
Analysis of wavefront propagation
using the Talbot effect

Ping Zhou and James H. Burge*
College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA

*Corresponding author: jburge@optics.arizona.edu

Received 19 May 2010; revised 20 August 2010; accepted 31 August 2010;
posted 3 September 2010 (Doc. ID 128711); published 24 September 2010

Talbot imaging is a well-known effect that causes sinusoidal patterns to be reimaged by diffraction with
characteristic period that varies inversely with both wavelength and the square of the spatial frequency.
This effect is treated using the Fresnel diffraction integral for fields with sinusoidal ripples in amplitude
or phase. The periodic nature is demonstrated and explained, and a sinusoidal approximation is made for
the case where the phase or amplitude ripples are small, which allows direct determination of the field for
arbitrary propagation distance. Coupled with a straightforward method for calculating the effect in a
diverging or converging beam, the Talbot method provides a useful approximation for a class of diffrac-
tion problems. © 2010 Optical Society of America
OCIS codes: 050.1940, 070.6760.

1. Introduction

When a periodic object is illuminated by coherent
light, an exact image of the structure will appear at
certain distances by free-space propagation. This
phenomenon is known as the Talbot effect [1] or
self-imaging, which is a typical Fresnel or near-field
diffraction. In Fresnel diffraction, the spherical
waves arising from point sources in the aperture are
approximated as quadratic-phase surfaces. When
collimated light illuminates the periodic object, the
self-image planes are equispaced and well defined.
If the object has a period of p and the wavelength
of the illumination is λ, then the self-images are
formed in planes, which are multiples of the Talbot
distances zT ¼ 2p2=λ. The Talbot distance is valid
for collimated illumination. For spherical illumina-
tion, the replication of the object is amplified and
the distance between the self-image planes varies
with propagation.

Besides those self-image planes, the diffraction
field at any distance behind the periodic object is
of interest to many researchers. Winthrop and
Worthington [2] describe the diffraction pattern of

periodic objects as the superposition of certain repli-
cas of the initial objects using the Fresnel–Kirchhoff
formulation. Each replica of the object is shifted lat-
erally and modulated in amplitude and phase by a
constant coefficient, which is obtained from a series
of complex numbers. Ojeda-Castaneda and Sicre [3]
and Testorf and Ojeda-Castaneda [4] discussed the
Talbot effect using the Wigner distribution function
(WDF), which provides a link between Fourier optics
and geometrical optics. Their approach allows calcu-
lating the field distribution at a fractional Talbot
distance. Lu and Zhou use the finite-difference
time-domain (FDTD) method to analyze the field dis-
tribution at any plane behind the periodic object [5].

When the periodic objects have either weak phase
or amplitude distribution, the calculation of the field
distribution at any plane can be simplified. This
paper reviews the calculation for this case using
the angular spectrum method [6]. With small-angle
approximation, it shows that the amplitude and
phase of the electric field have fairly simple expres-
sions: both the phase and amplitude modulation has
a sinusoidal variation as a function of the propaga-
tion distance. For a wavefront with a certain spatial
frequency, the Talbot effect can be used to estimate
the phase and amplitude after it propagates to any
distance and can greatly simplify the calculation.
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The Talbot distance as described above is valid
only for collimated illumination. This paper presents
an equivalent propagation distance that allows ap-
plication of the Talbot effect in converging or diver-
ging light. We find that the phase and amplitude
modulation as the wavefront propagates depend only
on the Fresnel number and the spatial frequency of
the initial object.

This paper focuses on the general analysis of
wavefront propagation using the Talbot effect and
the simulation shows its validity. An example of
the application in the metrology with interferom-
eters is provided in our other papers [7–10].

2. Talbot Effect in a Collimated Beam

The Talbot effects of sinusoidal amplitude and phase
gratings in collimated illumination are discussed in
the next two sections. We follow the conventional
Fourier analysis shown by Goodman [6] to derive
the amplitude and phase distribution after the per-
iodic structure propagates to a certain distance.

