence';...

'90% confidence';'95% confidence';'98% confidence'];
labels.legend={'specification','nominal','alignment','fabrication',...

'assembly and operation','compensators','temperature',...
'correlated misalignment','polishing/figuring','window',...
'expected performance (rss total)'};

figure
for i = 1:6

subplot(2,3,i)
plot(f,y,field,nominal,field,Align(i,:),'−−',...

field,Fab(i,:),'−.',field,AssOp(i,:),'−−',...
field,Comp(i,:),'−.',field,Temp(i,:),'−−',...
field,Angle(i,:),'−.',field,PolFig,'−−',...
field,Window(i,:),'c−.',field,Total(i,:),'r')

title(text(i,:)),
axis([0 11 0 0.9]), xlabel(labels.x), ylabel(labels.y)

end
legend(labels.legend,0)

i=4; % 90% Confidence level
h=figure;
plot(f,y,field,nominal,field,Align(i,:),'−−',...

field,Fab(i,:),'−.',field,AssOp(i,:),'−−',...
field,Comp(i,:),'−.',field,Temp(i,:),'−−',...
field,Angle(i,:),'−.',field,PolFig,'−−',...
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field,Window(i,:),'c−.',field,Total(i,:),'r')
title({'Contributions to expected performance',...

'at the 90% confidence level'},'FontSize',12),
legend(labels.legend,'Location','NorthWest')
axis([0 11 0 1.5]),
xlabel(labels.x,'FontSize',12), ylabel(labels.y,'FontSize',12)
if p==1 % Save this figure as an .eps file

set(gcf,'PaperPositionMode','auto')
print(h,'−depsc',[mypath,'HET Fig1.eps']);

end

labels.title={['Net effect of residual design errors, alignment '...
'tolerances, fabrication'],['tolerances (including windows)'...
' and compensator perturbations']};

Total2 = sqrt(nominal5.ˆ2 + Align.ˆ2 + Fab.ˆ2 + Window.ˆ2 + Comp.ˆ2);
h=figure;
plot(f,y,field,MC Compen(4,:),'−−',field,Total2(4,:),'−.')
legend('Specification','Monte Carlo simulation','RSS of components',0)
axis([0 11 0 inf]),
xlabel(labels.x,'FontSize',12), ylabel(labels.y,'FontSize',12)
title(labels.title,'FontSize',12);
if p==1 % Save this figure as an .eps file

set(gcf,'PaperPositionMode','auto')
print(h,'−depsc',[mypath,'HET Fig2.eps']);

end

h=figure;
plot(f,y, field,MC AlignManu(4,:),':',...

field,MC AlignManu 8comp(4,:),'−−')
axis([0 11 0 inf]),
xlabel(labels.x,'FontSize',12), ylabel(labels.y,'FontSize',12)
legend('Specification','5 compensators','8 compensators',0)
title({'Net effect of residual design errors, alignment',...

' tolerances and fabrication tolerances'},'FontSize',12);
if p==1 % Save this figure as an .eps file

set(gcf,'PaperPositionMode','auto')
print(h,'−depsc',[mypath,'HET 8comp.eps']);

end

h=figure;
plot(f,y,field,nominal,field, Total','−−');
legend('Specification','Nominal','25%','50%','75%','90%','95%','98%')
set(legend,'Position',[0.73 0.12 0.24 0.37]);
title('Comparison of confidence levels for different rss totals',...

'FontSize',12)
axis([0 11 0 inf]),
xlabel(labels.x,'FontSize',12), ylabel(labels.y,'FontSize',12)
if p==1 % Save this figure as an .eps file

set(gcf,'PaperPositionMode','auto')
print(h,'−depsc',[mypath,'HET Fig4.eps']);
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end

h=figure;
plot(f,y,field,deg26(4,:),'o−',field,deg43(4,:),'s−',...

field,deg35 8pt5(4,:),'d−',field,deg41 6(4,:),'ˆ−',...
field,deg29 6(4,:),'v−','MarkerSize',6);hold on,

plot(field,Angle(4,:),'k−−','LineWidth',2)
legend('Specification','26.5\circ tilt','43.5\circ tilt',...

'35\circ, 8.5\circ tilt', '41\circ, 6\circ tilt',...
'29\circ, 6\circ tilt','correlated misalignment error')

set(legend,'Position',[0.14 0.58 0.41 0.33]);
axis([0 11 0 inf]),
xlabel(labels.x,'FontSize',12), ylabel(labels.y,'FontSize',12)
title(['Correlated misalignment error contributions',...

' (90% confidence)'],'FontSize',12)
if p==1 % Save this figure as an .eps file

set(gcf,'PaperPositionMode','auto')
print(h,'−depsc',[mypath,'HET Fig3.eps']);

end
figure
plot(f,y,field,Pos Temp(4,:),'o:',field,Neg Temp(4,:),'o:',...

field,Temp(4,:),'kx−')
legend('Specification','Positive change','Negative change',...

'Temp error for table',0)
title('Temperature effect (90% confidence)')
axis([0 11 0 inf]), xlabel(labels.x), ylabel(labels.y)

nonsystemtest=sqrt(AssOp.ˆ2 + Comp.ˆ2 + Temp.ˆ2 + Angle.ˆ2);
spec= [0.45, 0.45, 0.45+(0.8−0.45)*0.4/6, 0.45+(0.8−0.45)*3.1/6, 0.8];
testspec = sqrt(spec.ˆ2 − nonsystemtest(6,:).ˆ2);

labels.title2=['Comparison of confidence levels for different rss'...
'totals for the system test'];

labels.legend2={'Specification','Nominal','System Test Goal',...
'25%','50%','75%','90%','95%','98%'};

figure
plot(f,y,field,testspec,field,nonsystemtest',':');
legend(labels.legend2([1,3:end]),0), title(labels.title2)
axis([0 11 0 inf]), xlabel(labels.x), ylabel(labels.y)

systemtest=sqrt(nominal5.ˆ2+Align.ˆ2 + Fab.ˆ2 + PolFig5.ˆ2+Window.ˆ2);
figure
plot(f,y,field,nominal,field,testspec,field, systemtest',':');
legend(labels.legend2,0), title(labels.title2)
axis([0 11 0 inf]), xlabel(labels.x), ylabel(labels.y)

%% Output matrix of 90% confidence results
matrix = [field; nominal;Fab(4,:);Align(4,:);AssOp(4,:);Comp(4,:);...

PolFig;Temp(4,:);Angle(4,:);Window(4,:);Total(4,:)];
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%% End Timer
toc
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APPENDIX D

OPTICAL SPECIFICATIONS FOR HET

This appendix includes the report for the Hobby-Eberly Telescope project describing

the optical specifications for the mirrors. This University of Arizona internal report

is unpublished, so it is provided here in entirety for reference. This document control

number for this report is HET OE 001 - REV B.
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HET OE 001 REV-B HET Optical Specifications for the Mirrors 1

Hobby-Eberly Telescope Wide Field Corrector 
Optical Specifications for the Mirrors 

Stacie Manuel 
November 23, 2009 

Abstract:
This document reviews the optical design and specifications with tolerances of each of the four
mirrors and two windows in the Hobby-Eberly Telescope (HET) Wide Field Corrector (WFC). 

The report is divided into the following sections: 
Optical layout 
Mirror sizes and clear apertures 
Radii of curvature and conic constants 
Aspheric terms 
Surface irregularity 
Surface sag 
Aspheric departure 
Optical surface to mechanical part specifications
Windows

Optical layout 
The WFC is a four mirror corrector designed to correct the aberrations from the large (10 m),
spherical primary mirror (M1 or PM) of HET.  The positions of each of the four mirrors (M2 –
M5) are shown in the figure below. 

Figure 1: Optical layout of the HET WFC 

The locations of each of the elements (as described by the optical design HET OE 002.zmx) are
listed in Table 1. 

Exit window 
and
Exit pupil Focal 

surface

M5
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M2 M3

Entrance
window

Paraxial focus for 
PM = origin for 
coordinates 
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Table 1: Location of optical elements in HET WFC 
Primary Mirror vertex   13082.590
Paraxial focus   0.000
Entrance window   front 256.590
Entrance window   rear 254.590
M2 vertex   -932.003
M3 vertex   50.646
M4 vertex   -1509.113
M5 vertex   -1172.003
Exit pupil     -2605.358
Exit window   front -2615.358
Exit window   rear -2618.358
Focal surface     -3582.767

Mirror sizes and clear apertures 
The clear apertures of each mirror were determined by the maximum extent where the rays from 
all fields fall on the mirror, for the most part.  The physical sizes were chosen to be larger than
the clear apertures with a small margin (to make polishing easier, etc.). There are two critical
places where there is a tradeoff between the mirror being big enough to reflect more light and the
mirror being small enough to let light pass by it.  These are at the inner diameter of M2 and the
outer diameter of M4.  In these cases, there needs to be a very small margin, so that as little light
is lost as possible.  Since it is difficult to polish to the edge of optics, the mirror blank will be
fabricated oversized, then polished and finally trimmed to the appropriate final dimension.
(Tolerances on the diameters, as listed on the drawings, are ±0.010 inch.) 

Table 2: Size and clear aperture specifications - diameters 
M2 M3 M4 M5 

OD(mm) 1020 1020 248 (final) 
298 (blank) 900

ID (mm) 322 (final) 
203 (blank) 280 20 220 

CA OD(mm) 965 980 244 880 
CA ID (mm) 326 325 30 254 
Beam footprint diameter 
(mm) 920 970 150 646 

Table 3: Size and clear aperture specifications - radii 
M2 M3 M4 M5 

CA outer radius (mm) 482.5 490 122 440 
CA inner radius (mm) 163 162.5 15 127 
Beam footprint radius (mm) 460 485 75 323 

2 (final) Margin between CA OD and 
OD (mm) radius 27.5 20 27 (blank) 10

2 (final)Margin between CA ID and 
ID (mm) radius 61.5 (blank) 23 5 17 
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Radii of curvature and conic constants 
Three of the four mirrors are concave and one (M4) is convex.  All four mirrors are aspheric,
with surfaces described by conic constants.  In addition, two of the mirrors (M3 and M5) have
higher order aspheric terms, described in the next section.  The sag of the two conic mirrors (M2
and M4) is given by the following equation: 

22

2

)1(11
)(

rck
crrz

where c is the mirror curvature (inverse of radius of curvature), k is the conic constant and r is
the radial distance from the center of the mirror. 

The tolerances for both the radii and the conic constants have two different components.  First,
there is an allowable delta, which describes how close the actual surface needs to match the
specified value.  Second, there is a delta uncertainty, which describes the accuracy of the optical
test measuring the surface.  The delta uncertainties were determined by the previous sensitivity
analysis and Monte Carlo simulations.  The PV asphere uncertainty for k is the found by the
following equation: 

departureasphericPVforyuncertaintaspherePV
k
kk ,

where the PV aspheric departure is found using the zero index method described in the appendix 
for the mirror surfaces without the higher order aspheric terms included. 

Table 4: Radii of curvature and conic constants 
M2 M3 M4 M5 

Radius of curvature R (mm) 2620.8 2032.5 -376.7 742.1 
Allowable departure from nominal R (mm) 0.5 0.5 0.5 0.5 

R measurement uncertainty (mm) 0.075 0.075 0.045 0.04 
Sag uncertainty for R (μm) 2 4 3 9 
Conic Constant k 0.663 -7.711 -2.098 -0.2675
PV aspheric departure (μm) 
(Does not include higher order asphere terms)

52 998 241 741 

k measurement uncertainty 0.0011 0.0008 0.0006 0.0001 
PV asphere uncertainty for k (nm) 86 104 69 277 

Aspheric terms 
In addition to the conic constants, M3 and M5 require higher order aspheric terms to describe
their surfaces.  The equation of the sag for these mirrors is similar to the equation above, with the
addition of the terms for higher order powers of the radius: 
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The terms 1 and 2 are not needed because the second order dependence on the radial pupil
position is defined by the radius of curvature and the conic already describes the fourth order
dependence.  In order to optimize M3, three more terms were needed, and two more terms for
M5.  Since the surfaces are radially symmetric, only even order terms are needed.  

Table 5: Higher order aspheric terms 
 M2 M3 M4 M5 

3 6th order term (1/mm5) - -8.263E-17 - 5.762E-19
4 8th order term (1/mm7) - 8.482E-23 - 2.137E-25
5 10th order term (1/mm9) - -3.595E-29 - - 

The aspheric terms are not measured in the optical test.  They are just used to help design the 
optical test.  There are no tolerances for these terms, which are essentially rolled into the rms
figure error of the manufactured part, as measured during the optical test. 

Surface irregularity 
The effect of the surface irregularity of the mirrors depends on the frequency of the irregularity.   

Mid-spatial frequency errors
The mid spatial frequency errors are those errors measured by the interferometer but aren’t
included with the lower order figure errors.  These errors, caused by both mirror polishing and
the support of the mirror, affect the spot sizes in the image (encircled energy diameter).  The
amount of irregularity allowed for the mid spatial frequencies is defined as an rms slope
specification for each mirror, including all frequencies up to some cutoff frequency, which varies 
for each mirror.  The allowable surface irregularity (nm/cm rms) for both the polishing and
support contributions individually and the net effect for each mirror is listed in Table 6.   

The irregularity specifications due to the mirror supports reflect the maximum expected support 
errors with the current design.  The polishing irregularity specifications were chosen such that
the net effect of the total irregularity (including support errors) contributes 0.25 arcsecond to the
90% encircled energy diameter. 

Table 6: Mid-spatial frequency irregularity specifications 
M2 M3 M4 M5 EnW ExW Net 

 Surface slopes Transmitted WF
Cutoff cycles/diameter 23 22 35 29 41 22  

Polishing 9.0 13.0 30.0 10.0 20.0 20.0  
Support 8.8 6.2 8.5 4.4    Surface irregularity 

(nm/cm rms) 
Total (P&S) 12.6 14.4 31.2 10.9 20.0 20.0  

rms WF (μrad) Total (P&S) 0.23 0.28 0.09 0.14 0.02 0.05 0.402
90% EE (arcsec) Total (P&S) 0.144 0.171 0.058 0.087 0.010 0.033 0.249

The cutoff frequencies in Table 7 come from the following calculations: 
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mm463
arcsec0.225
nm500

anglemax
PMatspacing

footprintbeamacrosscycles6.21
mm463
mm10000

PMatspacing
aperturesystemfrequencyCutoff

The cutoff frequency is the number of cycles across the footprint of the beam on each of the
mirrors.  The actual number of cycles across the clear aperture of each mirror is larger by the
correct ratio accordingly: 

diameterfootprintbeam
diameterapertureclearcycles6.21frequencyCutoff .

The contribution to wavefront error (angle on the sky) is twice the surface error, however this is
effect is scaled by the size of the beam footprint on the optic to the diameter of the entrance pupil
(primary mirror) due to the Lagrange invariant. 

diameteraperturesystem
diameterfootprintbeam*

10
)nm/cmin(

*2)radin( rms
rms

tyIrregulari
WF

Assuming Gaussian image statistics, the 90% EE diameter is 3×rms radius: 

rad/arcsec848.4
rad)(in3

arcsec)(indiameterEE%90 rmsWF .

Surface finish
The highest spatial frequencies of the irregularity correspond to surface finish or roughness, and
cause wide angle scatter.  Wide angle light is scattered out of the image and lost completely.
Thus, it appears somewhat similar to lower mirror reflectivity and affects all field angles equally.
The total scattered light is 2 where  is the rms wavefront in radians.  Since the total wavefront
error is twice the surface error for a mirror on reflection, the equation for rms surface is: 

2
2 22 nminsurfacermsloss .

For a window (or a lens) with an index of approximately 1.5, the transmitted wavefront error is
half of the surface errors.  However, there are also two surfaces to take into account.  The
equation for the loss is thus 

.2
2

2
2

2 nminsurfacerms
loss

The total loss allowed in the system is 10%.  The tolerances, shown in Table 7, were set so the
total loss is 9.5% (0.5% margin).   The rms surface is calculated for each mirror or window,
based on the allocated percent loss, assuming a wavelength  of 500nm.   
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Table 7: Surface finish tolerances 
 M2 M3 M4 M5 EnW ExW
 surface transmitted WF
Loss budget (%) 2 3 2 2 0.25 0.25 
rms surface finish (nm) 5.6 6.9 5.6 5.6 5.6 5.6 

Surface sag 
A few point pairs of the sag (z) vs. radial distance (r) on each surface are listed in the following
table for an extra check.  This is especially important check in order to unambiguously define the
signs of the higher order coefficients.  The numbers are calculated using the equations above,
and verified in Zemax (using the SSAG operand in the merit function).  The first and last rows
are the clear aperture inner and outer radii (and the two in between points are just in between
points).

Table 8: Sag values for each of the mirrors (all values in mm) 
M2 M3 M4 M5 

r (mm) z(r) (mm) r (mm) z(r) (mm) r (mm) z(r) (mm) r (mm) z(r) (mm) 
163 5.077050 162.5 6.426311 15 -0.298516 127 10.926053
265 13.455065 270 17.402220 50 -3.302396 230 36.292224
375 27.060975 380 33.438868 90 -10.587882 335 78.668223

482.5 45.059276 490 53.322531 122 -19.217538 440 140.136615

Aspheric departure 
The follow table lists information about the aspheric departure of each mirror. The method of
finding the aspheric departure of each mirror in Zemax is described in the appendix.  The
wavefront maps showing the peak to valley and root mean square aspheric departure for each
surface, the spot diagrams used for calculating the aspheric slopes and the OPD plots for each 
mirror follows the table. 

Table 9: Aspheric departure information 
M2 M3 M4 M5 

Aspheric departure PV (μm) 52 1242 241 742 
Aspheric departure RMS (μm) 15 357 71 218 
Radius of best fit sphere (mm) 2604.04 2308.82 397.00 762.40
Distance from focal plane to plane of minimum OPD 
(over the clear aperture area)  (mm) 

-16.76 276.32 20.30 20.30 

RMS spot radius in plane of minimum OPD (mm) 1.08 22.07 2.62 4.90 
RMS aspheric slope (mrad)  
(spot radius/best fit sphere) 

0.42 9.56 6.61 6.43 

Geometric spot radius in plane of minimum OPD (mm) 2.48 49.35 6.14 11.77 
Aspheric slope (mrad)  
(geometric spot radius/best fit sphere) 

0.95 21.37 15.46 15.44 
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M2:

M3:
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M4:

M5:
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Optical surface to mechanical part specifications 
This section describes how well the optical surface needs to be matched the mechanical part.
Errors in the centration of the optical surface will cause the mirror to mechanically not be
centered in the system, even when optically aligned.  For areas with tight tolerances, this will
cause the mirror substrate to vignette rays that should actually pass by the outside or inside the 
hole of the mirror.  Therefore, the tolerances for the mirrors with the critical apertures (M2 and
M4) need to be tighter than for the other two mirrors.  A different report will document the 
method of using the kinematic mounting of mirror plugs on the inside holes of the mirrors during
the system alignment process and the repeatability and tolerances involved.

Table 10: Optical to mechanical specifications 
M2 M3 M4 M5 

Allowable decenter (centration) in mm 0.5 3 0.5 3 

Windows
The nominal characteristics of the entrance and exit windows are listed in Table 11. 

Table 11: Entrance and Exit window specifications 
 Entrance window Exit window 
Material Fused silica Fused silica 
Thickness 2 mm 3 mm 
Clear aperture diameter 160 mm 265 mm 
Overall part diameter TBD TBD

The tolerances for the entrance and exit windows are listed in Table 12.  The windows may also
have transmitted wavefront errors (from surface irregularities or index variations), but this effect
is included in the 0.25 arcsecond figure specification. 

Table 12: Tolerances on the Entrance and Exit windows 
Wedge (amount allowed) 1.0 arcminute 
Thickness (measurement uncertainty) 0.1 mm 
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Appendix:
How to find the aspheric departure maps: 

Create a zero index glass, and the rays leaving it will be perpendicular to the optical surface.  The
“zero” index glass should actually have a very small index (like 0.000001) so that Zemax does 
not have other problems, like in finding the exit pupil (the plane for which the OPD is
referenced).  Then, optimize the distance to the focal plane to minimize the rms wavefront error
(OPD).  Sufficient sampling for wavefront error should be used in the merit function.  (Another
choice to minimize the rms spot radius would give a slightly different value for aspheric
departure.) This distance is the radius of the best fit sphere and would be equal to the radius of
curvature if not for the conic and other higher order aspheric terms.  The wavefront map in the
focal plane shows the PV and RMS aspheric departure and the spot diagram show numbers that 
can be used for calculating the aspheric slope.  (Also, it is important to set the correct clear
aperture on the mirror surface.) 
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HET WFC FINITE ELEMENT ANALYSIS RESULTS

The system is nominally aligned at an elevation angle of 35◦. As the pointing

changes, the mirrors in the WFC move together in a correlated manner due to the

changing gravity vector. These motions have been analyzed by Dr. Rob Stone using

FEA models of the mechanical support design.

