

Vacuum Support for a Large Interferometric Reference Surface

Masaki Hosoda, Robert. E. Parks, James. H. Burge

College of Optical Sciences University of Arizona Tucson, AZ 85721 <u>mhosoda@optics.arizona.edu</u>

Outline

- Background
- Purpose
- Requirements for the system
- Experiments for a simple model
- Simulations for an actual model
- Summary

Background

- We try to measure a secondary mirror for a telescope by Fizeau type interferometer with 5mm gap as shown in the right Figure ^[1].
- In this case, the bending of ٠ the test plate caused by the gravity becomes a problem, since the test plate is flipped around after polishing the reference surface.
- Reducing an unexpected bending in the reference surface is required.

[1] M. B. Dubin, et al., "Fizeau interferometer with spherical reference and CGH correction for measuring large convex aspheres", Proceedings of the SPIE, Volume 7426 (2009)

Purpose

- The scope of this study is to show an effectiveness of the vacuum support for the large interferometric reference surface by simulations.
 - Validate simulations by simple experiments.
 - A mechanical mount for the test plate is also discussed.

Requirements

Large Optics Fabrication & Testing

	Requirements		Verifications
1.	Difference between simulation and experiment	< 20 [%]	Test
2.	Supported with edge face	NA	Inspection
3.	Surface Slope Irregularity	< 10 [nm/cm RMS]	Analysis
4.	Resonant Frequency	> 30 [Hz]	Analysis
5.	Stability - power - w/o power	20 [nm] 3 [nm]	Analysis

Experimental Setup 1

Sensitive around air pressure Cheap

Experimental Setup 3

RIZONA Experimental Results (Power; Z4)

ARIZONAExperimental Results (ρ⁴ term; Z11) TUCSON ARIZONA Pressure vs. Zernike 11

Resonant Frequency

SolidWorks Education Edition - Instructional Use Only

Under Defined Editing Assembly

Pressure vs. Surface Slope Irregurality

Pressure vs. Surface Slope Irregularity of Test Plate

⁽Matlab code by Won Hyun Park)

100 um tolerance at flexure causes 0.2 N-m moment at the test plate. This causes 2.71 nm/cm RMS surface slope irregularity.

Since this issue is independent from vacuum support, (Total RMS) = SQRT((0.75 nm/cm)^2 + 3 x (2.71 nm/cm)^2) = 4.75 nm/cm RMS < 10 nm/cm RMS

W/O Vacuum Support

W/ Vacuum Support

Summary

- I did the simple experiment and the simulation to evaluate the vacuum support.
 - Difference between exp. and sim. was 10% < 20% in spec.
 - Surface slope irregularity was 4.75 nm/cm < 10 nm/cm in spec.
 - Resonant Frequency was 242.1 Hz > 30 Hz in spec.
 - Stability of Power was 2.34 nm < 20 nm
 - Stability of w/o Power was 0.38 nm < 3 nm
- The vacuum support for the large interferometric reference surface can be effective.
- Future Work
 - Detail design around the diaphragm
 - Check an effect of index change
 - Comparison with actual experiment