A. Sinusoidal Amplitude Grating

Consider a one-dimensional (1-D) sinusoidal ampli-
tude field distribution with a period of p and magni-
tude of variation α, which could be created by
uniform illumination upon a grating with sinusoidal
transmission:

uðxÞ ¼ 1þ α sin
�
2πx
p

�
: ð1Þ

This treatment neglects edge effects, assuming a con-
tinuous function over x ¼ ð−∞;þ∞Þ. The angular
spectrum of this amplitude grating can be obtained
by taking a Fourier transform of uðxÞ:

Uz¼0ðξÞ ¼ δðξÞ þ 1
2
jα½δðξþ ξ0Þ − δðξ − ξ0Þ�; ð2Þ

where ξ is the spatial frequency, j is the imaginary
unit, and δ is the delta function. This angular spec-
trum is nothing more than three plane-wave beams
with appropriate direction and phase. The diffraction
pattern after propagating a distance z can be calcu-
lated by multiplying its angular spectrum Uz¼0ðξÞ
with the free-space transfer function HzðξÞ and then
taking an inverse Fourier transform [6]. If the period
of the grating is very large compared to the wave-
length λ, the free-space transfer function is

HzðξÞ ¼ ej
2πz
λ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−ðλξÞ2

p
≈ ej

2πz
λ e−jπzλξ

2
: ð3Þ

Applying the free-space transfer function to Uz¼0ðξÞ
gives

UzðξÞ ¼ ej
2πz
λ

�
δðξÞ þ 1

2
jαe−jπzλξ20 ½δðξþ ξ0Þ − δðξ − ξ0Þ�

�

¼ ej
2πz
λ

�
δðξÞ þ 1

2
jα½cosðπzλξ20Þ

− j sinðπzλξ20Þ�½δðξþ ξ0Þ − δðξ − ξ0Þ�
�
: ð4Þ

By dropping the constant phase term ej
2πz
λ at any

plane, the diffraction field after propagating a dis-
tance of z can be given by taking an inverse Fourier
transform of UzðξÞ:

uzðxÞ ¼ 1þ α½cosðπzλξ20Þ − j sinðπzλξ20Þ� sin
�
2πx
p

�

¼ 1þ α cosðπzλξ20Þ sin
�
2πx
p

�

− jα sinðπzλξ20Þ sin
�
2πx
p

�
: ð5Þ

If this complex field is written in the form of the am-
plitude and phase uzðxÞ ¼ AzðxÞeiψzðxÞ, then the ampli-
tude is the square root of the imaginary and real
parts. If the amplitude is described with a Taylor ser-
ies in α,

AzðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2α cosðπzλξ20Þ sin

�
2πx
p

�
þ α2 sin2

�
2πx
p

�s

≈ 1þ α cos
�
2πz
zT

�
sin

�
2πx
p

�

þ 1
2
α2 sin2

�
2πz
zT

�
sin2

�
2πx
p

�
þ…; ð6Þ

and the phase is the arctangent of the ratio of the
imaginary part to the real part and its Taylor series
in α is

ψ zðxÞ ¼ arctan
� −α sinðπzλξ20Þ sin

�
2πx
p

�

1þ α cosðπzλξ20Þ sin
�

2πx
p

��

≈ −α sin
�
2πz
zT

�
sin

�
2πx
p

�

þ 1
2
α2 sin

�
4πz
zT

�
sin2

�
2πx
p

�
þ…; ð7Þ

where zT is the Talbot distance and zT ¼ 2p2=λ. Up to
this point, the only approximation we have made is
to assume that the period of the grating is larger
than the wavelength. If we make another assump-
tion, that this grating has a small variation in ampli-
tude relative to the mean (α ≪ 1), then the higher
order terms of the Taylor series in Eqs. (6) and (7)
can be ignored. By only keeping the linear term of
α in both AzðxÞ and ψzðxÞ, it shows that the variation
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of the amplitude A0 follows a cosine function with the
propagation distance:

A0
≈ α cos

�
2π z

zT

�
: ð8Þ

Also, the amplitude ripples create phase ripples and
the magnitude of the phase W 0 (in waves) follows a
sinusoidal function with propagation distance:

W 0 ¼ −W sin
�
2π z

zT

�
¼ −

α
2π sin

�πzλ
p2

�
; ð9Þ

where α ¼ 2πW, the amplitude of the sinusoidal
phase ripple in radians. At a distance z ¼ nzT