The following tables list the motions of each of the mirrors for different pointing

configurations. The degrees of freedom are vertex decenters (Ux, Uy, and Uz) in

units of µm and rotations (Rx, Ry, and Rz) about the vertices in units of µrad.

Table E.1: Mirror displacement at 35◦ in plane tilt and 0◦ out of plane tilt (Nominal
design).

Mirror Ux Uy Uz Rx Ry Rz

M2 0 0 0 0 0 0
M3 0 0 0 0 0 0
M4 0 0 0 0 0 0
M5 0 0 0 0 0 0

Table E.2: Mirror displacement at 26.5◦ in plane tilt and 0◦ out of plane tilt.

Mirror Ux Uy Uz Rx Ry Rz

M2 0.241 16.096 17.518 −11.280 2.743 −1.901
M3 1.270 38.151 12.662 −10.550 −2.577 0.640
M4 −0.605 4.818 15.801 −7.457 0.053 −0.173
M5 −1.634 1.373 17.219 −12.800 3.404 −2.086
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Table E.3: Mirror displacement at 43.5◦ in plane tilt and 0◦ out of plane tilt.

Mirror Ux Uy Uz Rx Ry Rz

M2 −0.081 −15.253 −20.744 11.480 −2.537 2.332
M3 −1.105 −34.849 −15.334 10.150 2.679 −0.942
M4 0.505 −4.262 −19.182 6.873 −0.076 0.341
M5 1.672 −0.876 −20.277 13.140 −3.144 2.516

Table E.4: Mirror displacement at 35◦ in plane tilt and 8.5◦ out of plane tilt.

Mirror Ux Uy Uz Rx Ry Rz

M2 37.846 2.233 −2.183 2.290 26.360 9.913
M3 54.432 −0.965 −1.868 −0.363 15.340 10.030
M4 17.048 0.620 −1.916 −0.008 8.754 9.419
M5 10.188 4.615 −2.158 2.865 31.280 9.841

Table E.5: Mirror displacement at 29◦ in plane tilt and 6◦ out of plane tilt.

Mirror Ux Uy Uz Rx Ry Rz

M2 28.702 13.040 11.466 −6.370 21.830 6.047
M3 41.986 25.933 8.131 −7.743 9.720 8.084
M4 12.459 3.813 10.470 −5.231 6.652 6.958
M5 6.518 4.374 11.239 −7.052 26.000 5.861

Table E.6: Mirror displacement at 41◦ in plane tilt and 6◦ out of plane tilt.

Mirror Ux Uy Uz Rx Ry Rz

M2 24.567 −9.368 −15.420 9.498 15.360 8.021
M3 34.671 −25.578 −11.516 6.940 11.850 5.924
M4 11.478 −2.675 −14.127 4.906 5.655 6.348
M5 7.803 2.311 −15.105 11.020 18.130 8.103
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Table E.7: Positive temperature change of ΔT = 20◦C, WFC at nominal orientation
(35◦ in plane tilt, 0◦ out of plane tilt).

Mirror Ux Uy Uz Rx Ry Rz

M2 0.000 0.000 27.559 0.000 0.000 −3.580
M3 0.000 0.000 −18.476 0.001 0.000 −3.388
M4 0.000 0.000 −5.580 0.003 0.001 4.743
M5 0.000 0.000 −5.573 0.000 0.000 4.132
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APPENDIX F

ZERNIKE POLYNOMIALS

While Seidel aberrations are simple and useful for some applications, they are not

very practical for those engineers that desire to describe their optical systems as a

sum of aberrations. Because the Seidel aberrations are not orthogonal, they are not

very good for numerically fitting to measured data. That is, in order to describe

high frequency aberrations in a system, more terms are needed, but the coefficients

for the terms change depend on how many terms are used in the fit. For this reason,

few optical engineers use Seidel aberrations to describe real optical systems. Usually,

Zernike polynomials are the solution to this problem because they are orthonormal.

Orthogonal functions are explained in Chapter 6.

Zernike polynomials were introduced by Frits Zernike for use in phase contrast

microscopy (Zernike, 1934, 2002). (Zernike, although a chemist, was awarded the

Nobel prize in physics in 1953 for his work in phase contrast microscopy!) Nijboer

(1943, 1947) and Nienhuis & Nijboer (1949) used Zernike polynomials in their studies

of the diffraction theory of aberrations.

Zernike polynomials are very commonly used because they are two dimensional

functions orthogonal over a circle (the most common shape for optical elements)

and the lowest order Zernike polynomials are very similar the the Seidel aberrations.

Zernike polynomials are functions of two variables which describe the location in the

pupil (a unit circle). Typically, polar coordinates are used and the two variables are
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ρ and φ, although occasionally Cartesian coordinates (x and y) are used.

Zernike polynomials are composed of a product of a function with radial depen-

dence and one with azimuthal dependence. The radial function is Rm
n (ρ) and the

azimuthal function is given by either cosmφ or sinmφ. The positive integers n and

m describe the maximum degree of ρ and the azimuthal frequency, respectively. The

Zernike polynomials are ordered by an index j (which is a function of n and m),

such that an even value for j corresponds to a polynomial with angular dependence

cosmφ and an odd value for j corresponds to sinmφ:

Zj(ρ, φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
2(n + 1)Rm

n (ρ) cosmφ even j, m �= 0;

√
2(n + 1)Rm

n (ρ) sinmφ odd j, m �= 0;

√
n+ 1R0

n(ρ) m = 0

(F.1)

where the radial function is

Rm
n (ρ) =

(n−m)/2∑
s =0

(−1)s(n− s)!

s!
(

n+m
2

− s
)
!
(

n−m
2

− s
)
!
ρn−2s. (F.2)

The polynomials are listed in order of increasing index n and for given n, in order

of increasing m.

Sometimes the Zernike polynomials are listed as Zm
n (ρ, φ) instead of Zj(ρ, φ)

where negative values of m are used for the terms with sinmφ. This leads to a

changed ordering the terms, if the same rule for listing in order of increasing m is

used, which has led to different standards for Zernike polynomials over the years.

(To make matters worse, different normalizations for the polynomials have also
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been used.) This dissertation uses the notation given above, which is the same as

Noll (1976) and the “Standard Zernike Polynomials” in Zemax (2009) shown in

Table F.1. Zernike polynomials may also be written in Cartesian coordinates, as

shown in Table F.2. This form is useful for the derivations in Chapter 6.

Table F.1: Orthonormal Zernike Circle Polynomials in polar form.

j n m Zj(ρ, φ) Aberration Name

1 0 0 1 piston
2 1 1 2ρ cos φ distortion (x tilt)
3 1 1 2ρ sin φ distortion (y tilt)

4 2 0
√

3 (2 ρ2 − 1) field curvature (defocus)

5 2 2
√

6 ρ2 sin 2φ primary astigmatism at 45◦

6 2 2
√

6 ρ2 cos 2φ primary astigmatism at 0◦

7 3 1
√

8 (3 ρ3 − 2 ρ) sinφ primary y coma

8 3 1
√

8 (3 ρ3 − 2 ρ) cosφ primary x coma

9 3 3
√

8 ρ3 sin 3φ

10 3 3
√

8 ρ3 cos 3φ

11 4 0
√

5 (6 ρ4 − 6 ρ2 + 1) primary spherical

12 4 2
√

10 (4 ρ4 − 3 ρ2) cos 2φ secondary astigmatism at 0◦

13 4 2
√

10 (4 ρ4 − 3 ρ2) sin 2φ secondary astigmatism at 45◦

14 4 4
√

10 ρ4 cos 4φ

15 4 4
√

10 ρ4 sin 4φ

16 5 1
√

12 (10 ρ5 − 12 ρ3 + 3 ρ) cosφ secondary x coma

17 5 1
√

12 (10 ρ5 − 12 ρ3 + 3 ρ) sinφ secondary y coma

18 5 3
√

12 (5 ρ5 − 4 ρ3) cos 3φ

19 5 3
√

12 (5 ρ5 − 4 ρ3) sin 3φ

20 5 5
√

12 ρ5 cos 5φ

21 5 5
√

12 ρ5 sin 5φ

22 6 0
√

7 (20 ρ6 − 30 ρ4 + 12 ρ2 − 1) secondary spherical

As mentioned earlier, Zernike polynomials are useful in discussions of optical

aberrations because they are similar to balanced Seidel aberrations for minimum

wavefront variance. For example, the Zernike polynomial term Z11 for spherical

aberration (ρ4), includes the right amount of defocus (ρ2) to balance the spherical



280

aberration. Similarly, y coma (ρ3 sin φ) is balanced by the right amount of tilt

(ρ sinφ) for minimum variance in term Z7(ρ, φ). Minimizing the variance of an

optical wavefront is equivalent to maximizing the Strehl ratio, which is a measure of

the light in the core part of an image (Mahajan, 1982, 1983, 1993). (To be precise,

this is only exactly true for small aberrations.) The equations that convert Seidel

aberrations to Zernike polynomials and vice versa are given by Mahajan’s Zernike

Polynomials and Wavefront Fitting chapter in Optical Shop Testing, Third Edition

(Malacara, 2007).

Table F.2: Orthonormal Zernike Circle Polynomials in Cartesian form. For brevity,
all terms that can expand to x2 + y2 = ρ2 are left in polar form.

j n m Zj(ρ, φ) Aberration Name

1 0 0 1 piston
2 1 1 2 x distortion (x tilt)
3 1 1 2 y distortion (y tilt)

4 2 0
√

3 (2 ρ2 − 1) field curvature (defocus)

5 2 2 2
√

6x y primary astigmatism at 45◦

6 2 2
√

6 (x2 − y2) primary astigmatism at 0◦

7 3 1
√

8 y (3 ρ2 − 2) primary y coma

8 3 1
√

8 x (3 ρ2 − 2) primary x coma

9 3 3
√

8 y (3 x2 − y2)

10 3 3
√

8 x (x2 − 3 y2)

11 4 0
√

5 (6 ρ4 − 6 ρ2 + 1) primary spherical

12 4 2
√

10 (4 ρ2 − 3) (x2 − y2) secondary astigmatism at 0◦

13 4 2 2
√

10 (4 ρ2 − 3) x y secondary astigmatism at 45◦

14 4 4
√

10 (ρ4 − 8 x2 y2)

15 4 4 4
√

10x y (x2 − y2)

The Zernike polynomials are normalized such that the coefficient of a term rep-

resents its standard deviation and the mean value of each aberration (except piston)

is zero. The sum of the squares of the orthonormal coefficients yields the aberration
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variance.

It is helpful to visualize these functions, so the lowest order Zernike polynomials

are shown in Figure F.1. Each row in Figure F.1 shows the polynomials with the

same value of n. The figure is triangle-shaped because there are increasing number

of m-values for the Zernike polynomials as n increases.

Figure F.1: Zernike polynomial wavefront maps.

Because Zernike polynomials are orthogonal over the unit circle, they are some-

times called Zernike circle polynomials. This is to differentiate them from Zernike
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polynomials orthogonal over areas other than unit circle, which have been derived

for other applications. Some of these variations, related to telescopes, are elliptical

Zernike polynomials, annular Zernike polynomials (useful when the telescope pupil

has a central obscuration) (Mahajan, 1981) and hexagonal Zernike polynomials (use-

ful when the telescope mirrors are composed of hexagonal segments) (Mahajan &

Dai, 2006).
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APPENDIX G

VECTOR MULTIPLICATION

Vector multiplication is a mathematical operation, invented by Shack, which is used

in the vectorial form of the wavefront expansion (Thompson, 1980, 2005). Vector

multiplication is a vector operation which is unique from both dot products and

cross products. Multiplying two vectors gives a third vector, coplanar with the first

two, where the length of the vector is the product of the lengths of the two original

vectors and the angle of the resulting vector is given by the sum of the angles of the

two vectors. For example, if the two multiplying vectors are �A and �B:

�A = a eiα = ax ı̂+ ay ĵ (G.1)

�B = b eiβ = bx ı̂+ by ĵ (G.2)

where ı̂ and ĵ are the unit vectors along �x and �y respectively, then the multiplication

between those two vectors is defined to be

�A�B = a b ei (α+β). (G.3)

Equations G.1–G.3 are always true, no matter what the convention for measuring

the angle is. However, depending on whether angles are measured clockwise (CW)

from the y-axis or counterclockwise (CCW) from the x-axis, the resulting vector
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(a) CCW from x-axis angle con-
vention.

y

x

A

B

BA
(b) CW y-axis convention.

Figure G.1: Vector multiplication displayed in two different coordinate systems.
The vectors �A and �B are each unit length, so the vector product is also unit length.

will be at a different angle, as shown in Figure G.1.

The fact that the resulting vector in a vector multiplication depends on the

convention chosen does not invalidate the operation of vector multiplication or any

of the equations derived by Thompson. It just means that one must be extra careful

when choosing one convention to completely stick with it and use all the correct

equations for that convention.

G.1 COUNTERCLOCKWISE FROM X-AXIS ANGLE CONVENTION

The equations in this section are derived using the convention where the angle is

measured counterclockwise from the x-axis, as shown in Figure G.1a. This con-

vention is used in this dissertation because it is used by optical software programs,

including Code V and Zemax.

For a vector �A, the x and y components can be written for the vector and its
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Figure G.2: The angle of the vector is defined counterclockwise from the x-axis.

complex conjugate:

�A = a eiα = ax ı̂+ ay ĵ

= a cosα ı̂ + a sinα ĵ

(G.4)

�A∗ = a e−iα = a cos(−α) ı̂+ a sin(−α) ĵ

= a cosα ı̂− a sinα ĵ

= ax ı̂− ay ĵ.

(G.5)

In this case, the complex conjugate flips the vector across the x-axis, as shown

in Figure G.2. For the vector product �A�B, Equation G.3 can be written in terms

of the x and y components of the �A and �B vectors as follows:

�A�B = a b ei (α+β)

= a b cos(α + β) ı̂+ a b sin(α + β) ĵ

= a b (cosα cosβ − sinα sin β) ı̂+ a b (sinα cos β + cosα sin β) ĵ

= (ax bx − ay by) ı̂+ (ay bx + ax by) ĵ.

(G.6)
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Similarly, a vector cubed may be written:

�A 3 = a ei (3α)

= a3 cos(3α) ı̂+ a3 sin(3α) ĵ

= a3 (4 cos3 α− 3 cosα) ı̂+ a3 (3 sinα− 4 sin3 α) ĵ

= [4 ax
3 − 3 ax (ax

2 + ay
2)] ı̂+ [3 (ax

2 + ay
2) ay − 4 ay

3] ĵ

= (ax
3 − 3 ax ay

2) ı̂+ (3 ax
2 ay − ay

3) ĵ

(G.7)

Therefore, the equations for �H are:

�H = Hx ı̂ +Hy ĵ (G.8)

�H2 = (Hx
2 −Hy

2) ı̂+ 2HxHy ĵ (G.9)

�H3 = (Hx
3 − 3HxHy

2) ı̂+ (3Hx
2Hy −Hy

3) ĵ (G.10)

�H∗ = Hx ı̂−Hy ĵ (G.11)

and for �ρ are:

�ρ = ρ cos φ ı̂+ ρ sinφ ĵ (G.12)

�ρ 2 = ρ cos 2φ ı̂+ ρ sin 2φ ĵ (G.13)

�ρ 3 = ρ cos 3φ ı̂+ ρ sin 3φ ĵ (G.14)

�ρ ∗ = ρ cos φ ı̂− ρ sinφ ĵ. (G.15)
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G.2 CLOCKWISE FROM Y-AXIS ANGLE CONVENTION

Measuring the angle clockwise from the y-axis is sometimes used in analysis of

aberrations by many, including Thompson. This has been done historically because

the rays were drawn in the tangential y− z plane. An angle of zero (measured from

the y-axis) meant that the ray was in the tangential plane. Skew rays, which have

nonzero angles, were those that had sagittal components. The equations are needed

to show how to convert properly from the CW from y-axis angle convention into a

CCW from y-axis convention, which will be done in the next section.

For a vector �A, the x and y components can be written for the vector and its

complex conjugate:

�A = a eiα = ax ı̂+ ay ĵ

= a sinα ı̂+ a cosα ĵ

(G.16)

�A∗ = a e−iα = a sin(−α) ı̂+ a cos(−α) ĵ

= −a sinα ı̂+ a cosα ĵ

= −ax ı̂+ ay ĵ.

(G.17)

In this case, the complex conjugate flips the vector across the y-axis, as shown

in Figure G.3. For the vector product �A�B, Equation G.3 can be written in terms
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Figure G.3: The angle of the vector is defined clockwise from the y-axis.

of the x and y components of the �A and �B vectors as follows:

�A�B = a b ei (α+β)

= a b sin(α+ β) ı̂+ a b cos(α + β) ĵ

= a b (sinα cos β + cosα sin β) ı̂+ a b (cosα cosβ − sinα sin β) ĵ

= (ax by + ay bx) ı̂+ (ay by − ax bx) ĵ.

(G.18)

Note that this result is different from that in Equation G.6. Similarly, a vector

cubed may be written:

�A 3 = a ei (3α)

= a3 sin(3α) ı̂+ a3 cos(3α) ĵ

= a3 (3 sinα− 4 sin3 α) ı̂+ a3 (4 cos3 α− 3 cosα) ĵ

= [3 ax(ax
2 + ay

2) − 4 ax
3] ı̂+ [4 ay

3 − 3 ay(ax
2 + ay

2)] ĵ

= (3 ax ay
2 − ax

3) ı̂+ (ay
3 − 3 ax

2 ay) ĵ.

(G.19)
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Therefore, the equations for �H are:

�H = Hx ı̂ +Hy ĵ (G.20)

�H2 = 2HxHy ı̂ + (Hy
2 −Hx

2) ĵ (G.21)

�H3 = (3HxHy
2 −Hx

3) ı̂+ (Hy
3 − 3Hx

2Hy) ĵ (G.22)

�H∗ = −Hx ı̂+Hy ĵ (G.23)

and for �ρ are:

�ρ = ρ sinφ ı̂+ ρ cosφ ĵ (G.24)

�ρ 2 = ρ2 sin 2φ ı̂+ ρ2 cos 2φ ĵ (G.25)

�ρ 3 = ρ3 sin 3φ ı̂+ ρ3 cos 3φ ĵ (G.26)

�ρ ∗ = −ρ sinφ ı̂ + ρ cosφ ĵ. (G.27)

G.3 SWITCHING THE ANGLE CONVENTION FROM CW FROM THE Y-

AXIS TO CCW FROM THE X-AXIS

In his thesis, Tessieres (2003) states that to consider a right-handed convention

(CCW from the x-axis) “that will lead to replace x by −x. However since optical

software programs usually “look” at the image plane from behind,... x is unchanged.

Also, here φ is now defined from the �x axis which will imply to replace cosφ by sinφ

and vice versa. Thus to summarize, the only modification will be to exchange the

expression of the cosine and sine components for each aberration.” This method

does not seem to work.
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In order to understand how the equations depend on the change in angle con-

vention, it is helpful to look at some example dot products that are used in the

derivations, including �H · �ρ and �H2 · �ρ 2. The following equations compare the dot

product �H ·�ρ when it is converted into (unnormalized) Zernike polynomial notation:

(
�H · �ρ

)
CCW

= Hx ρ cosφ+Hy ρ sinφ

= Hx Z2(ρ, φ) +Hy Z3(ρ, φ)

(G.28)

(
�H · �ρ

)
CW

= Hx ρ sinφ+Hy ρ cosφ

= Hy Z2(ρ, φ) +Hx Z3(ρ, φ).