2 (n is
an integer), the diffraction pattern has pure ampli-
tude variation; at a distance z ¼ ð2nþ1ÞzT

4 , the diffrac-
tion pattern has constant amplitude and pure phase
variation. For a weak amplitude grating, the ampli-
tude and phase follow a cosine and a sine function,
respectively, as the beam propagates. This simple
conclusion is useful and helps estimate the ampli-
tude and phase after the beam propagates to any
plane. The more general case is also interesting be-
cause the harmonics are also periodic with higher
frequency. So propagation of a full Talbot cycle for
the fundamental coincides with integral numbers
of periods for the harmonics. Talbot imaging does
not require the small amplitude approximation,
but the simplification that allows calculation of the
field at arbitrary propagation distances does.

B. Sinusoidal Phase Grating

A 1-D pure sinusoidal phase grating with a period of
p and magnitude of W in waves illuminated by a col-
limated beam can be described as an infinite sum of
Bessel functions [6]:

uz¼0ðxÞ ¼ e
jα sin

�
2πx
p

�
¼

Xþ∞

q¼−∞

JqðαÞ · ej
2πqx
p ; ð10Þ

where α ¼ 2πW in radians. By following the proce-
dure described for the amplitude grating [Eqs. (2)–
(5)], the diffraction field, after propagating a distance
of z, can be calculated as

uzðxÞ ¼
Xþ∞

q¼−∞

JqðαÞ · e
−jπzλ

�
q
p

�
2

· ej2πx
q
p: ð11Þ

The field distribution at any plane z is an infinite
sum of Bessel functions. If we make the same as-
sumption, that the phase ripple is much less than
1 rad (α ≪ 1), then we can approximate the field dis-
tribution at any plane z by looking only at the lower
orders Bessel functions. If α ≥ 1, then the higher
order Bessel functions may be larger than the lower
order ones and cannot be neglected.

When α ≪ 1, the sinusoidal phase described in
Eq. (10) can be simplified to

uz¼0ðxÞ ¼ e
jα sin

�
2πx
p

�

≈ 1þ jα sin
�
2πx
p

�
−
α2
2
sin2

�
2πx
p

�
þ…; ð12Þ

and the field distribution at the plane z becomes

uzðxÞ ¼ 1 −
α2
4
þ jα · e

−jπλz
p2 sin

�
2πx
p

�
þ α2

4

· e
−j4πλz

p2 cos
�
4πx
p

�
: ð13Þ

The phase of this field can be given in terms of the
Taylor series expanded in α:

ψzðxÞ ¼ α cos
�
2πz
zT

�
sin

�
2πx
p

�

−
α2
4

�
sin

�
8πz
zT

�
cos

�
4πx
p

�

þ 2 sin
�
4πz
zT

�
sin2

�
2πx
p

��
þ…: ð14Þ

The Taylor series of amplitude in α is

AzðxÞ ¼ 1 −
α2
4
þ α sin

�
2πz
zT

�
sin

�
2πx
p

�

þ α2
4

�
cos

�
8πz
zT

�
cos

�
4πx
p

�

þ 2 cos2
�
2πz
zT

�
sin2

�
2πx
p

��
þ…: ð15Þ

The term quadratic in α corresponds to the second
harmonics, and they have much smaller magnitude
because α ≪ 1. By keeping only the term linear in α,
the phase reduces to

ψzðxÞ ¼ α cos
�
2π z

zT

�
sin

�
2πx
p

�
; ð16Þ

and the amplitude becomes

AzðxÞ ¼ 1þ α sin
�
2π z

zT

�
sin

�
2πx
p

�
: ð17Þ

Again, the harmonics are periodic with integral num-
ber of cycles within one Talbot cycle, so the Talbot
imaging phenomenon remains valid for large phase
ripples. As a sinusoidal phase pattern propagates, it
will cycle through a reverse contrast amplitude pat-
tern, a conjugate phase pattern, a pure amplitude
pattern, and then back to the original phase pattern.
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Compared to the original phase ripple, the magni-
tude of the phase ripple is approximately modulated
by a cosine function. If the magnitude of the original
phase ripple is W in waves, then the attenuation of
the phase ripple as it propagates a distance z can be
described as

W 0 ¼ W cos
�
2π z

zT

�
¼ W cos

�πzλ
p2

�
: ð18Þ

For many applications, this propagation distance is
small compared to the Talbot distance. In this case,

W 0
≈ W

�
1 −

π2λ2z2
2p2

�
: ð19Þ

The magnitude of the phase becomes smaller than (if
not equal to) that of the original phase. We call this
the phase smoothing effect. The pure phase ripples
also create amplitude ripples accordingly, which
have a sinusoidal distribution, as shown in Eq. (17).

In conclusion, for a wavefront with periodic, weak
amplitude or phase variations, the Talbot effect be-
haves as expected, with the periodic cycling between
amplitude and phase. While the periodic behavior is
general, we show that this behavior is approximated
as sinusoidal for cases with amplitude ripples much
less than the mean, or phase ripples much less than
1 rad. In general, higher harmonics are generated,
which are about a factor of α less than the fundamen-
tal where α is the ratio of the amplitude variation to
the mean, or it is the amplitude of phase ripples in
units of radians.

Note that the Talbot analysis is for one single fre-
quency, but the method is general, because any dis-
tribution can be decomposed into a set of sinusoidal
functions. The propagation using the Talbot analysis
allows us to take advantage of the linear behavior of
diffraction. Since the Fourier components do not in-
teract, we decompose the distribution into Fourier
components, then propagate each component with
a simple transfer function. The resulting distribution
can be reconstructed by integrating over the Four-
ier space.

3. Physical Insight of the Talbot Effect

When the periodic object has weak phase or ampli-
tude distribution, the Talbot effect can be understood
in terms of three-beam interference [11]. The form of
Eq. (2) is that of three plane waves (the three lowest
harmonics of the object), as shown in Fig. 1. One
plane wave propagates along the z axis, and the other
two are off-axis and symmetric about the z axis. The
resulting field is the addition of these three plane
waves. This three-beam interference causes the am-
plitude and phase to vary periodically in space. At
the Talbot distance, the pattern is the same as the
original one. The pattern is shifted sideways at the
half-Talbot distance.

The simplicity of three-beam interference helps
understand the physics of the Talbot effect, and

the self-imaging effect can be simulated as a sum
of three plane waves. Consider a phase ripple with
amplitude of 0:05λ; the phase and amplitude distri-
butions for propagating the Talbot distance two
times are simulated using the method of the three-
beam interference, as shown in Fig. 2. The replica-
tion of the original wavefront can be obtained by sim-
ply adding the complex amplitude of the three
plane waves.

4. Talbot Effect in a Spherical Converging or
Diverging Beam

In some applications, the periodic structure propa-
gates in a spherical beam [12]. The field distribution
of a periodic structure propagating in a spherical
beam can be obtained using the Fresnel–Kirchhoff
integral or other approaches [13,14,12]. Those ap-
proaches require extensive mathematical treatment.
In this paper, we present an equivalent propagation
method for the weak periodic structure that allows
calculating the phase and amplitude distribution
with the simple expressions derived in Section 2.

The Talbot distance zT is defined for a collimated
light. For a spherical beam, it is convenient to con-
vert it into an equivalent collimated beam and then
use the Talbot effect to predict how wavefronts
change due to propagation. The diffraction pattern
for a spherical beam is the same as that observed
for a collimated beam, except that the diffraction pat-
tern occurs at the effective propagation distance Le,
and it is scaled in the transverse dimension.

As shown in Fig. 3, a converging wavefront start-
ing with radius of curvature R1, diameter 2a1, and
ripples with period p1, propagates to a position where
it has radius of curvature R2. To convert this propa-
gation to equivalent propagation in a collimated
space, an ideal lens with an arbitrary focal length

Fig. 1. (Color online) Talbot effect illustrated as three-beam in-
terference. The angular spectrum of a laser beam transmitted
through a periodic object consists of three plane waves, which com-
bine together to form the periodic replication of the original per-
iodic structure along the z axis.
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f is used to convert the light into collimated light.
Then we use geometric imaging relationships to cal-
culate equivalent dimensions. Assuming an ideal
imaging system, the amplitude and phase variations
are correctly imaged through the lens.