(G.29)

In each case above, the term ρ cos φ converts to Z2(ρ, φ) and ρ sinφ converts

to Z3(ρ, φ) using the numbering of Noll (1976). For this example, it does work to

switch the sine and cosine terms to change the angle convention from CW from

the y-axis to CCW from the x-axis. However, this is not true in general, as the

next example will show. The following equations compare the dot product �H2 · �ρ 2

in both conventions when it is converted into (unnormalized) Zernike polynomial

notation (using the equations for �H2 and �ρ2 for each convention given earlier in this

appendix):

(
�H2 · �ρ 2

)
CCW

= (Hx
2 −Hy

2) ρ2 cos 2φ+ 2HxHy ρ
2 sin 2φ

= 2HxHy Z5(ρ, φ) + (Hx
2 −Hy

2)Z6(ρ, φ)

(G.30)

(
�H2 · �ρ 2

)
CW

= 2HxHy ρ
2 sin 2φ+ (Hy

2 −Hx
2) ρ2 cos 2φ

= 2HxHy Z5(ρ, φ) + (Hy
2 −Hx

2)Z6(ρ, φ)

(G.31)
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where in each case above, the term ρ2 sin 2φ converts to Z5(ρ, φ) and ρ2 cos 2φ

converts to Z6(ρ, φ) using the numbering of Noll (1976).

These second example shows that it does not suffice to switch the resulting sine

and cosine terms to switch the equations for the other convention. The proper way

to modify the equations is to switch the Hx and Hy terms in each equation, but not

do anything to the Zernike polynomial terms. This makes sense because once the ρ

and φ dependence is written as a Zernike polynomial, it does not matter what the

convention is, as long as the Zernike polynomial coefficient is measured using that

convention (and the coefficients do change depending on the convention chosen).

This is the same as saying the value of the Hx and Hy components depend on the

convention. It makes sense that the field vector components written in the equations

switch from Hx to Hy just considering the that this is the change that happens for

a vector by itself to switch from one convention to the other.

This section shows that it is imperative for one to understand which angle con-

vention is being used and stick with it. Ironically, although at first it seems simple

to define a convention and use it appropriately, it can be quite difficult to do cor-

rectly, even more challenging than a completely new type of math (such as vector

multiplication)!

G.3.1 USEFUL VECTOR DOT PRODUCTS AND VECTOR

MULTIPLICATION PRODUCTS

For convenience, this final section lists some vector dot products and vector multi-

plication products that are used in Appendix J.
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Dot products

�H · �H = Hx
2 +Hy

2 (G.32)

�H · �A = AxHx + Ay Hy (G.33)

�H · ρ = Hx ρ cosφ+Hy ρ sin φ (G.34)

�ρ · �ρ = ρ2 (G.35)

�A · �ρ = Ax ρ cosφ+ Ay ρ sinφ (G.36)

Vector multiplication products

�A �H = (AxHx −Ay Hy )̂ı+ (Ay Hx + AxHy)ĵ (G.37)

�A �H∗ = (AxHx + Ay Hy )̂ı+ (Ay Hx − AxHy)ĵ (G.38)
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APPENDIX H

ZEMAX MACRO FOR THE NEW SOLAR TELESCOPE ANALYSIS

! RecordAberrations.zpl
! This macro saves the Zernike coefficients for a grid of
! field angles into an ASCII data files defined by the user.
!
! Written by Stacie Manuel
! Modified June 24, 2009

! INPUTS
! 1) Define the path to the folder where the files will be saved
path$ = "C:\Documents and Settings\shvisc\My Documents\Telescopes\"
! 2) Use a pop up window to enter the base file name
INPUT "Enter the name of the output file:" , filename$
! 3) Choose the size of the grid of field points (size x size points
! in the field)
size=7
! 4) Choose the maximum field angle (field in the corners will be
! sqrt(2) larger)
max=0.025

! OUTPUTS
! Five files will be saved that record the aberrations across the
! field for different misalignments of the secondary mirror
!(including:
! 1) no misalignment
! 2) x center of curvature rotation
! 3) y center of curvature rotation
! 4) x prime focus rotation
! 5) y prime focus rotation
! The columns in the files are:
! 1) x field angle
! 2) y field angle
! 3)-13) Standard Zernike coefficients 1-11

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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! Define the 5 output files
outfile$ = path$ + filename$ + ".dat"
outfilexCCrot$ = path$ + filename$ + "_x_cc_rot.dat"
outfileyCCrot$ = path$ + filename$ + "_y_cc_rot.dat"
outfilexpfrot$ = path$ + filename$ + "_x_pf_rot.dat"
outfileypfrot$ = path$ + filename$ + "_y_pf_rot.dat"
PRINT outfile$

! Make a vector for the grid of normalized field coordinates
! (1 row only)
DECLARE fields, double, 1, size, 1
FOR i, 1, size, 1
fields(i) = -1+2*(i-1)/(size-1)
NEXT i

! Make two long vectors that list the x, y coordinates respectively
! of the all of the field coordinates in the grid
DECLARE x, double, 1, size*size, 1
DECLARE y, double, 1, size*size, 1
k=1
FOR i, 1, size,1
FOR j, 1, size, 1
x(k)=fields(i)
y(k)=fields(j)
k=k+1
NEXT j
NEXT i

! Loop through all the field points in the grid, saving the
! aberrations after groups of 12 fields are assigned
k=1
nloops =INTE(size*size/12) + 1 # (the function INTE rounds down)
FOR index, 1, nloops, 1
FORMAT 3.0
PRINT,"Set of field points = ",index, " of ",nloops
FOR j, 1, 12, 1
SYSP 102, j, x(k)*max
SYSP 103, j, y(k)*max
k=k+1
NEXT j
UPDATE ALL
GOSUB PERTURB
NEXT index
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PRINT " "
PRINT "All Done!"
END

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

SUB PERTURB
! Record aberrrations of the nominal sytem.
PRINT "Record aberrrations of the nominal sytem."
OUTPUT outfile$ APPEND

! Go to the subroutine Zern to calculate and store the Zernike
! coefficients
GOSUB ZERN

! Usage of SURP, short for SETSURFACEPROPERTY:
! SETSURFACEPROPERTY surface, code, value1, value2
! code 10 changes the parameter values 1-4 (in value2)
! value1 is the amount of perturbation to be applied

REWIND
PRINT, "CoC Rotation about x of 1 deg for M2"
SURP 8, 10, 1, 3
OUTPUT outfilexCCrot$ APPEND
GOSUB ZERN
SURP 8, 10, 0, 3

REWIND
PRINT, "CoC Rotation about y of 1 deg for M2"
SURP 8, 10, 1, 4
OUTPUT outfileyCCrot$ APPEND
GOSUB ZERN
SURP 8, 10, 0, 4

REWIND
PRINT, "Prime Focus Rotation about x of 1 deg for M2"
SURP 4, 10, 1, 3
OUTPUT outfilexpfrot$ APPEND
GOSUB ZERN
SURP 4, 10, 0, 3

REWIND
PRINT, "Prime Focus Rotation about y of 1 deg for M2"
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SURP 4, 10, 1, 4
OUTPUT outfileypfrot$ APPEND
GOSUB ZERN
SURP 4, 10, 0, 4
REWIND

UPDATE EDITORS

RETURN

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Subroutine to get the Zernike polynomials and store them into a file
SUB ZERN
UPDATE ALL

! Usage for the GETZERNIKE command:
! GETZERNIKE maxorder,wave,field,sampling,vector,zerntype,epsilon,ref
! sampling = 3 for pupil sampling of 128x128
! zerntype = 1 for "Standard" Zernike terms

f = 1
label 1
GETZERNIKE 11,9,f,3,1,1
FORMAT 16.6
PRINT FLDX(f), FLDY(f),
i = 1
label 2

PRINT vec1(8+i),
i = i + 1
if (i<12) then goto 2
print " "
f = f+1
if (f<13) then goto 1
OUTPUT screen

RETURN
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APPENDIX I

MATLAB CODE

I.1 FITTINGPOLYNOMIALS.M MATLAB CODE

% FittingPolynomials7.m
% Written by Stacie Manuel
%
% Program to fit the data from a ray tracing program or a wavefront
% sensor by using a least squares fit with the equations of the
% Zernike coefficients in misaligned systems.
%
% Output: Coefficients of each field dependence for coma and
% astigmatism and graphical representation of each field dependence.
% More outputs: need to describe
%
% Original for 90" telescope: Regis Tessieres − September 24th, 2003
% Modified for NST telescope: Stacie Manuel − April 17th, 2009
% Modified for General system: Stacie Manuel − October 19th, 2009

clear all
close all

tic % Start timer
scrsz = get(0,'ScreenSize'); % Will be used to create figures

%% This section is for the user to set some flags

show fig=0; % Set this flag to 1 in order to show graphs (very slow!)
Hubble = 0; % Set this flag to save the Hubble figures as .eps files
HET = 1; % Set this flag to save the HET figures as .eps files
HST = 0; % Set this flag to plot the linearity of the coefficients
threshold=1e−15; % Alpha and beta coefficients below this threshold
% will be set to zero in the results to make them easier to read.
doSVD=1; % Set this flag to 1 in order to do the SVD
show SVDfig=1; % Plot the SVD modes across the field
show SVDfigS=0; show SVDfigS2=0;
show SVD figUV=0;
show SVDfigU2=1;show SVDfigU2b=0;show SVDfigV2=0;
show DOFfig=0; % To plot the aberrations for the DOF before SVD
o=1; % To plot the orthogonal functions and save them.
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nm=25; % number modes to show
%% Load the files in a structure called allthedata

% 1. Define the filename (will be unique)
% IMPORTANT: Need to make select the current folder in MATLAB as
% the location where the files are saved.
% 2. Choose a value for pert to describe which other files to find.
% These files will be similar for many systems (x and y decenters
% and tilts, etc.)
% 3. For the Hubble Telescope example where the figures should be
% saved, select the example number (ex).

%Hubble Telescope files
%filename = 'Hubble correctfield.dat'; pert = 0; ex = 'Ex1';
%filename = 'Hubble Z5is3.dat'; pert = 0; ex = 'Ex2';
%filename = 'Hubble Z5ispt6.dat'; pert = 0; ex = 'Ex3';
%filename = 'Hubble 10mmxdec.dat'; pert = 0; ex = 'Ex4';
%filename = 'Hubble pt1mmxdec.dat'; pert = 0; ex = 'Ex5';
%filename = 'HST.dat'; pert=7; HST=1;

% NST files
%filename='NST pt1deg.dat'; pert=2; telescope='NST';
%filename='NST.dat'; pert=4; % Moving the rotation point.

% HET files
% 0.5arcsec tilt, 0.01deg WFC and FP tilt, 0.1mm axial FP
filename = 'HET wcorrection.dat'; pert=8;telescope='HET';

switch pert
case 0

extensions = {''};
perturb = {'nominal'};

case 1
extensions = {'','xde','yde','xro','yro'};
perturb = {'nominal','x decenter','y decenter',...

'x rotation','y rotation'};
case 2

extensions = {'',' x cc rot',' y cc rot',...
' x pf rot',' y pf rot'};

perturb = {'nominal','x CoC rotation','y CoC rotation',...
'x PF rotation','y PF rotation'};

case 3
extensions = {'','M2 xde','M2 yde','M2 xro','M2 yro',...

'M3 xde','M3 yde','M3 xro','M3 yro',...
'M4 xde','M4 yde','M4 xro','M4 yro',...
'M5 xde','M5 yde','M5 xro','M5 yro'};

perturb = {'nominal','M2 x decenter','M2 y decenter',...
'M2 x rotation','M2 y rotation','M3 x decenter',...
'M3 y decenter','M3 x rotation','M3 y rotation',...
'M4 x decenter','M4 y decenter','M4 x rotation',...
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'M4 y rotation','M5 x decenter','M5 y decenter',...
'M5 x rotation','M5 y rotation'};

case 4
extensions = {' 0mm',' 100mm',' 200mm',' 300mm',...

' 400mm',' 573mm',' 3217mm',' 6490mm'};
perturb = extensions;

case 5
extensions = {'','system',};
perturb = {'nominal','decenter',};

case 6
extensions = {'','M2 xde','M2 yde','M2 xro','M2 yro',...

'M3 xde','M3 yde','M3 xro','M3 yro',...
'M4 xde','M4 yde','M4 xro','M4 yro',...
'M5 xde','M5 yde','M5 xro','M5 yro','WFC xro','WFC yro'};

perturb = {'nominal','M2 x decenter','M2 y decenter',...
'M2 x rotation','M2 y rotation','M3 x decenter',...
'M3 y decenter','M3 x rotation','M3 y rotation',...
'M4 x decenter','M4 y decenter','M4 x rotation',...
'M4 y rotation','M5 x decenter','M5 y decenter',...
'M5 x rotation','M5 y rotation','WFC x rotation',...
'WFC y rotation'};

case 7
extensions = {' 0mm',' 0pt001mm',' 0pt01mm',' 0pt1mm',...

' 1mm',' 3mm',' 5mm',' 7mm',' 10mm',' 15mm',' 20mm'};
perturb = extensions;

case 8
extensions = {'','M2 xde','M2 yde','M2 xro','M2 yro',...

'M3 xde','M3 yde','M3 xro','M3 yro',...
'M4 xde','M4 yde','M4 xro','M4 yro',...
'M5 xde','M5 yde','M5 xro','M5 yro'...
'WFC xro','WFC yro','FP xro','FP yro',...
'M2 z','M3 z','M4 z','M5 z','FP z'};

perturb = {'nominal','M2 x decenter','M2 y decenter',...
'M2 x tilt','M2 y tilt','M3 x decenter',...
'M3 y decenter','M3 x tilt','M3 y tilt',...
'M4 x decenter','M4 y decenter','M4 x tilt',...
'M4 y tilt','M5 x decenter','M5 y decenter'...
'M5 x tilt','M5 y tilt','WFC x tilt','WFC y tilt',...
'FP x tilt','FP y tilt','M2 z','M3 z','M4 z','M5 z',...
'FP z'};

end

[¬,name,ext,¬] = fileparts(filename);

for idx = 1:length(extensions)
file = char(strcat(name,extensions(idx),ext));
% Import the data from the file and hold it in a structure
rawData = importdata(file);
% The last few rows of the data column may contain extra entries
% for zero field angle, which need to be deleted. The actual
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% number of fields should be a square number.
numfields=(floor(sqrt(length(rawData))))ˆ2;%%%%
rawData=rawData(1:numfields,:);%%%%
n z=size(rawData,2)−2; % n z is the # of Zernikes in the file

if n z==11
rawData1=unique(dataset({rawData,'x','y','Z1','Z2','Z3',...

'Z4','Z5','Z6','Z7','Z8','Z9','Z10','Z11'}));
elseif n z==17

rawData1=unique(dataset({rawData,'x','y','Z1','Z2','Z3',...
'Z4','Z5','Z6','Z7','Z8','Z9','Z10','Z11','Z12','Z13',...
'Z14','Z15','Z16','Z17'}));

else
disp('Unrecognized number of Zernikes in data file')
return

end

allthedata.(genvarname([name char(extensions(idx))]))=rawData1;
numfields = length(rawData1);

% Store the data in a matrix as well (used for the SVD later)
% The 1st two columns are the fields, the next 3 are piston & tilt
% Start recording Z4 at column 6. Skip columns 16−17 (Z14 & Z15).
if n z==11

rawData2=double(rawData1(:,6:end));
elseif n z==17

rawData2=double(rawData1(:,[6:15,18:19]));
else

disp('Unrecognized number of Zernikes in data file')
return

end

%if (idx==16)||(idx==17)
% rawData2(26,:)=[];
%end

M(:,idx)=rawData2(:);
end
clear file filename idx ext %rawData rawData1 rawData2

%% Loop through all the different perturbations

% Prepare the output dataset called coefficients
NameObs = strcat({'alpha'},num2str((0:4)','%−d'));
NameObs(6:8) = strcat({'beta'},num2str((0:2)','%−d'));
coefficients = dataset({(1:8)','i'},'ObsNames',NameObs);

for index=1:length(perturb)
%% Store the grid data in a structure
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a=allthedata.(genvarname([name char(extensions(index))]));
Grid.angles=unique(a.x);

[Grid.X,Grid.Y]=meshgrid(Grid.angles,Grid.angles);
[Grid.THETA,Grid.RHO] = cart2pol(Grid.X,Grid.Y);
for idx=1:n z % n z is the # of Zernike polynomials in the file

Z num=['Z' num2str(idx)];
temp=griddata(a.x,a.y,a.(genvarname(Z num)),Grid.X,Grid.Y);
temp(isnan(temp))=0;
Grid.(genvarname(Z num))=temp;

end
% Normalize the fields to the max field angle
a.x=a.x/max(Grid.angles);
a.y=a.y/max(Grid.angles);
Grid.X=Grid.X/max(Grid.angles);
Grid.Y=Grid.Y/max(Grid.angles);
Grid.RHO=Grid.RHO/max(Grid.angles);
Grid.mask=ones(size(Grid.RHO)); Grid.mask(Grid.RHO>1)=0;
if index==1

nominal=a;
end
clear idx Z num

%% Plot the measured coefficients for all Zernike terms

if show fig==1
figure('Name','Measured coefficients through the field',...

'Position',[10 scrsz(4)/3 1100 600])
for idx=1:n z−3

if n z==11; subplot(2,5,idx); end
if n z==17; subplot(3,5,idx); end
imagesc(Grid.angles,Grid.angles,...

Grid.(genvarname(['Z' num2str(idx+3)])))
axis square,title(['Z' num2str(idx+3)]),colorbar,
set(gca,'YDir','normal')

end
end
%% Least−squares fit (LSF) to calculate the Zernike coefficients

% Matrix for the LSF for Astig3 (third order astigmatism)
sz=size(a.x);
M5=[(2*a.x.*a.y) a.x a.y ones(sz) zeros(sz)];
M6=[(a.x.ˆ2−a.y.ˆ2) −a.y a.x zeros(sz) ones(sz)];
MAstig3 = [M5; M6];
% Least−squares fit for Z5 and Z6
RAstig3=MAstig3\[a.Z5; a.Z6]; %x=A\b
%b=MAstig3*RAstig3; diff=b−[a.Z5; a.Z6]; norm(diff) % b=Ax

% Matrix for the LSF for Coma3 (third order coma)
M7=[a.y zeros(sz) ones(sz)];
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M8=[a.x ones(sz) zeros(sz)];
MComa3=[M7; M8];
% Least−squares fit for Z7 and Z8
RComa3=MComa3\[a.Z7; a.Z8]; %x=A\b
%b2=MComa3*RComa3; diff2=b2−[a.Z7; a.Z8]; norm(diff2)% b=Ax

% Delete coefficients below the threshold value
RAstig3(abs(RAstig3)<threshold)=0;
RComa3(abs(RComa3)<threshold)=0;

% Save the coefficients to the dataset called coefficients
thistrial=[name char(extensions(index))];
coefficients.(genvarname(thistrial))=[RAstig3; RComa3];

%% Calculate astigmatism contributions from coefficients

% Measured astigmatism
astig.meas.Z5=Grid.Z5;
astig.meas.Z6=Grid.Z6;
B=ones(size(Grid.X));

% Constant part
astig.cst.Z5=RAstig3(4)*B;
astig.cst.Z6=RAstig3(5)*B;
%Linear part
astig.lin.Z5 = RAstig3(2).*Grid.X+RAstig3(3).*Grid.Y;
astig.lin.Z6 = −RAstig3(2).*Grid.Y+RAstig3(3).*Grid.X;
%Quadratic part
astig.quad.Z5=2*RAstig3(1).*Grid.X.*Grid.Y;
astig.quad.Z6=RAstig3(1).*(Grid.X.ˆ2−Grid.Y.ˆ2);

%Residual part
astig.res.Z5=Grid.Z5−astig.cst.Z5−astig.lin.Z5−astig.quad.Z5;
astig.res.Z6=Grid.Z6−astig.cst.Z6−astig.lin.Z6−astig.quad.Z6;

% limits for the figure with the 5 graphs
xmin = 1.1*min(Grid.X(:)); xmax = 1.1*max(Grid.X(:));
ymin = 1.1*min(Grid.Y(:)); ymax = 1.1*max(Grid.Y(:));

%% Graphic representation of astigmatism contributions
if show fig==1

all fields={'meas','cst','lin','quad','res'};
graphlabels={'Total ','Constant ','Linear ',...