In collimated space, the equivalent propagation
distance is

ΔZ0 ¼ Z0
2 − Z0

1 ¼ f 2
�

1
R2

−
1
R1

�
; ð20Þ

and the phase ripple has a period of

p0 ¼ f
R1

p1: ð21Þ

The attenuation of the phase ripple due to propaga-
tion, via Eq. (18), in the equivalent collimated space
becomes

W 0 ¼ W · cos
�πλ ·ΔZ0

p02

�
¼ W · cos

�πλR1 · ðR1 − R2Þ
R2 · p2

1

�
:

ð22Þ

The focal length f in Eq. (22) falls off, and this makes
sense because the lens is arbitrarily selected to con-
vert a spherical beam to a collimated one. Comparing
Eq. (22) with Eq. (18) shows that R1ðR1−R2Þ

R2
is equiva-

lent to z. Therefore, the effective propagation dis-
tance Le can be defined as

Le ¼
R1ðR1 − R2Þ

R2
; ð23Þ

and Eq. (22) becomes

W 0 ¼ W · cos
�πλ · Le

p2
1

�
: ð24Þ

The period of the phase ripple p varies as it propa-
gates in a spherical beam. To avoid the scaling issue,
the ripple period can be normalized by 2a, the
diameter of the aperture. Thus, the normalized
frequency f normalized ¼ 2a1=p1 ½cycles=diameter�, re-
mains unchanged as the wavefront propagates in
any type of illumination. By replacing the period
p1 with the normalized frequency f normalized, Eq. (24)
becomes

W 0 ¼ W cos
�πλLef 2normalized

4a2
1

�
: ð25Þ

By using the Fresnel number Nf,

Nf ¼
a2
1

λLe
; ð26Þ

Eq. (25) can be further reduced to

W 0 ¼ W cos
�πf 2normalized

4Nf

�
: ð27Þ

Fig. 2. Simulation of the phase and amplitude distribution using the method of three-beam interference. The original phase ripple has an
amplitude of 0:05λ.

Fig. 3. Propagation in a converging space is converted to equivalent propagation in a collimated space.
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Physically, the Fresnel number represents the geo-
metric difference between the distance from the edge
of the aperture to the observation point, and the dis-
tance from the center of the aperture to the observa-
tion point, divided by λ=2. Equation (27) shows that
the phase smoothing effect of the periodic structure
depends only on the Fresnel number, which is a func-
tion of effective propagation distance, aperture size,
and wavelength. The larger the Fresnel number, the
less the smoothing effect is. For any given geometry,
the Fresnel number can be calculated, allowing the
change of the wavefront magnitude due to propaga-
tion to be estimated at any given frequency. A trans-
fer function describing the magnitude of the phase
smoothing can be defined as

TF ¼ W 0

W
¼ cos

�πf 2normalized

4Nf

�
: ð28Þ

Another useful form of the transfer function is to
describe it in terms of F-number, which is R1

2a1
in this

case. Rewrite Eq. (21) with F-number and normal-
ized spatial frequency, and we have

TF ¼ cos
�πλ ·ΔZ0

p02

�
¼ cos

�πλR2
1

p2
1

�
1
R2

−
1
R1

��

¼ cos
�
πλF2

nf 2normalized

�
1
R2

−
1
R1

��
: ð29Þ

Note that the phase attenuation varies with spatial
frequency. In general, any wavefront aberration can
be decomposed to a collection of sinusoidal ripples
with variable spatial frequencies. For each frequency
component, the phase attenuation can be estimated
by the transfer function.

As mentioned in Subsection 2.B, the amplitude
variation follows a sine function as a periodic struc-
ture propagates in a collimated beam. In spherical
illumination, the irradiance varies proportional to
the inverse beam size as the beam propagates. The
amplitude variation will follow a sine function if it
is scaled by the beam size ( ~1

R2).
The transfer function shows how wavefront irregu-

larities with high spatial frequency are filtered by
propagation. This is of great importance to interfero-
metry, where the high-frequency phase information
is needed. As an example, Fig. 4 shows a phase trans-
fer function due to a defocused image plane for an
interferometric measurement of a 50 mm optic with
a defocus error of 500 mm. It is clear that this defocus
causes loss of information (phase smoothing) for a
frequency above 40 cycles=diameter (period of
1:25 mm) and causes severe problems for higher fre-
quencies, which can show phase reversal at about
90 cycles=diameter (period of 0:56 mm).