'Quadratic ','Residual '};

figure('Name',[thistrial,...
' image orientation'],...
'Position',[10 scrsz(4)/3 scrsz(3)−10 scrsz(4)/2])

h1=gcf;
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figure('Name',[thistrial,...
' astigmatism coefficient magnitudes'],...
'Position',[10 scrsz(4)/5 scrsz(3)−10 scrsz(4)/1.5])

h2=gcf;

% Find the scale factor for the graphs so that the measured
% astigmatism has line images that look good.
temp=Astigmatism(astig.meas.Z5,astig.meas.Z6);
scale = 0.3/max(max(temp.x));

% 5 it. in loop for the meas, quad, linear, const, residual:
for idx = 1:length(all fields)

C5=astig.(char((genvarname(all fields(idx))))).Z5;
C6=astig.(char((genvarname(all fields(idx))))).Z6;
temp=Astigmatism(C5,C6);
figure(h1),subplot(2,5,idx)
switch 1 % Change this to 0 or 1

case 0 % This option scales the lines so they always
% show without overlapping (no matter how small or
% large)
quiv(Grid.X,Grid.Y,temp.x,temp.y);

case 1 % This option lets the user scale the data
temp.x=temp.x*scale; temp.y=temp.y*scale;
quiv(Grid.X,Grid.Y,temp.x,temp.y,0);

end

axis square, axis([xmin xmax ymin ymax]);...
title([graphlabels(idx) 'astigmatism'])

xlabel('X position'); ylabel('Y position');

figure(h2)
subplot(3,5,idx)
imagesc(Grid.angles,Grid.angles,temp.amp)
axis square; colorbar; set(gca,'YDir','normal')
title([graphlabels(idx) 'sqrt(C5ˆ2+C6ˆ2)'])
subplot(3,5,5+idx)
imagesc(Grid.angles,Grid.angles,C5)
axis square; colorbar; set(gca,'YDir','normal')
title([graphlabels(idx) 'C5'])
subplot(3,5,10+idx)
imagesc(Grid.angles,Grid.angles,C6)
axis square; colorbar; set(gca,'YDir','normal')
title([graphlabels(idx) 'C6'])

end
clear idx temp C5 C6

end
%% Calculate coma contributions from coefficients

% Measured part
coma.meas.Z7=Grid.Z7;
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coma.meas.Z8=Grid.Z8;
% Constant part
coma.cst.Z7=RComa3(3).*B;
coma.cst.Z8=RComa3(2).*B;
% Linear part
coma.lin.Z7=RComa3(1).*Grid.Y;
coma.lin.Z8=RComa3(1).*Grid.X;
% Residual part
coma.res.Z7=coma.meas.Z7−coma.cst.Z7−coma.lin.Z7;
coma.res.Z8=coma.meas.Z8−coma.cst.Z8−coma.lin.Z8;

%% Graphic representation of coma contributionss

if show fig==1
figure('Name',[thistrial,...

' coma coefficient magnitudes'],...
'Position',[10 scrsz(4)/5 scrsz(3)−10 scrsz(4)/1.5])

h3=gcf;
for idx=1:5

if idx==4
figure(h1),subplot(2,5,5+idx)
text(xmin,0,'Does not exist.');axis off

figure(h3),subplot(3,5,idx)
text(xmin,0,'Does not exist.');axis off
axis([xmin xmax ymin ymax]);

else
C7=coma.(char((genvarname(all fields(idx))))).Z7;
C8=coma.(char((genvarname(all fields(idx))))).Z8;
temp=Coma(C7,C8);

figure(h1),subplot(2,5,5+idx)
switch 1 % Change this to 0 or 1

case 0 % This option scales the lines so they
% always show without overlapping (no matter
% how small or large)
quiv(Grid.X,Grid.Y,temp.x,temp.y);

case 1 % This option lets the user scale the data
temp.x=temp.x*scale; temp.y=temp.y*scale;
quiv(Grid.X,Grid.Y,temp.x,temp.y,0);

end
xlabel('X position'); ylabel('Y position');

figure(h3)
subplot(3,5,idx),
imagesc(Grid.angles,Grid.angles,temp.amp)
colorbar; set(gca,'YDir','normal'), axis square
title([graphlabels(idx) 'sqrt(C7ˆ2+C8ˆ2)'])

subplot(3,5,5+idx),
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imagesc(Grid.angles,Grid.angles,C7)
colorbar; set(gca,'YDir','normal'), axis square
title([graphlabels(idx) 'C7'])

subplot(3,5,10+idx),
imagesc(Grid.angles,Grid.angles,C8)
colorbar; set(gca,'YDir','normal'), axis square
title([graphlabels(idx) 'C8'])

end
figure(h1); axis square, axis([xmin xmax ymin ymax]);
title([graphlabels(idx) 'coma'])

end
clear idx graphlabels C7 C8

end

%% Creation of low order Zernikes

% This will create the Zernike polynomials on a grid that is the
% same size as the measured data.
if index==1

Zernike=ZernikePolysonGrid(Grid);
if show fig==1

figure('Name','Zernike polynomials 1−8'),
for idx = 1:11

subplot(3,4,idx),
imagesc(Grid.angles,Grid.angles,...

Zernike.(genvarname(['Z' num2str(idx)]))),
axis square;set(gca,'YDir','normal');colorbar

end
clear idx m

end
end
%% Coefficients for orthogonal functions

aberrations={'focus';'astig';'coma';'trefoil';'spherical'};
aberrations num1={'Z4';'Z5';'Z7';'Z9';'Z11'};
aberrations num2={' ';'Z6';'Z8';'Z10';' '};

if n z==17
aberrations(6:7)={'oblsph';'seccoma'};
aberrations num1(6:7)={'Z12';'Z16'};
aberrations num2(6:7)={'Z13';'Z17'};

end
coeff=[];
for idx=1:length(aberrations)

% The variable (of type = structure) Pupil Z holds the
% Zernike coefficients recorded in the lens design program
% which are measured in the pupil (for a grid of fields).
Pupil Z.f1=Grid.(genvarname(char(aberrations num1(idx))));
if idx==1 | |idx==5 % focus or spherical
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% No other dependence to add.
else % for aberrations coming in pairs

% Add other term.
Pupil Z.f2=Grid.(genvarname(char(aberrations num2(idx))));

end
c=DoubleZernikeFit(Pupil Z,Zernike,threshold);
coeff=[coeff; c];
clear Pupil Z

end

% Create a list of the coefficients:
ortho coefficients.(genvarname(char(perturb(index))))=coeff;

% Create a list of the induced coefficients
% = Perturbed system coefficients − nominal system coefficients
% Don't need to find difference coefficients for the first trial,
% which is the aligned system. (The coefficients would be all
% zeros)
if index �=1

ortho diff coefficients.(genvarname(char(perturb(index))))=...
coeff−ortho coefficients.(genvarname(char(perturb(1))));

end
clear f1 f2 c coeff aberrations num1 aberrations num2 idx

end

%% Create datasets for the orthogonal functions

NameAb(1:13)=aberrations(1); % focus
NameAb(14:39)=aberrations(2); % astig
NameAb(40:65)=aberrations(3); % coma
NameAb(66:91)=aberrations(4); % trefoil
NameAb(92:104)=aberrations(5); % spherical
if n z==17

NameAb(105:130)=aberrations(6); % oblsph
NameAb(131:156)=aberrations(7); % seccoma

end
NameAb=NameAb';

List1={'Constant1','Constant2',...
'Linear1','Linear2','Linear3','Linear4',...
'Focus1','Focus2',...
'Astig1','Astig2','Astig3','Astig4',...
'Coma1','Coma2','Coma3','Coma4',...
'Trefoil1','Trefoil2','Trefoil3','Trefoil4',...
'Quartic1','Quartic2','OblSph1','OblSph2','OblSph3','OblSph4'};

List2={'Constant','Linear1','Linear2','Focus','Astig1','Astig2',...
'Coma1','Coma2','Trefoil1','Trefoil2','Quartic',...
'OblSph1','OblSph2'};

Listall=[List2';List1';List1';List1';List2'];
if n z==17; Listall=[Listall;List1';List1']; end
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Names=strcat(Listall,NameAb);
clear NameAb List1 List2 Listall

orth coeff DS=dataset(ortho coefficients,'ObsNames',Names');

if length(perturb)>1
orth diff coeff DS=dataset(ortho diff coefficients,...

'ObsNames',Names');
end

exp=[0; 1;1; 0; 2;2; 1;1; 4;4; 0; 4;4;...%focus
2;2; 3;1;1;3; 2;2; 0;4;4;4; 1;4;4;1; 1;4;4;1; 4;4; 4;4;0;4;...%astig
1;1; 2;4;0;2; 1;1; 1;4;4;1; 0;4;4;4; 4;4;4;4; 4;4; 4;4;4;4;...%coma
3;3; 4;2;2;4; 4;4; 1;4;4;1; 4;4;4;4; 4;4;4;4; 4;4; 4;4;4;4;...%trefoil
0; 1;1; 0; 4;4; 4;4; 4;4; 4; 4;4;...%spherical
2;2; 1;4;4;1; 4;4; 4;4;0;4; 4;4;4;4; 4;4;4;4; 4;4; 4;4;4;4;...%oblsph
1;1; 0;4;4;4; 4;4; 4;4;4;4; 4;4;4;4; 4;4;4;4; 4;4; 4;4;4;4];...%2coma

%% Sort the data to examine the results for the largest contributions

for idx=1:length(perturb)
if idx==1

data=orth coeff DS.(genvarname(char(perturb(1))));
else

data=orth diff coeff DS.(genvarname(char(perturb(idx))));
end
[¬,IX] = sort(abs(data),1,'descend');
result.(genvarname(char(perturb(idx)))) = ...

dataset(data(IX),'ObsNames',Names(IX));
end
clear idx IX data
%% Print figures to .eps files for Latex

% For Hubble astigmatism example:
if Hubble==1

Latexnames = {'HST lines.eps',...
'HST Z5Z6 Matlab.eps',...
'HST Z7Z8 Matlab.eps'};

Latexnames = strcat(ex,' ',Latexnames);

for idx=1:length(Latexnames)
h=figure(idx);
set(gcf,'PaperPositionMode','auto')
print(h,'−depsc', Latexnames{idx});

end

end
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%% SVD analysis of sensitivity matrix to find control modes

if doSVD==1

% In order to plot the resulting wavefronts from the SVD, the
% Zernike polynomials over a reasonable size grid for plotting
% nicely needs to be created.
n=20;
grid2.angles=linspace(−1,1,n);
[grid2.X,grid2.Y]=meshgrid(grid2.angles,grid2.angles);
[grid2.THETA,grid2.RHO] = cart2pol(grid2.X,grid2.Y);
grid2.mask=ones(size(grid2.RHO)); grid2.mask(grid2.RHO>1)=0;

Zernike2=ZernikePolysonGrid(grid2);

% Take difference to find sensitivity:
Msens=M−repmat(M(:,1),[1,length(extensions)]);
Msens=Msens(:,2:end); % delete the first column (all zeros)
[U,S,V] = svd(Msens,'econ');

% Look at the Singular Values
s = nonzeros(S); % The singular values
if show SVDfigS==1

figure, semilogy(s,'x'),hold on, semilogy(s),hold off
xlabel('Index','FontSize',14),
ylabel('Magnitude','FontSize',14)
title(['Singular Values of the ',telescope,...

' Alignment Sensitivty Matrix'],'FontSize',14)
set(gca,'XTick',1:length(s))

end
col=1;
for idx=4:n z

% Create a Zernike matrix where the rows are all the field
% points and the columns are terms 4 (focus) through 11
% (spherical) or 17 (secondary coma) as the case may be,
% except skip terms Z14, Z15
if (idx<14)||(idx>15)

Zernmat(:,col) = ...
Zernike2.(genvarname(char(['Z',num2str(idx)])))(:);

col=col+1;
end

end

for idx2=1:length(extensions)−1
temp = reshape(U(:,idx2),numfields,[]);
surf vecs = Zernmat*temp';

grid2.Z4=reshape(temp(:,1),sqrt(numfields),sqrt(numfields));
grid2.Z5=reshape(temp(:,2),sqrt(numfields),sqrt(numfields));
grid2.Z6=reshape(temp(:,3),sqrt(numfields),sqrt(numfields));
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grid2.Z7=reshape(temp(:,4),sqrt(numfields),sqrt(numfields));
grid2.Z8=reshape(temp(:,5),sqrt(numfields),sqrt(numfields));
grid2.Z9=reshape(temp(:,6),sqrt(numfields),sqrt(numfields));
grid2.Z10=reshape(temp(:,7),sqrt(numfields),sqrt(numfields));
grid2.Z11=reshape(temp(:,8),sqrt(numfields),sqrt(numfields));
if n z==17
grid2.Z12=reshape(temp(:,9),sqrt(numfields),sqrt(numfields));
grid2.Z13=reshape(temp(:,10),sqrt(numfields),sqrt(numfields));
grid2.Z16=reshape(temp(:,11),sqrt(numfields),sqrt(numfields));
grid2.Z17=reshape(temp(:,12),sqrt(numfields),sqrt(numfields));
end
%%%
aberrations={'focus';'astig';'coma';'trefoil';'spherical'};
aberrations 1={'Z4';'Z5';'Z7';'Z9';'Z11'};
aberrations 2={' ';'Z6';'Z8';'Z10';' '};
if n z==17

aberrations(6:7)={'oblsph';'seccoma'};
aberrations 1(6:7)={'Z12';'Z16'};
aberrations 2(6:7)={'Z13';'Z17'};

end

coeff=[];
for idx=1:length(aberrations)

% The variable (of type = structure) Pupil Z holds the
% Zernike coefficients recorded in the lens design program
% which are measured in the pupil (for a grid of fields).
Pupil Z.f1=grid2.(genvarname(char(aberrations 1(idx))));
if idx==1 | |idx==5 % focus or spherical

% No other dependence to add.
else % for aberrations coming in pairs

% Add other term.
Pupil Z.f2=grid2.(genvarname(char(aberrations 2(idx))));

end
c=DoubleZernikeFit(Pupil Z,Zernike,threshold);
coeff=[coeff; c];
clear Pupil Z

end
% Create a list of the coefficients:
ortho coeff U.(genvarname(char(['mode',num2str(idx2)])))=coeff;

end
ortho coeff U ds=dataset(ortho coeff U);
dortho coeff U ds=double(ortho coeff U ds);

if show SVDfig==1
if show SVD figUV==1

for index=1:min(nm,size(U,2)) % show up to 10 modes
figure('Name', ['Mode ',num2str(index)],...

'Position',[50 50 600 600])
c=dortho coeff U ds(:,index);
[map]=DoubleZernikeCreate2(c,Zernike2,n z,[−0.75 0.75]);
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figure('Name', ['Configuration for mode ',...
num2str(index)],'Position',[50 50 600 500])

stem(V(:,index))
title(['Configuration vector from V for mode ',...

num2str(index)],'FontSize',14)
xlabel('Degree of freedom','FontSize',14)
axis([0.8 length((V(:,index)))+0.2 −1 1])
xticklabel rotate(1:size(V,2),90,perturb(2:end),...

'FontSize',12)
ylabel('Normalized amount of misalignment',...

'FontSize',14)
end

end
end

%}
%% Plot the aberrations resulting from each degree of freedom
for idx2=1:length(extensions)−1

temp = reshape(Msens(:,idx2),numfields,[]);
surf vecs = Zernmat*temp';

grid3.Z4=reshape(temp(:,1),sqrt(numfields),sqrt(numfields));
grid3.Z5=reshape(temp(:,2),sqrt(numfields),sqrt(numfields));
grid3.Z6=reshape(temp(:,3),sqrt(numfields),sqrt(numfields));
grid3.Z7=reshape(temp(:,4),sqrt(numfields),sqrt(numfields));
grid3.Z8=reshape(temp(:,5),sqrt(numfields),sqrt(numfields));
grid3.Z9=reshape(temp(:,6),sqrt(numfields),sqrt(numfields));
grid3.Z10=reshape(temp(:,7),sqrt(numfields),sqrt(numfields));
grid3.Z11=reshape(temp(:,8),sqrt(numfields),sqrt(numfields));
if n z==17
grid3.Z12=reshape(temp(:,9),sqrt(numfields),sqrt(numfields));
grid3.Z13=reshape(temp(:,10),sqrt(numfields),sqrt(numfields));
grid3.Z16=reshape(temp(:,11),sqrt(numfields),sqrt(numfields));
grid3.Z17=reshape(temp(:,12),sqrt(numfields),sqrt(numfields));
end

coeff=[];
for idx=1:length(aberrations)

% The variable (of type = structure) Pupil Z holds the
% Zernike coefficients recorded in the lens design program
% which are measured in the pupil (for a grid of fields).
Pupil Z.f1=grid3.(genvarname(char(aberrations 1(idx))));
if idx==1 | |idx==5 % focus or spherical

% No other dependence to add.
else % for aberrations coming in pairs

% Add other term.
Pupil Z.f2=grid3.(genvarname(char(aberrations 2(idx))));

end
c=DoubleZernikeFit(Pupil Z,Zernike,threshold);
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coeff=[coeff; c];
clear Pupil Z

end
% Create a list of the coefficients:
ortho coeff M.(genvarname(char(['mode',num2str(idx2)])))=coeff;

end
ortho coeff M ds=dataset(ortho coeff M);
dortho coeff M ds=double(ortho coeff M ds);

if show DOFfig==1
if gcf<40

for index=1:min(10,size(M,2)) %show up to 10 dof
%a=find(exp≤1);
figure('Name', ['DOF ',num2str(index)],...

'Position',[50 50 900 450])
Functionnames; %Create string of names
a0=find(exp==0);
a1=find(exp==1);
a01=[a1; a0];
subplot(6,1,2:5) % to have room for function labels
h1=stem(1:length(a1),dortho coeff M ds(a1,index),'b');
hold on
h2=stem((length(a1)+1):length(a01),...
dortho coeff M ds(a0,index),'r');
ylimit = 1.1*max(abs(dortho coeff M ds(a01,index)));
axis([0 length(a01)+1 −ylimit ylimit])
xticklabel rotate(1:length(a01),90,...

FunctionNames(a01),'FontSize',14,...
'interpreter','latex')

ylabel('Value of coefficient','FontSize',14)
title(['Orthogonal coefficients for '...

'individual DOF:',perturb(index+1)],'FontSize',14)
end

end
end

%% SVD analysis of orthogonal coefficients to find control modes

[U2,S2,V2] = svd(double(orth diff coeff DS),'econ');

if show SVDfig==1
if show SVDfigS2==1

% Look at the Singular Values
s2 = nonzeros(S2); % The singular values
figure, semilogy(s2,'x'),hold on, semilogy(s2),hold off
xlabel('Index','FontSize',14),
ylabel('Magnitude','FontSize',14)
title(['Singular Values of the ',telescope,...

' Alignment Sensitivty Matrix'],'FontSize',14)
set(gca,'XTick',1:length(s2))
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end
% Plot the wavefront maps across the field.
for index=1:min(nm,size(U2,2)) %show up to 10 modes of the dof

if gcf<40 %Too many figures will crash MATLAB
if show SVDfigU2==1

figure('Name', ['Mode ',num2str(index)],...
'Position',[50 50 600 600])

c=U2(:,index);
[map]=DoubleZernikeCreate2(c,Zernike2,n z,[−7 7]);

end
% Find the indices for all coefficients in a rotationally symmetric
% system or those that vary linearly with misalignment:

Functionnames; %Create string of names
a0=find(exp==0);
a1=find(exp==1);
a01=[a1; a0];
if show SVDfigU2b==1
figure('Name', ['Mode ',num2str(index)],...

'Position',[50 50 900 450])
subplot(5,1,1:4) % to have room for function labels
h1=stem(1:length(a1),U2(a1,index),'b'); hold on
h2=stem((length(a1)+1):length(a01),U2(a0,index),'r');
axis([0 length(a01)+1 −1.1 1.1])
xticklabel rotate(1:length(a01),90,...

FunctionNames(a01),'FontSize',14,...
'interpreter','latex')

ylabel('Value of coefficient','FontSize',14)
title(['Orthogonal coefficients from U for mode ',...

num2str(index)],'FontSize',14), hold off
%xlabel('Function','FontSize',14)

end

if show SVDfigV2==1
figure('Name', ['Configuration for mode ',...

num2str(index)],'Position',[50 50 600 500])
h1=stem(1:20,V2(1:20,index),'b'); hold on
h2=stem(21:25,V2(21:25,index),'r');
title(['Configuration vector from V for mode ',...

num2str(index)],'FontSize',14)
xlabel('Degree of freedom','FontSize',14)
axis([0 size(V2,2)+1 −1.1 1.1])
xticklabel rotate(1:size(V2,2),90,perturb(2:end),...

'FontSize',12)
ylabel('Normalized amount of misalignment',...

'FontSize',14)
end

end
end

end
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%% Print figures to .eps files for Latex

% For HET mode analysis:
if HET==1

Latexnames = {'1','2','3','4','5','6','7','8','9','10',...
'11','12','13','14','15','16','17','18','19','20',...
'21','22','23','24','25'};

ex='HET mode';ext='.eps';
Latexnames = strcat(ex,Latexnames,ext);

for idx=1:length(Latexnames)
h=figure(idx+1);
set(gcf,'PaperPositionMode','auto')
print(h,'−depsc', Latexnames{idx});

end

end
end

%% Plot the orthogonal functions

if o==1
for index=121:156

h=figure('Name', ['Orthogonal Mode ',num2str(index)],...
'Position',[50 50 600 600]);

c=zeros(156,1); %12x13=156
c(index)=1;
[map]=DoubleZernikeCreate2(c,Zernike2,n z,[−8 8]);
Latexnames = num2str(index);
ex='Orthmode'; ext='.eps';
Latexnames = strcat(ex,Latexnames,ext);
set(gcf,'PaperPositionMode','auto')
print(h,'−depsc', Latexnames);

end
end

%% Plot the linearity of the HST coefficients

if HST==1
values=[0; 0.001; 0.01; 0.1; 1; 3; 5; 7; 10; 15; 20];
aaa=double(orth coeff DS);

r=9; % Include perturbations up to, including 10mm decenters

for idx=0:3
a=find(exp==idx);
figure('Position',[10 scrsz(4)/3 1100 350])
subplot(1,2,1),plot(values(1:r),aaa(a,1:r),'x−'),
xlabel('Secondary mirror decenter (in mm)','FontSize',12)
ylabel({'Value of orthogonal coefficient',...
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'(waves of 587.8 nm)'},'FontSize',12)
title('Linear plot','FontSize',12)
if idx==0;

subplot(1,2,2),semilogx(values(1:r),aaa(a,1:r),'x−')
axis([1e−3 1e1 −0.1 0.6]),
title('Semi−log plot','FontSize',12);
ylabel({'Value of orthogonal coefficient',...

' (waves of 587.8 nm)'},'FontSize',12)
elseif idx==1;

subplot(1,2,2),loglog(values(1:r),abs(aaa(a,1:r)),'x−')
axis([1e−3 1e1 1e−7 inf]),
title('Log−log plot','FontSize',12);
ylabel({'Absolute value of orthogonal coefficient',...

' (waves of 587.8 nm)'},'FontSize',12)
elseif idx==2;

subplot(1,2,2),loglog(values(1:r),abs(aaa(a,1:r)),'x−')
axis([1e−3 1e1 1e−7 inf]),
title('Quadratic','FontSize',12);
ylabel({'Absolute value of orthogonal coefficient',...

' (waves of 587.8 nm)'},'FontSize',12)
elseif idx==3;

subplot(1,2,2),loglog(values(1:r),abs(aaa(a,1:r)),'x−')
axis([1e−3 1e1 1e−7 inf]),
title('Log−log plot','FontSize',12);
ylabel({'Absolute value of orthogonal coefficient',...

' (waves of 587.8 nm)'},'FontSize',12)
end
xlabel('Secondary mirror decenter (in mm)','FontSize',12)

end
end

%%
toc
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I.2 ASTIGMATISM.M MATLAB CODE

function [dataout]=Astigmatism(Z5,Z6)

dataout.amp=sqrt(Z6.ˆ2+Z5.ˆ2);
%dataout.angle=(1/2)*atan2(Z5,Z6)−pi/4;
dataout.angle=(1/2)*atan2(Z5,Z6);
[dataout.x,dataout.y] = pol2cart(dataout.angle,dataout.amp);

I.3 COMA.M MATLAB CODE

function [dataout]=Coma(Z7,Z8)

dataout.amp=sqrt(Z7.ˆ2+Z8.ˆ2);
dataout.angle=atan2(Z7,Z8);

[dataout.x,dataout.y] = pol2cart(dataout.angle,dataout.amp);

I.4 ZERNIKEPOLYSONGRID.M MATLAB CODE

function [Zernike]=ZernikePolysonGrid(grid)

m=grid.mask;
r=grid.RHO;
a=grid.THETA;

Zernike.Z1 =m;
Zernike.Z2 =m.*(2*r.*cos(a));
Zernike.Z3 =m.*(2*r.*sin(a));
Zernike.Z4 =m.*(sqrt(3)*(2*r.ˆ2−1));
Zernike.Z5 =m.*(sqrt(6)*(r.ˆ2.*sin(2*a)));
Zernike.Z6 =m.*(sqrt(6)*(r.ˆ2.*cos(2*a)));
Zernike.Z7 =m.*(sqrt(8)*(3*r.ˆ3−2*r).*sin(a));
Zernike.Z8 =m.*(sqrt(8)*(3*r.ˆ3−2*r).*cos(a));
Zernike.Z9 =m.*(sqrt(8)*r.ˆ3.*(sin(3*a)));
Zernike.Z10=m.*(sqrt(8)*r.ˆ3.*(cos(3*a)));
Zernike.Z11=m.*(sqrt(5)*(6*r.ˆ4−6*r.ˆ2+1));
Zernike.Z12=m.*(sqrt(10)*(4*r.ˆ4−3*r.ˆ2).*cos(2*a));
Zernike.Z13=m.*(sqrt(10)*(4*r.ˆ4−3*r.ˆ2).*sin(2*a));
Zernike.Z14=m.*(sqrt(10)*(r.ˆ4).*cos(4*a));
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Zernike.Z15=m.*(sqrt(10)*(r.ˆ4).*sin(4*a));
Zernike.Z16=m.*(sqrt(12)*(10*r.ˆ5−12*r.ˆ3+3*r).*cos(a));
Zernike.Z17=m.*(sqrt(12)*(10*r.ˆ5−12*r.ˆ3+3*r).*sin(a));

I.5 DOUBLEZERNIKEFIT.M MATLAB CODE

function [c]=DoubleZernikeFit(PupilZern,Zernike,threshold)

f1=PupilZern.f1;

% If there are a pair of Zernike polynomial coefficients throughout
% the field (Zernike ):
if isfield(PupilZern,'f2')

f2=PupilZern.f2;

c=zeros(26,1);

c(1) = sum(sum(Zernike.Z1.*f1));
c(2) = sum(sum(Zernike.Z1.*f2));

c(3) = sum(sum(Zernike.Z2.*f1 + Zernike.Z3.*f2));
c(4) = sum(sum(Zernike.Z2.*f1 − Zernike.Z3.*f2));
c(5) = sum(sum(Zernike.Z3.*f1 + Zernike.Z2.*f2));
c(6) = sum(sum(Zernike.Z3.*f1 − Zernike.Z2.*f2));

c(7) = sum(sum(Zernike.Z4.*f1));
c(8) = sum(sum(Zernike.Z4.*f2));

c(9) = sum(sum(Zernike.Z5.*f1 + Zernike.Z6.*f2));
c(10) = sum(sum(Zernike.Z5.*f1 − Zernike.Z6.*f2));
c(11) = sum(sum(Zernike.Z6.*f1 + Zernike.Z5.*f2));
c(12) = sum(sum(Zernike.Z6.*f1 − Zernike.Z5.*f2));

c(13) = sum(sum(Zernike.Z7.*f1 + Zernike.Z8.*f2));
c(14) = sum(sum(Zernike.Z7.*f1 − Zernike.Z8.*f2));
c(15) = sum(sum(Zernike.Z8.*f1 + Zernike.Z7.*f2));
c(16) = sum(sum(Zernike.Z8.*f1 − Zernike.Z7.*f2));

c(17) = sum(sum(Zernike.Z9.*f1 + Zernike.Z10.*f2));
c(18) = sum(sum(Zernike.Z9.*f1 − Zernike.Z10.*f2));
c(19) = sum(sum(Zernike.Z10.*f1 + Zernike.Z9.*f2));
c(20) = sum(sum(Zernike.Z10.*f1 − Zernike.Z9.*f2));

c(21) = sum(sum(Zernike.Z11.*f1));
c(22) = sum(sum(Zernike.Z11.*f2));
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c(23) = sum(sum(Zernike.Z12.*f1 + Zernike.Z13.*f2));
c(24) = sum(sum(Zernike.Z12.*f1 − Zernike.Z13.*f2));
c(25) = sum(sum(Zernike.Z13.*f1 + Zernike.Z12.*f2));
c(26) = sum(sum(Zernike.Z13.*f1 − Zernike.Z12.*f2));

else % Only one Zernike pupil dependence
c=zeros(13,1);
for idx2=1:13

Z=Zernike.(genvarname(char(['Z',num2str(idx2)])));
c(idx2) = sum(sum(Z.*f1));

end
end

c=c/length(find(Zernike.Z1==1)); % Normalize by the field sampling
c(abs(c)<threshold)=0; % Delete coefficients below the threshold value
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APPENDIX J

DERIVATIONS OF ORTHOGONAL FUNCTIONS

In Section 6.4, the orthogonal functions for third order astigmatism in a misaligned

system were derived. In this appendix, the other aberrations are derived. Before

this is done, there are two sections that show how the Hx and Hy field dependencies

turn into Zernike polynomials in field space and the ρ and φ dependence turn into

Zernike polynomials in pupil space. Some of the vector dot products and vector

multiplication products used in this appendix are listed in Appendix G.

Section J.3 includes the third order aberration derivations, which will be listed in

Zernike polynomial order (Z4: field curvature; Z5, Z6: astigmatism; Z7, Z8: coma;

and Z11: spherical). Section J.4 includes the fifth order aberration derivations, again

in Zernike polynomial order (Z4: quartic field curvature; Z5, Z6: fifth order astig-

matism; Z7, Z8: field cubed coma; Z9, Z10: trefoil; Z11: fifth order field curvature;

Z12, Z13: oblique spherical aberration; and Z16, Z17: fifth order coma).

All of the equations will start in the form derived by Thompson, then they will

be derived into Tessieres’s form to show the Greek letter coefficients and finally into

orthogonal polynomial form. The orthogonal polynomials will each be underlined.

These equations will all use the convention where the angle is defined counterclock-

wise from the x-axis.
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J.1 ZERNIKE POLYNOMIALS TO DESCRIBE FIELD DEPENDENCE

In this section, the Zernike polynomials that describe the field appendix are dis-

cussed. It may be helpful to refer to the table showing the Zernike polynomials in

Cartesian form (Table F.2). Arrows will be used to show the Zernike polynomials

are not exactly equal to the previous expression due to the normalizations.

If an aberration has no field dependence (constant throughout the field), it may

be described by the piston Zernike polynomial.

1 = Z1(h, θ) (J.1)

Linear field dependence (Hx or Hy field terms just by themselves) correspond to

the tip and tilt Zernike polynomials.

Hx = h cos θ ⇒ Z2(h, θ) (J.2)

Hy = h sin θ ⇒ Z3(h, θ) (J.3)

The term for h2 corresponds to Zernike polynomial number four: Z4(h, θ) =

√
3 (2h2 − 1). This polynomial has a piston term in the field, which can be writ-

ten as Z1(h, θ) and corresponds to a constant field dependent aberration that can

be measured. We do not care about the exact relation between Z4 and Z1, so the

constants a and b will be used. (All the constants a, b, c etc. used in this appendix

should be assumed to be different scaling factors valid for terms in individual equa-

tions and not as constants that are equal throughout all the different equations that
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use them.)

Hx
2 +Hy

2 = h2 ⇒ aZ4(h, θ) + b Z1(h, θ) (J.4)

The quadratic field dependent terms that turn into astigmatism terms are

straightforward using Table F.2.

2HxHy = Z5(h, θ) (J.5)

Hx
2 −Hy

2 = Z6(h, θ) (J.6)

The next quadratic field dependent terms require a combination of Zernike poly-

nomials.

Hy
2 → −(Hx

2 −Hy
2) + (Hx

2 +Hy
2 − 1) + 1

⇒ −aZ6(h, θ) + b Z4(h, θ) + c Z1(h, θ)

(J.7)

Hx
2 →(Hx

2 −Hy
2) + (Hx

2 +Hy
2 − 1) + 1

⇒ aZ6(h, θ) + b Z4(h, θ) + c Z1(h, θ)

(J.8)

The following cubic terms correspond to coma in field, balanced with linear field

dependent terms.

Hx
2Hy +Hy

3 = Hy (Hx
2 +Hy

2) ⇒ aZ7(h, θ) + b Z3(h, θ) (J.9)

Hx
3 +HxHy

2 = Hx (Hx
2 +Hy

2) ⇒ aZ8(h, θ) + b Z2(h, θ) (J.10)

The following cubic terms correspond to trefoil in field. For these equations, it



321

is helpful to look at Table F.2.

3Hx
2Hy −Hy

3 = Hy(3Hx
2 −Hy

2) = Z9(h, θ) (J.11)

Hx
3 − 3HxHy

2 = Hx(Hx
2 − 3Hy

2) = Z10(h, θ) (J.12)

The following cubic terms also correspond to trefoil in field, but they are also

balanced by coma and linear field dependent terms.

3Hx
2Hy +Hy

3 ⇒ aZ9(h, θ) + aZ7(h, θ) + b Z3(h, θ) (J.13)

Hx
3 + 3HxHy

2 ⇒ −aZ10(h, θ) + aZ8(h, θ) + b Z2(h, θ) (J.14)

Hx
3 ⇒ aZ10(h, θ) + aZ8(h, θ) + b Z2(h, θ) (J.15)

Hy
3 ⇒ −aZ9(h, θ) + aZ7(h, θ) + b Z3(h, θ) (J.16)

This next term for quartic field dependence is similar to the derivation of Z4(h, θ).

(
Hx

2 +Hy
2
)2

= h4 ⇒ aZ11(h, θ) + b Z4(h, θ) + c Z1(h, θ) (J.17)

The following quartic terms in field correspond to field dependence with a sec-

ondary astigmatism-like functional form.

Hx
4 −Hy

4 = (Hx
2 −Hy

2)(Hx
2 +Hy

2) ⇒ aZ12(h, θ) + b Z6(h, θ) (J.18)

Hx
3Hy +HxHy

3 = HxHy(Hx
2 +Hy

2) ⇒ aZ13(h, θ) + b Z5(h, θ) (J.19)
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J.2 ZERNIKE POLYNOMIALS TO DESCRIBE PUPIL DEPENDENCE

This section lists some of the conversions of ρ and φ into Zernike polynomials.

Table F.1 is correct, however since piston in the wavefront does not affect the image

and the distortion (tilt) terms can not be easily measured with a wavefront sensor,

these terms will be dropped. For example, the ρ2 term turns into the Zernike

polynomial Z4(ρ, φ) =
√

3 (2ρ2 − 1). Although this Zernike polynomial includes a

piston term (in the pupil), it can be dropped because piston in the wavefront does

not affect the image.

ρ2 ⇒ Z4(ρ, φ) (J.20)

ρ3 sinφ⇒ Z7(ρ, φ) (J.21)

ρ3 cosφ⇒ Z8(ρ, φ) (J.22)

ρ5 cosφ⇒ aZ16(ρ, φ) + b Z8(ρ, φ) (J.23)

ρ5 sinφ⇒ aZ17(ρ, φ) + b Z7(ρ, φ) (J.24)

J.3 THIRD ORDER ABERRATION DERIVATIONS

This section includes the derivations of the orthogonal functions corresponding to the

terms in Tables 3.1 and 3.4. The derivations use the Zernike polynomial functions

listed in Section J.1 in field space and in Section J.2 in pupil space. The lines in

the equations marked with WT correspond to the form of the equations of Tessieres

and the underlined terms are the orthogonal functions.
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J.3.1 THIRD ORDER FIELD CURVATURE

Field curvature is a rotationally symmetric aberration, described by the “focus”

Zernike aberration term, Z4(ρ, φ).

Quadratic field curvature

W = W220M

(
�H · �H

)
(�ρ · �ρ ) (J.25)

= W220M

(
Hx

2 +Hy
2
)
ρ2 (J.26)

WT = γ0

(
Hx

2 +Hy
2
)
Z4(ρ, φ) (J.27)

⇒ γ0

[
aZ4(h, θ)Z4(ρ, φ) + b Z1(h, θ)Z4(ρ, φ)

]
(J.28)

Linear field curvature

W = −2
(
�H · �A220M

)
(�ρ · �ρ ) (J.29)

= −2 (HxA220M x +Hy A220M y) ρ
2 (J.30)

WT = γ1Hx Z4(ρ, φ) + γ2Hy Z4(ρ, φ) (J.31)

⇒ γ1 Z2(h, θ)Z4(ρ, φ) + γ2 Z3(h, θ)Z4(ρ, φ) (J.32)

Constant field curvature

W = B220M
(�ρ · �ρ ) (J.33)

WT = γ3 Z4(ρ, φ) (J.34)

⇒ γ3Z1(h, θ)Z4(ρ, φ) (J.35)

(J.36)
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J.3.2 ASTIGMATISM

Quadratic astigmatism

W = 1
2
W222

�H2 · �ρ 2 (J.37)

= 1
2
W222

[
2HxHyρ

2 sin 2φ+ (Hx
2 −Hy

2) ρ2 cos 2φ
]

(J.38)

WT = α0

[
2HxHy Z5(ρ, φ) + (Hx

2 −Hy
2)Z6(ρ, φ)

]
(J.39)

⇒ α0

[
Z5(h, θ)Z5(ρ, φ) + Z6(h, θ)Z6(ρ, φ)

]
(J.40)

Linear astigmatism

W = −
(
�H �A222

)
· �ρ 2 (J.41)

= −(A222x Hx − A222y Hy)ρ
2 cos 2φ− (A222y Hx + A222x Hy)ρ

2 sin 2φ (J.42)

WT = (α1Hx − α2Hy)Z6(ρ, φ) + (α2Hx + α1Hy)Z5(ρ, φ) (J.43)

⇒ α1

[
Z3(h, θ)Z5(ρ, φ) + Z2(h, θ)Z6(ρ, φ)

]
+ α2

[
Z2(h, θ)Z5(ρ, φ) − Z3(h, θ)Z6(ρ, φ)

] (J.44)

Constant astigmatism

W = 1
2
�B2

222 · �ρ 2 (J.45)

= 1
2

[(
B2

222x −B2
222y

)
ρ2 cos 2φ+ 2B222xB222y ρ

2 sin 2φ
]

(J.46)

WT = α3 Z5(ρ, φ) + α4 Z6(ρ, φ) (J.47)

⇒ α3 Z1(h, θ)Z5(ρ, φ) + α4 Z1(h, θ)Z6(ρ, φ) (J.48)

(J.49)
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J.3.3 COMA

Linear coma

W = W131

(
�H · �ρ

)
(�ρ · �ρ ) (J.50)

= W131 (Hx ρ cosφ+Hy ρ sinφ) ρ2 (J.51)

= W131

(
Hx ρ

3 cosφ+Hy ρ
3 sinφ

)
(J.52)

WT = β0 [Hy Z7(ρ, φ) +Hx Z8(ρ, φ)] (J.53)

⇒ β0

[
Z3(h, θ)Z7(ρ, φ) + Z2(h, θ)Z8(ρ, φ)

]
(J.54)

Constant coma

W = −
(
�A131 · �ρ

)
(�ρ · �ρ ) (J.55)

= −A131x ρ
3 cos φ−A131y ρ

3 sinφ (J.56)

WT = β1 Z7(ρ, φ) + β2 Z8(ρ, φ) (J.57)

⇒ β1 Z1(h, θ)Z7(ρ, φ) + β2 Z1(h, θ)Z8(ρ, φ) (J.58)
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J.3.4 SPHERICAL ABERRATION

Constant spherical aberration

W = W040 (�ρ · �ρ )2 (J.59)

= W040ρ
4 (J.60)

WT = ν0 Z11(ρ, φ) (J.61)

= ν0 [aZ11(ρ, φ) + b Z4(ρ, φ)] (J.62)

⇒ ν0

[
aZ1(h, θ)Z11(ρ, φ) + b Z1(h, θ)Z4(ρ, φ)

]
(J.63)

(J.64)

J.4 FIFTH ORDER ABERRATION DERIVATIONS

J.4.1 QUARTIC FIELD CURVATURE

Quartic field curvature

W = W420M

(
�H · �H

)2

(�ρ · �ρ ) (J.65)

= W420M
(Hx

2 +Hy
2)2 ρ2 (J.66)

WT = ψ0 (Hx
4 +Hy

4 + 2Hx
2Hy

2)Z4(ρ, φ) (J.67)

= ψ0 h
4 Z4(ρ, φ) (J.68)

⇒ ψ0

[
aZ11(h, θ)Z4(ρ, φ) + b Z4(h, θ)Z4(ρ, φ) + c Z1(h, θ)Z4(ρ, φ)

]
(J.69)
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Cubic field curvature

W = −4
(
�H · �H

)(
�H · �A420M

)
(�ρ · �ρ ) (J.70)

= −4 (Hx
2 +Hy

2) (A420M xHx + A420M y Hy) ρ
2 (J.71)

WT =
[
ψ1(Hx

3 +HxHy
2) + ψ2(Hx

2Hy +Hy
3)
]
Z4(ρ, φ) (J.72)

⇒ ψ1

[
aZ8(h, θ)Z4(ρ, φ) + b Z2(h, θ)Z4(ρ, φ)

]
+ ψ2

[
aZ7(h, θ)Z4(ρ, φ) + b Z3(h, θ)Z4(ρ, φ)

] (J.73)

Quadratic field curvature 1

W = B420M

(
�H · �H

)
(�ρ · �ρ ) (J.74)

WT = ψ3 (Hx
2 +Hy

2)Z4(ρ, φ) (J.75)

⇒ ψ3

[
aZ4(h, θ)Z4(ρ, φ) + b Z1(h, θ)Z4(ρ, φ)

]
(J.76)

Quadratic field curvature 2

W = 2
(
�H2 · �B2

420M

)
(�ρ · �ρ ) (J.77)

= 2
[
(Hx

2 −Hy
2)(B2

420M x − B2
420M y) + (2HxHy)(2B420MxB420M y)

]
ρ2 (J.78)

WT =
[
ψ5(Hx

2 −Hy
2) + ψ4 (HxHy)

]
Z4(ρ, φ) (J.79)

⇒ ψ4 Z5(h, θ)Z4(ρ, φ) + ψ5 Z6(h, θ)Z4(ρ, φ) (J.80)
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Linear field curvature

W = −4
(
�H · �C420M

)
(�ρ · �ρ ) (J.81)

= −4 (Hx C420M x +Hy C420M y)Z4(ρ, φ) (J.82)

WT = (ψ6Hx + ψ7 Hy)Z4(ρ, φ) (J.83)

⇒ ψ6 Z2(h, θ)Z4(ρ, φ) + ψ7 Z3(h, θ)Z4(ρ, φ) (J.84)

(J.85)

Constant field curvature

W = D420M
(�ρ · �ρ ) (J.86)

WT = ψ8 Z4(ρ, φ) (J.87)

⇒ ψ8 Z1(h, θ)Z4(ρ, φ) (J.88)

J.4.2 FIFTH ORDER ASTIGMATISM

In Thompson’s equation for W422, there are two terms that are cubic in field that

include the vector �A422. Tessieres had two Greek letter coefficients from each of

those equations (four total), when only two total are needed (χ1 = − �A422x and

χ2 = − �A422y). Thus, the Greek letters subscripts will be slightly different for this

aberration than how he derived them. There are no lines with WT for cubic astig-

matism 1 or 2. The WT line will be found with the total cubic astigmatism.
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Quartic astigmatism

W = 1
2
W422

(
�H · �H

)(
�H2 · �ρ 2

)
(J.89)

= 1
2
W422(Hx

2 +Hy
2)[2HxHy Z5(ρ, φ) + (Hx

2 −Hy
2)Z6(ρ, φ)] (J.90)

WT = χ0 [(2Hx
3Hy + 2HxHy

3)Z5(ρ, φ) + (Hx
4 −Hy

4)Z6(ρ, φ)] (J.91)

= χ0

{
[aZ13(h, θ) + b Z5(h, θ)]Z5(ρ, φ)

+ [aZ12(h, θ) + b Z6(h, θ)]Z6(ρ, φ)
} (J.92)

⇒ χ0

{
a
[
Z13(h, θ)Z5(ρ, φ) + Z12(h, θ)Z6(ρ, φ)

]
+ b
[
Z5(h, θ)Z5(ρ, φ) + Z6(h, θ)Z6(ρ, φ)

]} (J.93)

Cubic astigmatism 1

W = −
(
�H · �H

) [(
�H �A422

)
· �ρ 2
]

(J.94)

= −(Hx
2 +Hy

2)[(A422x Hx − A422y Hy)ρ
2 cos 2φ

+ (A422y Hx + A422xHy)ρ
2 sin 2φ]

(J.95)

= (Hx
2 +Hy

2){[(−A422x)Hx − (−A422y)Hy] ρ
2 cos 2φ

+ [(−A422y)Hx + (−A422x)Hy] ρ
2 sin 2φ}

(J.96)

= (Hx
2 +Hy

2) [(χ1Hx − χ2Hy)Z6(ρ, φ) + (χ2Hx + χ1Hy)Z5(ρ, φ)] (J.97)

=
[
χ1(Hx

2Hy +Hy
3) + χ2(Hx

3 +HxHy
2)
]
Z5(ρ, φ)

+
[
χ1 (Hx

3 +HxHy
2) − χ2(Hx

2Hy +Hy
3)
]
Z6(ρ, φ)

(J.98)

= χ1

[
(Hx

2Hy +Hy
3)Z5(ρ, φ) + (Hx

3 +HxHy
2)Z6(ρ, φ)

]
+ χ2

[
(Hx

3 +HxHy
2)Z5(ρ, φ) − (Hx

2Hy +Hy
3)Z6(ρ, φ)

] (J.99)
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Cubic astigmatism 2

W = −
(
�H · �A422

)(
�H2 · �ρ 2

)
(J.100)

= −(A422x Hx + A422y Hy)
[
2HxHy Z5(ρ, φ) + (Hx

2 −Hy
2)Z6(ρ, φ)

]
(J.101)

=
[
2Hx

2Hy(−A422x) + 2HxH
2
y (−A422y)

]
Z5(ρ, φ)

+
[
(−A422x)(Hx

3 −HxHy
2) + (−A422y)(Hx

2Hy −Hy
3)
]
Z6(ρ, φ)

(J.102)

=
[
χ1 (2Hx

2Hy) + χ2 (2HxHy
2)
]
Z5(ρ, φ)

+
[
χ1 (Hx

3 −HxHy
2) + χ2 (Hx

2Hy −Hy
3)
]
Z6(ρ, φ)

(J.103)

= χ1

[
2Hx

2Hy Z5(ρ, φ) + (Hx
3 −HxHy

2)Z6(ρ, φ)
]

+ χ2

[
2HxHy

2 Z5(ρ, φ) + (Hx
2Hy −Hy

3)Z6(ρ, φ)
] (J.104)
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Total cubic astigmatism (1 and 2)

W =
[
χ1 (Hx

2Hy +Hy
3 + 2Hx

2Hy)

+ χ2

(
Hx

3 +HxHy
2 + 2HxHy

2
) ]
Z5(ρ, φ)

+
[
χ1

(
Hx

3 +HxHy
2 +Hx

3 −HxHy
2
)

+ χ2 (−Hx
2Hy −Hy

3 +Hx
2Hy −Hy

3)
]
Z6(ρ, φ)

(J.105)

WT =
[
χ1 (3Hx

2Hy +Hy
3) + χ2(Hx

3 + 3HxHy
2)
]
Z5(ρ, φ)

+
[
χ1 (2Hx

3) + χ2 (−2Hy
3)
]
Z6(ρ, φ)

(J.106)

= χ1

[
(3Hx

2Hy +Hy
3)Z5(ρ, φ) + (2Hx

3)Z6(ρ, φ)
]

+ χ2

[
(Hx

3 + 3HxHy
2)Z5(ρ, φ) + (−2Hy

3)Z6(ρ, φ)
] (J.107)

= χ1

{
[aZ9(h, θ) + aZ7(h, θ) + b Z3(h, θ)]Z5(ρ, φ)

+ [aZ10(h, θ) + aZ8(h, θ) + b Z2(h, θ)]Z6(ρ, φ)

+ χ2

{
[−aZ10(h, θ) + aZ8(h, θ) + b Z2(h, θ)]Z5(ρ, φ)

+ [aZ9(h, θ) − aZ7(h, θ) − b Z3(h, θ)]Z6(ρ, φ)
}

(J.108)

⇒ χ1

{
a
[
Z9(h, θ)Z5(ρ, φ) + Z10(h, θ)Z6(ρ, φ)

]
+ a

[
Z7(h, θ)Z5(ρ, φ) + Z8(h, θ)Z6(ρ, φ)

]
+ b
[
Z3(h, θ)Z5(ρ, φ) + Z2(h, θ)Z6(ρ, φ)

]}
+ χ2

{
− a

[
Z10(h, θ)Z5(ρ, φ) − Z9(h, θ)Z6(ρ, φ)

]
+ a

[
Z8(h, θ)Z5(ρ, φ) − Z7(h, θ)Z6(ρ, φ)

]
+ b
[
Z2(h, θ)Z5(ρ, φ) − Z3(h, θ)Z6(ρ, φ)

]}

(J.109)
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Quadratic astigmatism 1

W = 3
2

(
�H · �H

)(
�B2

422 · �ρ 2
)

(J.110)

= 3
2
(Hx

2 +Hy
2)
[(
B2

222x −B2
222y

)
ρ2 cos 2φ+ 2B222xB222y ρ

2 sin 2φ
]

(J.111)

WT = χ3 (Hx
2 +Hy

2)Z5(ρ, φ) + χ4 (Hx
2 +Hy

2)Z6(ρ, φ) (J.112)

= χ3 [aZ4(h, θ) + b Z1(h, θ)]Z5(ρ, φ)

+ χ4 [aZ4(h, θ) + b Z1(h, θ)]Z6(ρ, φ)

(J.113)

⇒ χ3

[
aZ4(h, θ)Z5(ρ, φ) + b Z1(h, θ)Z5(ρ, φ)

]
+ χ4

[
aZ4(h, θ)Z6(ρ, φ) + b Z1(h, θ)Z6(ρ, φ)

] (J.114)

Quadratic astigmatism 2

W = 3
2
B422

(
�H2 · �ρ 2

)
(J.115)

= 3
2
B422(2HxHy Z5(ρ, φ) + (Hx

2 −Hy
2)Z6(ρ, φ)) (J.116)

WT = χ5

[
2HxHy Z5(ρ, φ) + (Hx

2 −Hy
2)Z6(ρ, φ)

]
(J.117)

⇒ χ5

[
Z5(h, θ)Z5(ρ, φ) + Z6(h, θ)Z6(ρ, φ)

]
(J.118)
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Linear astigmatism 1

W = −1
2

[(
�C3

422
�H∗
)
· �ρ 2
]

(J.119)

= −1
2

{[
(C3

422x − 3C422xC
2
422y)Hx

+ (3C2
422x C422y − C3

422y)Hy

]
ρ2 cos 2φ

+
[
(3C2

422xC422y − C3
422y)Hx

− (C3
422x − 3C422xC

2
422y)Hy

]
ρ2 sin 2φ

}
(J.120)

WT = (χ6 Hx + χ7 Hy)Z6(ρ, φ) + (χ7Hx − χ6Hy)Z5(ρ, φ) (J.121)

⇒ χ6

[
−Z3(h, θ)Z5(ρ, φ) + Z2(h, θ)Z6(ρ, φ)

]
+ χ7

[
Z2(h, θ)Z5(ρ, φ) + Z3(h, θ)Z6(ρ, φ)

] (J.122)

Linear astigmatism 2

W = 3
2

[(
�H �C422

)
· �ρ 2
]

(J.123)

= 3
2

[
(C422xHx − C422y Hy) ρ

2 cos 2φ

+ (C422y Hx + C422xHy) ρ
2 sin 2φ

] (J.124)

WT = (χ9 Hx + χ8 Hy)Z5(ρ, φ) + (χ8Hx − χ9Hy)Z6(ρ, φ) (J.125)

⇒ χ8

[
Z3(h, θ)Z5(ρ, φ) + Z2(h, θ)Z6(ρ, φ)

]
+ χ9

[
Z2(h, θ)Z5(ρ, φ) − Z3(h, θ)Z6(ρ, φ)

] (J.126)
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Constant astigmatism

W = 1
2

(
�D2

422 · �ρ 2
)

(J.127)

= 1
2
(2D422xD422y Z5(ρ, φ) + (D2

422x −D2
422y)Z6(ρ, φ)) (J.128)

WT = ψ10 Z5(ρ, φ) + ψ11 Z6(ρ, φ) (J.129)

⇒ ψ10 Z1(h, θ)Z5(ρ, φ) + ψ11 Z1(h, θ)Z6(ρ, φ) (J.130)

(J.131)

J.4.3 FIELD CUBED COMA

Cubic coma

W = W331M

(
�H · �H

)(
�H · �ρ

)
(�ρ · �ρ ) (J.132)

= W331M

[
(Hx

2 +Hy
2)(Hx ρ cosφ+Hy ρ sin φ)

]
ρ2 (J.133)

= W331M

[
Hx (Hx

2 +Hy
2) ρ3 cos φ+Hy (Hx

2 +Hy
2) ρ3 sin φ

]
(J.134)

WT = ξ0
[
(Hx

3 +HxHy
2)Z8(ρ, φ) + (Hx

2Hy +Hy
3)Z7(ρ, φ)

]
(J.135)

= ξ0[aZ8(h, θ)Z8(ρ, φ) + b Z2(h, θ)Z8(ρ, φ)

+ aZ7(h, θ)Z7(ρ, φ) + b Z3(h, θ)Z7(ρ, φ)]

(J.136)

⇒ ξ0

{
a
[
Z7(h, θ)Z7(ρ, φ) + Z8(h, θ)Z8(ρ, φ)

]
+ b
[
Z3(h, θ)Z7(ρ, φ) + Z2(h, θ)Z8(ρ, φ)

]} (J.137)
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Quadratic coma 1

W = −2
(
�H · �A331M

)(
�H · �ρ

)
(�ρ · �ρ ) (J.138)

= −2 (A331M xHx + A331M y Hy)(Hx ρ cosφ+Hy ρ sin φ) ρ2 (J.139)

= (ξ2Hx
2 + ξ1HxHy) ρ

3 cosφ+ (ξ2HxHy + ξ1Hy
2) ρ3 sinφ (J.140)

WT = (ξ2Hx
2 + ξ1HxHy)Z8(ρ, φ) + (ξ2HxHy + ξ1Hy

2)Z7(ρ, φ) (J.141)

= ξ1 [HxHy Z8(ρ, φ) +Hy
2 Z7(ρ, φ)]

+ ξ2 [Hx
2 Z8(ρ, φ) +HxHy Z7(ρ, φ)]

(J.142)

= ξ1
{
aZ5(h, θ)Z8(ρ, φ)

+ [−aZ6(h, θ) + b Z4(h, θ) + c Z1(h, θ)]Z7(ρ, φ)
}

+ ξ2
{
[aZ6(h, θ) + b Z4(h, θ) + c Z1(h, θ)]Z8(h, θ)

+ aZ5(h, θ)Z7(ρ, φ)
}

(J.143)

⇒ ξ1

{
a
[
Z5(h, θ)Z8(ρ, φ) − Z6(h, θ)Z7(ρ, φ)

]
+ b Z4(h, θ)Z7(ρ, φ) + c Z1(h, θ)Z7(ρ, φ)

}
+ ξ2

{
a
[
Z6(h, θ)Z8(ρ, φ) + Z5(h, θ)Z7(ρ, φ)

]
+ b Z4(h, θ)Z8(ρ, φ) + c Z1(h, θ)Z8(ρ, φ)

}
(J.144)
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Linear coma 1

W = 2B331M

(
�H · �ρ

)
(�ρ · �ρ ) (J.145)

= 2B331M
(Hx ρ cosφ+Hy ρ sinφ) ρ2 (J.146)

WT = ξ3Hy Z7(ρ, φ) + ξ3Hx Z8(ρ, φ) (J.147)

⇒ ξ3

[
Z3(h, θ)Z7(ρ, φ) + Z2(h, θ)Z8(ρ, φ)

]
(J.148)

Quadratic coma 2

W = −
(
�H · �H

)(
�A331M

· �ρ
)

(�ρ · �ρ ) (J.149)

= − (Hx
2 +Hy

2
)
(A331M x ρ cosφ+ A331M y ρ sinφ) ρ2 (J.150)

WT = ξ4
(
Hx

2 +Hy
2
)
Z7 (ρ, φ) + ξ5

(
Hx

2 +Hy
2
)
Z8(ρ, φ) (J.151)

⇒ ξ4

[
aZ4(h, θ)Z7(ρ, φ) + b Z1(h, θ)Z7(ρ, φ)

]
+ ξ5

[
aZ4(h, θ)Z8(ρ, φ) + b Z1(h, θ)Z8(ρ, φ)

] (J.152)
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Linear coma 2

W =
[(
�B2

331M
�H∗
)
· �ρ
]
(�ρ · �ρ ) (J.153)

=
{[(

B2
331M x − B2

331M y

)
ı̂+ (2B331M xB331M y) ĵ

]
(Hxı̂−Hy ĵ)

} · �ρ (�ρ · �ρ )

(J.154)

=
[(
B2

331M x −B2
331M y

)
Hx − (2B331M xB331M y) (−Hy)

]
ρ3 cosφ

+
[
(2B331M xB331M y)Hx +

(
B2

331M x −B2
331M y

)
(−Hy)

]
ρ3 sinφ

(J.155)

WT = (−ξ7Hx + ξ6Hy)Z8(ρ, φ) + (ξ6Hx + ξ7Hy)Z7(ρ, φ) (J.156)

= ξ7 [−Hx Z8(ρ, φ) +Hy Z7(ρ, φ)] + ξ6 [Hy Z8(ρ, φ) +Hx Z7(ρ, φ)] (J.157)

⇒ ξ7

[
Z3(h, θ)Z7(ρ, φ) − Z2(h, θ)Z8(ρ, φ)

]
+ ξ6

[
Z2(h, θ)Z7(ρ, φ) + Z3(h, θ)Z8(ρ, φ)

] (J.158)

Constant coma

W = −
(
�C331M

· �ρ
)

(�ρ · �ρ ) (J.159)

= −(C331M x ρ cos φ+ C331M y ρ sin φ)ρ2 (J.160)

= ξ10 ρ
3 cos φ+ ξ9 ρ

3 sin φ (J.161)

WT = ξ9 Z7(ρ, φ) + ξ10 Z8(ρ, φ) (J.162)

⇒ ξ9Z1(h, θ)Z7(ρ, φ) + ξ10 Z1(h, θ)Z8(ρ, φ) (J.163)

(J.164)
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J.4.4 TREFOIL

Cubic trefoil

W = 1
4
W333

(
�H3 · �ρ 3

)
(J.165)

= 1
4
W333

[
(Hx

3 − 3HxHy
2)ρ3 cos 3φ+ (3Hx

2Hy −Hy
3)ρ3 sin 3φ

]
(J.166)

WT = μ0

[
(3Hx

2Hy −Hy
3)Z9(ρ, φ) + (Hx

3 − 3HxHy
2)Z10(ρ, φ)

]
(J.167)

⇒ μ0

[
Z9(h, θ)Z9(ρ, φ) + Z10(h, θ)Z10(ρ, φ)

]
(J.168)

Quadratic trefoil

W = −3
4

(
�H2 �A333

)
· �ρ 3 (J.169)

= −3
4

{[
(Hx

2 −Hy
2)̂ı+ 2HxHy ĵ

]
(A333x ı̂+ A333y ĵ)

} · �ρ 3 (J.170)

= −3
4

{ [
(Hx

2 −Hy
2)A333x − 2HxHy A333y

]
ρ3 cos 3φ

+
[
2HxHy A333x + (Hx

2 −Hy
2)A333y

]
ρ3 sin 3φ

} (J.171)

WT =
[
μ2(Hx

2 −Hy
2) − μ1(2HxHy)

]
Z10(ρ, φ)

+
[
μ2(2HxHy) + μ1(Hx

2 −Hy
2)
]
Z9(ρ, φ)

(J.172)

⇒ μ1

[
Z6(h, θ)Z9(ρ, φ) − Z5(h, θ)Z10(ρ, φ)

]
+ μ2

[
Z5(h, θ)Z9(ρ, φ) + Z6(h, θ)Z10(ρ, φ)

] (J.173)
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Linear trefoil

W = 3
4

(
�H �B2

333

)
· �ρ 3 (J.174)

= 3
4

{ [
(B2

333x −B2
333y)Hx − (2B333xB333y)Hy

]
ρ3 cos 3φ

+
[
(2B333xB333y)Hx + (B2

333x −B2
333y)Hy

]
ρ3 sin 3φ

} (J.175)

WT = (μ3Hy + μ4Hx)Z9(ρ, φ) + (μ3Hx − μ4Hy)Z10(ρ, φ) (J.176)

⇒ μ3

[
Z3(h, θ)Z9(ρ, φ) + Z2(h, θ)Z10(ρ, φ)

]
+ μ4

[
Z2(h, θ)Z9(ρ, φ) − Z3(h, θ)Z10(ρ, φ)

] (J.177)

Constant trefoil

W = −1
4
�C3

333 · �ρ 3 (J.178)

= −1
4

[ (
C3

333x − 3C333x C
2
333y

)
ρ3 cos 3φ

+
(
3C2

333x C333y − C3
333y

)
ρ3 sin 3φ

] (J.179)

WT = μ5Z9(ρ, φ) + μ6 Z10(ρ, φ) (J.180)

⇒ μ5Z1(h, θ)Z9(ρ, φ) + μ6Z1(h, θ)Z10(ρ, φ) (J.181)

J.4.5 FIELD CURVATURE FOR OBLIQUE SPHERICAL

Tessieres changed ρ4 into only Z11(ρ, φ). Since Z11(ρ, φ) includes a ρ2 term, W240

and the other perturbation vectors ( �A240m and B240M
) also contribute to the focus

aberration Z4(ρ, φ). Thus in the line after WT , Z11(ρ, φ) changes into aZ11(ρ, φ) +

b Z4(ρ, φ). This does not change the functional form of the Z4(ρ, φ) aberration

derived by Tessieres. This only helps describe in more detail the source of each of
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the aberrations when written as Zernike polynomials.

Quadratic field curvature for oblique spherical

W = W240M

(
�H · �H

)
(�ρ · �ρ )2 (J.182)

= W240M
(Hx

2 +Hy
2)ρ4 (J.183)

WT = δ0
(
Hx

2 +Hy
2
)
Z11(ρ, φ) (J.184)

= δ0 [aZ4(h, θ) + b Z1(h, θ)] [c Z11(ρ, φ) + dZ4(ρ, φ)] (J.185)

⇒ δ0

[
a cZ4(h, θ)Z11(ρ, φ) + a dZ4(h, θ)Z4(ρ, φ)

+ b c Z1(h, θ)Z11(ρ, φ) + b d Z1(h, θ)Z4(ρ, φ)
] (J.186)

Linear field curvature for oblique spherical

W = −2 �H · �A240M
(�ρ · �ρ )2 (J.187)

= −2(A240M xHx + A240M y Hy)ρ
4 (J.188)

WT = (δ1Hy + δ2 Hx)Z11(ρ, φ) (J.189)

= [δ1 Z3(h, θ) + δ2 Z2(h, θ)] [aZ11(ρ, φ) + b Z4(ρ, φ)] (J.190)

⇒ δ1

[
aZ3(h, θ)Z11(ρ, φ) + b Z3(h, θ)Z4(ρ, φ)

]
+ δ2

[
aZ2(h, θ)Z11(ρ, φ) + b Z2(h, θ)Z4(ρ, φ)

] (J.191)
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Constant field curvature for oblique spherical

W = B240M
(�ρ · �ρ )2 (J.192)

WT = δ3 Z11(ρ, φ) (J.193)

= δ3 [aZ11(ρ, φ) + b Z4(ρ, φ)] (J.194)

⇒ δ3

[
aZ1(h, θ)Z11(ρ, φ) + b Z1(h, θ)Z4(ρ, φ)

]
(J.195)

J.4.6 OBLIQUE SPHERICAL ABERRATION

As for the case of field curvature for oblique spherical aberration, Tessieres changed

ρ3 cos 2φ into only Z12(ρ, φ), but this Zernike polynomial term is also balanced with

primary astigmatism Z6(ρ, φ). Thus in the line after WT , Z12(ρ, φ) will also be

converted into Z6(ρ, φ) and similarly, Z13(ρ, φ) will also be converted in Z5(ρ, φ).

Quadratic oblique spherical aberration

W = 1
2
W242

(
�H2 · �ρ

)
(�ρ · �ρ ) (J.196)

= 1
2
W242

[
(Hx

2 −Hy
2)ρ2 cos 2φ+ 2HxHy ρ

2 sin 2φ
]
ρ2 (J.197)

= η0

[
(Hx

2 −Hy
2)ρ4 cos 2φ+ 2HxHy ρ

4 sin 2φ
]

(J.198)

WT = η0

[
(Hx

2 −Hy
2)Z12(ρ, φ) + 2HxHy Z13(ρ, φ)

]
(J.199)

= η0

{ (
Hx

2 −Hy
2
)
[aZ12(ρ, φ) + b Z6(ρ, φ)]

+ 2HxHy [aZ13(ρ, φ) + b Z5(ρ, φ)]
} (J.200)

⇒ η0

{
a
[
Z6(h, θ)Z12(ρ, φ) + Z5(h, θ)Z13(ρ, φ)

]
+ b
[
Z5(h, θ)Z5(ρ, φ) + Z6(h, θ)Z6(ρ, φ)

]} (J.201)
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Linear oblique spherical aberration

W = − �H �A242 · �ρ (�ρ · �ρ ) (J.202)

= −(A242x Hx −A242y Hy)ρ
3 cosφ− (A242y Hx + A242x Hy)ρ

3 sin φ (J.203)

WT = (η2Hx − η1Hy)Z12(ρ, φ) + (η1Hx + η2Hy)Z13(ρ, φ) (J.204)

= η1 {Hx [aZ13(ρ, φ) + b Z5(ρ, φ)] −Hy [aZ12(ρ, φ) + b Z6(ρ, φ)]}

+ η2 {Hx [aZ12(ρ, φ) + b Z6(ρ, φ)] +Hy [aZ13(ρ, φ) + b Z5(ρ, φ)]}
(J.205)

⇒ η1

{
a
[
Z2(h, θ)Z13(ρ, φ) − Z3(h, θ)Z12(ρ, φ)

]
+ b
[
Z2(h, θ)Z5(ρ, φ) − Z3(h, θ)Z6(ρ, φ)

]}
+ η2

{
a
[
Z2(h, θ)Z12(ρ, φ) + Z3(h, θ)Z13(ρ, φ)

]
+ b
[
Z2(h, θ)Z6(ρ, φ) + Z3(h, θ)Z5(ρ, φ)

]}
(J.206)

Constant oblique spherical aberration

W = 1
2
�B2

242 · �ρ (�ρ · �ρ ) (J.207)

= 1
2

[
(Hx

2 −Hy
2) ρ3 cos φ+ 2HxHy ρ

3 sin φ
]

(J.208)

WT = η3 Z12(ρ, φ) + η4 Z13(ρ, φ) (J.209)

= η3 [aZ12(ρ, φ) + b Z6(ρ, φ)] + η4 [aZ13(ρ, φ) + b Z5(ρ, φ)] (J.210)

⇒ η3

[
aZ1(h, θ)Z12(ρ, φ) + b Z1(h, θ)Z6(ρ, φ)

]
+ η4

[
aZ1(h, θ)Z13(ρ, φ) + b Z1(h, θ)Z5(ρ, φ)

] (J.211)
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J.4.7 FIFTH ORDER (SECONDARY) COMA

Tessieres converted ρ5 cosφ into Z16(ρ, φ), but this Zernike polynomial term is also

balanced by Z8(ρ, φ). (Similarly, for Z17(ρ, φ) and Z7(ρ, φ).) Thus, the extra terms

will be added back in the line after WT .

Linear fifth order coma

W = W151
�H · �ρ (�ρ · �ρ )2 (J.212)

= W151(Hx ρ cos φ+Hy ρ sinφ)ρ4 (J.213)

= κ0(Hx ρ
5 cos φ+Hy ρ

5 sin φ) (J.214)

WT = κ0 [Hx Z16(ρ, φ) +Hy Z17(ρ, φ)] (J.215)

= κ0

{
Z2(h, θ) [aZ16(ρ, φ) + b Z8(ρ, φ)]

+ Z3(h, θ) [aZ17(ρ, φ) + b Z7(ρ, φ)]
} (J.216)

⇒ κ0

{
a
[
Z2(h, θ)Z16(ρ, φ) + Z3(h, θ)Z17(ρ, φ)

]
+ b
[
Z2(h, θ)Z8(ρ, φ) + Z3(h, θ)Z7(ρ, φ)

]} (J.217)

Constant fifth order coma

W = − �A151 · �ρ (�ρ · �ρ )2 (J.218)

= −(A151x ρ
5 cosφ+ A151y ρ

5 sinφ) (J.219)

WT = κ1 Z16(ρ, φ) + κ2 Z17(ρ, φ) (J.220)

⇒ κ1

[
aZ1(h, θ)Z16(ρ, φ) + b Z1(h, θ)Z8(ρ, φ)

]
+ κ2

[
aZ1(h, θ)Z17(ρ, φ) + b Z1(h, θ)Z7(ρ, φ)

] (J.221)
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APPENDIX K

ORTHOGONAL ABERRATION FUNCTIONS

This chapter shows wavefront maps across the field for a variety of double Zernike

functions that are introduced in Chapter 6. Tables 6.1–6.7 list the dependence that

these functions have on the misalignment.

One can observe that the functions that exist in a rotationally symmetric sys-

tem have wavefront maps that are rotationally symmetric. These include defocus

(Z1(h, θ)Z4(ρ, φ)), quadratic astigmatism (Z5(h, θ)Z5(ρ, φ) + Z6(h, θ)Z6(ρ, φ)), and

linear coma (Z3(h, θ)Z7(ρ, φ) + Z2(h, θ)Z8(ρ, φ)), among many others for example.
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(a) Z1(h, θ)Z4(ρ, φ) (b) Z4(h, θ)Z4(ρ, φ)

(c) Z11(h, θ)Z4(ρ, φ)

Figure K.1: Orthogonal focus polynomials.
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(d) Z2(h, θ)Z4(ρ, φ) (e) Z3(h, θ)Z4(ρ, φ)

(f) Z5(h, θ)Z4(ρ, φ) (g) Z6(h, θ)Z4(ρ, φ)

Figure K.1: Orthogonal focus polynomials continued.



347

(h) Z7(h, θ)Z4(ρ, φ) (i) Z8(h, θ)Z4(ρ, φ)

Figure K.1: Orthogonal focus polynomials continued.

(a) Z1(h, θ)Z5(ρ, φ) (b) Z1(h, θ)Z6(ρ, φ)

Figure K.2: Orthogonal astigmatism polynomials.
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(c) Z2(h, θ)Z5(ρ, φ) + Z3(h, θ)Z6(ρ, φ) (d) Z2(h, θ)Z5(ρ, φ) − Z3(h, θ)Z6(ρ, φ)

(e) Z3(h, θ)Z5(ρ, φ) + Z2(h, θ)Z6(ρ, φ) (f) Z3(h, θ)Z5(ρ, φ) − Z2(h, θ)Z6(ρ, φ)

Figure K.2: Orthogonal astigmatism polynomials continued.
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(g) Z4(h, θ)Z5(ρ, φ) (h) Z4(h, θ)Z6(ρ, φ)

(i) Z5(h, θ)Z5(ρ, φ) + Z6(h, θ)Z6(ρ, φ)

Figure K.2: Orthogonal astigmatism polynomials continued.
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(j) Z7(h, θ)Z5(ρ, φ) + Z8(h, θ)Z6(ρ, φ) (k) Z8(h, θ)Z5(ρ, φ) − Z7(h, θ)Z6(ρ, φ)

(l) Z9(h, θ)Z5(ρ, φ) + Z10(h, θ)Z6(ρ, φ) (m) Z10(h, θ)Z5(ρ, φ) − Z9(h, θ)Z6(ρ, φ)

Figure K.2: Orthogonal astigmatism polynomials continued.
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(n) Z13(h, θ)Z5(ρ, φ) + Z12(h, θ)Z6(ρ, φ)

Figure K.2: Orthogonal astigmatism polynomials continued.

(a) Z1(h, θ)Z7(ρ, φ) (b) Z1(h, θ)Z8(ρ, φ)

Figure K.3: Orthogonal coma polynomials.
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(c) Z2(h, θ)Z7(ρ, φ) + Z3(h, θ)Z8(ρ, φ) (d) Z2(h, θ)Z7(ρ, φ) − Z3(h, θ)Z8(ρ, φ)

(e) Z3(h, θ)Z7(ρ, φ) + Z2(h, θ)Z8(ρ, φ) (f) Z3(h, θ)Z7(ρ, φ) − Z2(h, θ)Z8(ρ, φ)

Figure K.3: Orthogonal coma polynomials continued.
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(g) Z4(h, θ)Z7(ρ, φ) (h) Z4(h, θ)Z8(ρ, φ)

(i) Z5(h, θ)Z7(ρ, φ) + Z6(h, θ)Z8(ρ, φ) (j) Z6(h, θ)Z7(ρ, φ) − Z5(h, θ)Z8(ρ, φ)

Figure K.3: Orthogonal coma polynomials continued.
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(a) Z1(h, θ)Z9(ρ, φ) (b) Z1(h, θ)Z10(ρ, φ)

(c) Z2(h, θ)Z9(ρ, φ) − Z3(h, θ)Z10(ρ, φ) (d) Z3(h, θ)Z9(ρ, φ) + Z2(h, θ)Z10(ρ, φ)

Figure K.4: Orthogonal trefoil polynomials.
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(e) Z5(h, θ)Z9(ρ, φ) + Z6(h, θ)Z10(ρ, φ) (f) Z6(h, θ)Z9(ρ, φ) − Z5(h, θ)Z10(ρ, φ)

(g) Z9(h, θ)Z9(ρ, φ) + Z10(h, θ)Z10(ρ, φ)

Figure K.4: Orthogonal trefoil polynomials continued.
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(a) Z1(h, θ)Z11(ρ, φ) (b) Z2(h, θ)Z11(ρ, φ)

(c) Z3(h, θ)Z11(ρ, φ) (d) Z4(h, θ)Z11(ρ, φ)

Figure K.5: Orthogonal spherical aberration polynomials.
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(a) Z1(h, θ)Z12(ρ, φ) (b) Z1(h, θ)Z13(ρ, φ)

(c) Z2(h, θ)Z12(ρ, φ) + Z3(h, θ)Z13(ρ, φ) (d) Z3(h, θ)Z12(ρ, φ) − Z2(h, θ)Z13(ρ, φ)

Figure K.6: Orthogonal oblique spherical aberration polynomials.
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(e) Z6(h, θ)Z12(ρ, φ) + Z5(h, θ)Z13(ρ, φ)

Figure K.6: Orthogonal oblique spherical aberration polynomials continued.
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(a) Z1(h, θ)Z16(ρ, φ) (b) Z1(h, θ)Z17(ρ, φ)

(c) Z2(h, θ)Z16(ρ, φ) + Z3(h, θ)Z17(ρ, φ)

Figure K.7: Orthogonal secondary coma polynomials.
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APPENDIX L

DOUBLE ZERNIKE EXPANSIONS

Double expansions of Zernike polynomials in both pupil space and field have been

previously suggested in the literature (Kwee & Braat, 1993; Agurok, 1998, 2000) to

describe the field dependence of aberrations in a misaligned system. The functions

listed in these two papers are orthogonal (just as Zernike polynomials are) and are

complete. However, neither of these papers suggested functions with two double

Zernike terms to describe the aberrations in a misaligned system, as in Chapter 6.

Also, the description of the field dependences of aberrations is not as complete as

provided in Chapter 6.

Neither author seems to be aware of the other’s publications, and they use differ-

ent notations. Section L.1 discusses the notation and concepts introduced by Kwee

& Braat (1993), while Section L.2 discusses the notation and concepts introduced

by Agurok (1998, 2000).

L.1 KWEE AND BRAAT’S DOUBLE EXPANSION

Kwee & Braat (1993) published the first paper proposing a double Zernike expansion

of the optical aberration function. They expand the wavefront function into:

W (ρ, φ; h, θ) =
∑
n,m

pm
n R

m
n (ρ) [an,m(h, θ) cos(mφ) + bn,m(h, θ) sin(mφ)] (L.1)
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where

an,m(h, θ) =
∑
l,k

pk
l R

k
l (h) [Anmalk cos(mθ) + Anmblk sin(mθ)] (L.2)

bn,m(h, θ) =
∑
l,k

pk
l R

k
l (h) [Bnmalk cos(mθ) +Bnmblk sin(mθ)] . (L.3)

and pm
n is the normalization for the radial polynomial Rm

n (ρ) in the standard Zernike

polynomial:

Zm
n (ρ, φ) = pm

n R
m
n (ρ)

{
cos(mφ)

sin(mφ)
. (L.4)

The four subscript coefficients like Anmblk “should be read as a single quantity

and not as a product of two individual coefficients.” For example, Anmblk is the

coefficient for the double Zernike function Zk
l (h, θ)Zm

n (ρ, φ), although they do not

write it out in such a way. They discuss some coefficients that are equal in a

rotationally symmetric system.

For example, A22a22 = B22b22. Since the terms with A or a correspond to

the cosine Zernike terms, the A22 part refers to Z2
2 (ρ, φ) = Z6(ρ, φ) = ρ2 cos 2φ

and the a22 part refers to Z2
2(h, θ) = Z6(h, θ) = h2 cos 2θ. Since the terms with

B or b correspond to the sine Zernike terms, the B22 part refers to Z−2
2 (ρ, φ) =

Z5(ρ, φ) = ρ2 sin 2φ and the b22 part refers to Z−2
2 (h, θ) = Z5(h, θ) = h2 sin 2θ. Thus,

these two coefficients correspond to the one function in Chapter 6 that describes

the quadratic astigmatism that exists in a rotationally symmetric optical system:

Z5(h, θ)Z5(ρ, φ) + Z6(h, θ)Z6(ρ, φ).
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As another example, A31a11 = B31b11. Following the same technique in the

previous paragraph, the A31 part refers to Z1
3 (ρ, φ) = Z8(ρ, φ), the a11 part refers

to Z1
1 (h, θ) = Z2(h, θ), the B31 part refers to Z−1

3 (ρ, φ) = Z7(ρ, φ) and the b11 part

refers to Z−1
1 (h, θ) = Z3(h, θ). Thus, these two coefficients correspond to the one

function in Chapter 6 that describes the linear coma that exists in a rotationally

symmetric optical system: Z3(h, θ)Z7(ρ, φ) + Z2(h, θ)Z8(ρ, φ).

A table is provided listing all the coefficients and some of these coefficients are

marked with symbols to show that they are equal. The table includes columns to

show which terms are possible in systems with different types of symmetry (y = 0,

x = 0, y = 0 and x = 0, and rotational symmetry). Unfortunately, the rotational

symmetry column is missing from the second page of the table.

Also, there is no reference to any additional terms that are predicted to be

equal in this dissertation. For example, linear astigmatism Z3(h, θ)Z5(ρ, φ) +

Z2(h, θ)Z6(ρ, φ) would be described by the coefficients B22b11 and A22a11, but these

coefficients are only checked as existing and there is no mention that they are equal.

This is probably because those terms (Z3(h, θ)Z5(ρ, φ) and Z2(h, θ)Z6(ρ, φ)) are

only equal to first order and not precisely equal. Small contributions from the

�C422 perturbation vector using Thompson’s notation cause Z3(h, θ)Z5(ρ, φ) to not

be exactly equal to Z2(h, θ)Z6(ρ, φ), which is why the additional functions, like

Z3(h, θ)Z5(ρ, φ) − Z2(h, θ)Z6(ρ, φ) are required to describe the higher order depen-

dence on misalignment in Chapter 6.

For the pupil aberrations of distortion through spherical aberration, the table

includes field dependences that are derived from the third-order Seidel aberrations.
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For example, there are terms for the Zernike aberration describing the power in

the pupil Z4(ρ, φ) up through astigmatism in field, but the coma terms in field

Z7(h, θ)Z4(ρ, φ) and Z8(h, θ)Z4(ρ, φ) that come from the �A420 perturbation vector

are not listed. Neither listed are the terms for cubic field dependence for astigmatism

in the pupil (from �A420) or linear spherical aberration Z2(h, θ)Z11(ρ, φ) from the

oblique spherical term �A240M
, among others.

In addition, the table only describes contributions to the terms that scale directly

with the misalignment. Terms that are predicted to have quadratic dependence

on the misalignment, like Z5(h, θ)Z4(ρ, φ) (corresponding to the coefficient A20b22

using their notation) which depends on Thompson’s vector �B420M
are not checked

as possible.

The paper then continues on with some vector representations of distortion and

astigmatic focal lines for astigmatism, but the images are reproduced poorly. Finally,

the paper ends with some image quality considerations, such as calculating the

wavefront variance and field-averaged blur from the coefficients.

L.2 AGUROK’S DOUBLE EXPANSION

Agurok (1998, 2000) published two papers also on double Zernike expansions in the

pupil and field of view. This paper has a wavefront expansion of the form:

W (h, θ, ρ, φ) =
N∑

m1 = 0

∑
m2 =±1

N∑
n = m1

N∑
l = m2

Dlm2
nm1

Pm1
n (ρ)Pm2

l (h)cos(m1φ−m2θ) (L.5)

where Dlm2
nm1

is the four subscript coefficient of the double expansion. Some terms
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that are possible are listed, but the list is not very complete, and the explanation is

not thorough. Equation L.5 is valid for systems with a misalignment in one direction.

If misalignments are allowed in any directions, Agurok uses the variables H , V , V C,

HC, V S, and HS to describe the coefficients instead of D, as shown in Table L.1

(which skips the distortion terms). This table shows the corresponding orthogonal

functions from Chapter 6 to these coefficients. All of the terms they listed do have

linear dependence on the misalignment, as shown by the �A vectors in Tables 6.1–

6.7. Higher order terms not included by Agurok are included at the end of the

table. Agurok (1998) correctly mentions after the table that constant astigmatism

is observed when the perturbation is significant and this dependence has quadratic

dependence on the misalignment. No other aberrations with this dependence on the

misalignment are mentioned.

Next Agurok shows an example of how to calculate the astigmatism coefficients

from measurement of five points in the field of view. This is possible because the

astigmatism there are only constant, linear and quadratic field dependences. At first

this makes sense. To measure a quadratic 2-D function, three points are needed.

Since there are two directions (x and y), it seems like three points on each axis

would be needed. Because the point (0, 0) is on each axis, then only five points are

needed instead of six. However, this is not true in general. The five possible field

dependences (e.g. α0–α4 for one quadratic astigmatism, two linear astigmatism

contribution and two constant astigmatism contributions) can be fit to the data

from three field points because each field point actually gives two components of the

astigmatism when Zernike polynomials are measured (Z5 and Z6). In the second
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Table L.1: Aberrations predicted by Agurok in a perturbed optical system.

Agurok Corresponding orthogonal functions Source
coefficients of aberration

V 11
20 , H11

20 Z2(h, θ)Z4(ρ, φ), Z3(h, θ)Z4(ρ, φ) �A220M
, �A420M

, �A240M

V 11
40 , H11

40 Z2(h, θ)Z11(ρ, φ), Z3(h, θ)Z11(ρ, φ) �A240M

V 00
31 , H00

31 Z1(h, θ)Z7(ρ, φ), Z1(h, θ)Z8(ρ, φ) �A131, �A331M
, �A151

V C11
22 , HC11

22 , Z2(h, θ)Z5(ρ, φ) + Z3(h, θ)Z6(ρ, φ), �A222, �A422, �A242

V S11
22 , HS

11
22 Z2(h, θ)Z5(ρ, φ) − Z3(h, θ)Z6(ρ, φ),

Z3(h, θ)Z5(ρ, φ) + Z2(h, θ)Z6(ρ, φ),
Z3(h, θ)Z5(ρ, φ) − Z2(h, θ)Z6(ρ, φ)

V C22
33 , HC22

33 , Z5(h, θ)Z9(ρ, φ) + Z6(h, θ)Z10(ρ, φ), �A333

V S22
33 , HS

22
33 Z5(h, θ)Z9(ρ, φ) − Z6(h, θ)Z10(ρ, φ),

Z6(h, θ)Z9(ρ, φ) + Z5(h, θ)Z10(ρ, φ),
Z6(h, θ)Z9(ρ, φ) − Z5(h, θ)Z10(ρ, φ)

Z7(h, θ)Z4(ρ, φ), Z8(h, θ)Z4(ρ, φ) �A420M

Z7(h, θ)Z5(ρ, φ) + Z8(h, θ)Z6(ρ, φ), �A420M

Z7(h, θ)Z5(ρ, φ) − Z8(h, θ)Z6(ρ, φ),
Z7(h, θ)Z5(ρ, φ) + Z8(h, θ)Z6(ρ, φ),
Z7(h, θ)Z5(ρ, φ) − Z8(h, θ)Z6(ρ, φ)

Z4(h, θ)Z7(ρ, φ), Z4(h, θ)Z8(ρ, φ) �A331M

Z5(h, θ)Z7(ρ, φ) + Z6(h, θ)Z8(ρ, φ), �A331M

Z5(h, θ)Z7(ρ, φ) − Z6(h, θ)Z8(ρ, φ),
Z6(h, θ)Z7(ρ, φ) + Z5(h, θ)Z8(ρ, φ),
Z6(h, θ)Z7(ρ, φ) − Z5(h, θ)Z8(ρ, φ)

Z2(h, θ)Z12(ρ, φ) + Z3(h, θ)Z13(ρ, φ), �A242

Z3(h, θ)Z12(ρ, φ) − Z2(h, θ)Z13(ρ, φ)

Z1(h, θ)Z16(ρ, φ), Z1(h, θ)Z17(ρ, φ) �A151
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paper (Agurok, 2000), nine field points are used to calculate aberrations that have

a cubic dependence on the field.
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APPENDIX M

ORTHOGONALITY OF DOUBLE ZERNIKE FUNCTIONS

This appendix shows that the two following functions are orthogonal:

SA (h, θ, ρ, φ) = Zk (h, θ)Zi (ρ, φ) + Zl (h, θ)Zj (ρ, φ) (M.1)

SB (h, θ, ρ, φ) = Zk (h, θ)Zi (ρ, φ) − Zl (h, θ)Zj (ρ, φ) . (M.2)

For simplicity, the explicit dependence of Zk and Zl on (h, θ) and of Zi and Zj on

(ρ, φ) will not be shown.

2π∫
0

1∫
0

2π∫
0

1∫
0

SA (h, θ, ρ, φ)SB (h, θ, ρ, φ) ρ dρ dφ h dh dθ (M.3)

=

2π∫
0

1∫
0

2π∫
0

1∫
0

(ZkZi + ZlZj) (ZkZi − ZlZj) ρ dρ dφ h dh dθ (M.4)

=

2π∫
0

1∫
0

2π∫
0

1∫
0

(
Z2

kZ
2
i − ZkZlZiZj + ZlZjZkZi − Z2

l Z
2
j

)
ρ dρ dφ h dh dθ (M.5)

=

2π∫
0

1∫
0

Z2
k h dh dθ ·

2π∫
0

1∫
0

Z2
i ρ dρ dφ−

2π∫
0

1∫
0

Z2
l h dh dθ ·

2π∫
0

1∫
0

Z2
j ρ dρ dφ (M.6)

= δkkδii − δllδjj (M.7)

= 1 · 1 − 1 · 1 (M.8)

= 0 (M.9)
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Since the orthogonality integral is equal to zero, the functions are orthogonal.
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APPENDIX N

SHAPE ERRORS

Table N.1 lists the first 11 Zernike polynomials in vector and scalar form. This is

provided for convenience since this the report where Tessieres (2004) lists the first

37 terms is currently unpublished.

Table N.1: Zernike standard polynomials in a scalar and vectorial form. The odd
number after the name of each aberration (3 or 5) refers to the order of the aberra-
tion.

Zernike term Z(r, θ) Z(�r, ı̂, ĵ)

Z1 (Piston) 1 1

Z2 (Tilt x)
√

4r cos θ
√

4�r · ı̂
Z3 (Tilt y)

√
4r sin θ

√
4�r · ĵ

Z4 (Defocus)
√

3(2r2 − 1)
√

3 (2�r · �r − 1)

Z5 (Astigmatism 3 at 45◦)
√

6(r2 sin 2θ) 2
√

6 [(�r · ı̂) (�r · ĵ)]
Z6 (Astigmatism 3 at 0◦)

√
6(r2 cos 2θ)

√
6
[
2 (�r · ı̂)2 − �r · �r]

Z7 (Coma 3 at 90◦)
√

8(3r3 − 2r) sin θ
√

8 (�r · ĵ) [3 (�r · �r) − 2]

Z8 (Coma 3 at 0◦)
√

8(3r3 − 2r) cos θ
√

8 (�r · ı̂) [3 (�r · �r) − 2]

Z9 (Trefoil 5 at 30◦)
√

8r3 sin 3θ
√

8
[
3 (�r · �r) (�r · ĵ) − 4 (�r · ĵ)3]

Z10 (Trefoil 5 at 0◦)
√

8r3 cos 3θ
√

8
[
4 (�r · ı̂)3 − 3 (�r · �r) (�r · ı̂)]

Z11 (Spherical aberration)
√

5(6r4 − 6r2 + 1)
√

5
[
6 (�r · �r)2 − 6 (�r · �r) + 1

]
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Table N.2: Table of the expressions to describe the field dependence of aberrations
induced by the first 10 Zernike polynomial bending modes.

Shape error on mirror

Z4 Z5 Z6 Z7 Z8 Z9 Z10

Z4(ρ, φ) a2 0 0 2
√

6cHya
2 2

√
6a2cHx 0 0

Z5(ρ, φ) a2 0 2
√

3a2cHx 2
√

3a2cHy 2
√

3a2cHx −2
√

3a2cHy

Z6(ρ, φ) a2 −2
√

3a2cHy 2
√

3a2cHx 2
√

3a2cHy 2
√

3a2cHx

Z7(ρ, φ) a3 0 0 0

Z8(ρ, φ) a3 0 0

Z9(ρ, φ) a3 0

Z10(ρ, φ) a3

Table N.3: Expression of the third order spherical aberration introduced as a bend-
ing mode.

Z11 Shape error

Z4(ρ, φ)
√

3
√

5
((

4Hy
2 + 4Hx

2
)
c2 + a2 − 1

)
a2

Z5(ρ, φ) 4
√

6
√

5a2c2HxHy

Z6(ρ, φ) 2
√

6
√

5a2c2
(
Hx

2 −Hy
2
)

Z7(ρ, φ) 2
√

2
√

5a3cHy

Z8(ρ, φ) 2
√

2
√

5a3cHx

Z9(ρ, φ) 0

Z10(ρ, φ) 0

Z11(ρ, φ) a4
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APPENDIX O

HET CONTROL MODES

This appendix shows all the modes resulting from the SVD of the HET WFC influ-

ence matrix and includes a sample calculation for mode 1 to show how the modes

are quantified using the singular values. The singular values are listed in Table O.1.

The singular values scale the value of the double Zernike coefficients given in the

U matrix for the combination of misalignments in the V matrix where 1 unit of

misalignment is given by the values in Table 8.2.

For example, in mode 1, assume that one unit perturbation is applied. There-

fore the WFC x tilt and y tilt are both 0.7 × 0.01◦ = 0.07◦. (The 0.7 is from

Figure O.1b, while the 0.01◦ is from Table 8.2.) The field-dependent aberration ex-

pected is 13.5 µm ×(−Z1(h, θ)Z7(ρ, φ) + Z1(h, θ)Z8(ρ, φ)) (where the 13.5 comes

from the value of the coefficient in Figure O.1c times the first singular value:

13.5 = 0.7 × 19.3). A few sample points to verify this, modeling the tilts in Ze-

max, are listed in Table O.2. The numbers are not exactly equivalent because

mode 1 actually includes a small amount of quadratic coma (Z4(h, θ)Z7(ρ, φ) and

Z4(h, θ)Z8(ρ, φ)). Also, only the two degrees of freedom with the largest values,

which account for most of the mode, are perturbed. This calculation shows the

technique that can be used to quantify the aberrations in the other modes.

The wavefront maps across the field (subfigure (a) for each mode) are one repre-

sentation of the columns from the U matrix, while the stem plots of the orthogonal
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Table O.1: HET SVD singular values.

Mode Singular values
(waves rms/unit perturbation)

1 19.2736160
2 19.2724396
3 2.7517446
4 0.2912215
5 0.2912215
6 0.0216100
7 0.0216096
8 0.0089162
9 0.0008064
10 0.0005542
11 0.0004976
12 0.0004026
13 0.0003507
14 0.0001061
15 0.0000774
16 0.0000679
17 0.0000588
18 0.0000519
19 0.0000373
20 0.0000261
21 0.0000204
22 0.0000169
23 0.0000109
24 0.0000098
25 0.0000064
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Table O.2: HET Zemax verification of SVD mode 1. If mode 1 is approximated
only as constant coma (even though there are small amounts of higher order coma),
then the expected values are Z7 = −13.5 waves and Z8 = 13.5 waves for any field
angle. The fields are normalized such that Hx = Hy = 11 arcmin and the Zernike
coefficients are in waves (λ = 1 µm).

Hx Hy Z7 Z8

0 0 -13.5 13.5
-1 0 -13.2 13.0
1 0 -13.2 12.8
0 -1 -12.8 13.2
0 1 -13.0 13.2

double Zernike coefficients are another representation of the same data (subfigure

(c) for each mode). For space considerations, the field and pupil dependence was

not printed on the graph labels. Here, the functions are written in the same or-

der as in the rest of the dissertation, with the field-dependent Zernike first and the

pupil-dependent Zernike polynomial second. For example, Z1Z4 = Z1(h, θ)Z4(ρ, φ)

for constant defocus and Z2 Z5 −Z3 Z6 = Z2(h, θ)Z5(ρ, φ)−Z3(h, θ)Z6(ρ, φ) for lin-

ear astigmatism. The configuration of the system to produce the mode is given by

columns in the V matrix. These are plotted in subfigure (b) for each mode.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 1

(c) U matrix coefficients.

Figure O.1: HET SVD mode 1: constant coma.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 2

(c) U matrix coefficients.

Figure O.2: HET SVD mode 2: constant coma.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 3

(c) U matrix coefficients.

Figure O.3: HET SVD mode 3: defocus.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 4

(c) U matrix coefficients.

Figure O.4: HET SVD mode 4: focal plane tilt (linear defocus).
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 5

(c) U matrix coefficients.

Figure O.5: HET SVD mode 5: focal plane tilt (linear defocus).
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 6

(c) U matrix coefficients.

Figure O.6: HET SVD mode 6: linear astigmatism.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 7

(c) U matrix coefficients.

Figure O.7: HET SVD mode 7: linear astigmatism.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 8

(c) U matrix coefficients.

Figure O.8: HET SVD mode 8: linear coma, quadratic astigmatism (axisymmetric
errors).
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 9

(c) U matrix coefficients.

Figure O.9: HET SVD mode 9: constant secondary coma, linear secondary astig-
matism.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 10

(c) U matrix coefficients.

Figure O.10: HET SVD mode 10: constant secondary coma, linear secondary astig-
matism.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 11

(c) U matrix coefficients.

Figure O.11: HET SVD mode 11: constant spherical and other axisymmetric error.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 12

(c) U matrix coefficients.

Figure O.12: HET SVD mode 12.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 13

(c) U matrix coefficients.

Figure O.13: HET SVD mode 13.
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(a) Wavefront maps.
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(b) V matrix configuration.

−1

−0.5

0

0.5

1

Z
2
Z

4
Z

3
Z

4
Z

7
Z

4
Z

8
Z

4

Z
2
Z

5
−

Z
3
Z

6
Z

3
Z

5
+

Z
2
Z

6
Z

7
Z

5
+

Z
7
Z

6
Z

8
Z

5
−

Z
7
Z

6

Z
9
Z

5
+

Z
1
0
Z

6
Z

1
0
Z

5
−

Z
9
Z

6
Z

1
Z

7
Z

1
Z

8
Z

4
Z

7

Z
4
Z

8
Z

5
Z

7
+

Z
6
Z

8
Z

6
Z

7
−

Z
5
Z

8
Z

5
Z

9
+

Z
6
Z

1
0

Z
6
Z

9
−

Z
5
Z

1
0

Z
2
Z

1
1

Z
3
Z

1
1

Z
2
Z

1
2

+
Z

3
Z

1
3

Z
3
Z

1
2
−

Z
2
Z

1
3

Z
1
Z

1
6

Z
1
Z

1
7

Z
1
Z

4
Z

4
Z

4

Z
1
1
Z

4
Z

5
Z

5
+

Z
6
Z

6
Z

1
3
Z

5
+

Z
1
2
Z

6
Z

3
Z

7
+

Z
2
Z

8
Z

7
Z

7
+

Z
7
Z

8

Z
1
Z

1
1

Z
4
Z

1
1

Z
6
Z

1
2

+
Z

5
Z

1
3

Z
2
Z

1
6

+
Z

3
Z

1
7

V
al

ue
 o

f c
oe

ffi
ci

en
t

Orthogonal coefficients from U for mode 14

(c) U matrix coefficients.

Figure O.14: HET SVD mode 14.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 15

(c) U matrix coefficients.

Figure O.15: HET SVD mode 15.
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(a) Wavefront maps.
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(b) V matrix configuration.
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(c) U matrix coefficients.

Figure O.16: HET SVD mode 16.
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(a) Wavefront maps.
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(b) V matrix configuration.
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(c) U matrix coefficients.

Figure O.17: HET SVD mode 17.
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(a) Wavefront maps.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Configuration vector from V for mode 18

Degree of freedom

M
2 

x 
de

ce
nt

er
M

2 
y 

de
ce

nt
er

M
2 

x 
til

t
M

2 
y 

til
t

M
3 

x 
de

ce
nt

er
M

3 
y 

de
ce

nt
er

M
3 

x 
til

t
M

3 
y 

til
t

M
4 

x 
de

ce
nt

er
M

4 
y 

de
ce

nt
er

M
4 

x 
til

t
M

4 
y 

til
t

M
5 

x 
de

ce
nt

er
M

5 
y 

de
ce

nt
er

M
5 

x 
til

t
M

5 
y 

til
t

W
F

C
 x

 ti
lt

W
F

C
 y

 ti
lt

F
P

 x
 ti

lt
F

P
 y

 ti
lt

M
2 

z
M

3 
z

M
4 

z
M

5 
z

F
P

 z

N
or

m
al

iz
ed

 a
m

ou
nt

 o
f m

is
al

ig
nm

en
t

(b) V matrix configuration.
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(c) U matrix coefficients.

Figure O.18: HET SVD mode 18.
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(a) Wavefront maps.
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(b) V matrix configuration.
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(c) U matrix coefficients.

Figure O.19: HET SVD mode 19.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Orthogonal coefficients from U for mode 20

(c) U matrix coefficients.

Figure O.20: HET SVD mode 20.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Figure O.21: HET SVD mode 21.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Figure O.22: HET SVD mode 22.
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(a) Wavefront maps.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Configuration vector from V for mode 23

Degree of freedom

M
2 

x 
de

ce
nt

er
M

2 
y 

de
ce

nt
er

M
2 

x 
til

t
M

2 
y 

til
t

M
3 

x 
de

ce
nt

er
M

3 
y 

de
ce

nt
er

M
3 

x 
til

t
M

3 
y 

til
t

M
4 

x 
de

ce
nt

er
M

4 
y 

de
ce

nt
er

M
4 

x 
til

t
M

4 
y 

til
t

M
5 

x 
de

ce
nt

er
M

5 
y 

de
ce

nt
er

M
5 

x 
til

t
M

5 
y 

til
t

W
F

C
 x

 ti
lt

W
F

C
 y

 ti
lt

F
P

 x
 ti

lt
F

P
 y

 ti
lt

M
2 

z
M

3 
z

M
4 

z
M

5 
z

F
P

 z

N
or

m
al

iz
ed

 a
m

ou
nt

 o
f m

is
al

ig
nm

en
t

(b) V matrix configuration.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Figure O.24: HET SVD mode 24.
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(a) Wavefront maps.
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(b) V matrix configuration.
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Figure O.25: HET SVD mode 25.
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