5. Edge Diffraction

The analysis above neglects all edge effects. Edge dif-
fraction occurs when the wavefront strikes the edge
of an aperture, which acts as a secondary source and

creates a new wavefront. The new wavefront propa-
gates into the geometric shadow of the aperture and
looks like diffraction “ripples” around the edge of the
aperture [13,15]. It will also be seen when an aper-
ture is not in focus in an imaging system. The edge
diffraction pattern can be studied by dividing the
aperture into Fresnel zones and calculating the Fres-
nel number. The severity of the edge diffraction de-
pends on the Fresnel number, which is a function
of the wavelength and propagation distance. A larger
Fresnel number (closer to the periodic structure)
means less edge diffraction. The edge diffraction
becomes more significant as the Fresnel number
becomes small (further away from the periodic
structure).

The diffraction near the edge of the aperture can be
modeled as Fresnel knife-edge diffraction. The real
and imaginary parts of the electric field distribution
can be found by evaluating the Fresnel integrals [13].
Figure 5 shows the amplitude and phase fluctuations
due to edge diffraction. Both amplitude and phase
have rapid oscillations as the distance from the edge
becomes large. The central 80% of the aperture will
be virtually free of edge effects when the distance
from the edge corresponding to 10% of the aperture
radius is 5ðλLe=2Þ1=2 (about six ripples from the
edge), or

5

ffiffiffiffiffiffiffiffi
λLe

2

r
< 0:1a; Nf ¼

a2

λLe
> 1250: ð30Þ

The Fresnel number of the geometry has to be
greater than 1250 in order to have six or more ripples

Fig. 4. Transfer function due to a defocused image plane for
interferometric measurement of a 50 mm optic with 500 mm
defocus error. The wavelength is 632:8 nm. The defocus causes
loss of information (phase smoothing) for a frequency above
40 cycles=diameter and causes severe problems for higher fre-
quencies, which show phase reversal.
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at 10% of the aperture radius from the edge. In ad-
dition, the period under consideration should be long
enough that the Fresnel number for propagation is
larger than the number of ripples across the aper-
ture. Otherwise, the edge diffraction effect will
strongly interact with the Talbot effect of the periodic
structures.

Figure 6 shows the period of the edge diffraction
ripples, the amplitude envelop, and the phase envel-
op, which drop quickly with respect to the distance
from the edge of the diffraction pattern. It is interest-
ing to note that the three curves have exactly the
same shape and they can be obtained one from the
other by only scaling and translating.

Edge diffraction is often seen in interferometry.
There are many apertures inside an interferometer
that cannot be in focus because interferometers often
image the surface under test on the detector to cor-

rectly represent the errors in the test surfaces. Edge
diffraction from the limiting aperture usually has the
most dominant effect in a measurement, like the
transmission sphere/flat.

6. Simulation

To verify the equations derived above for calculating
the phase and amplitude behind a weak periodic
structure, a simulation, based on wave propagation,
was performed using the physical model of the ASAP,
an optical modeling software [16].

A sinusoidal phase ripple with a magnitude of
�0:05λ (m ¼ 0:31 rad) and the amplitude of unity
propagates one Talbot distance in the collimated
beam. The phase and amplitude distribution are
plotted in Fig. 7. The analytical solution is obtained
using the Eqs. (17) and (18). They agree with the
ASAP simulation.

Fig. 5. (Color online) (a) Amplitude and (b) phase variation from a knife edge.

Fig. 6. (a) Period of the edge diffraction ripples, (b) the amplitude envelop, and (c) the phase envelop due to edge diffraction.
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Numerical simulation using ASAP was also used to
verify the effective propagation distance for a conver-
ging spherical beam. If a spherical wavefront (λ ¼
0:5 μm) starting with radius of curvature 20 mm
and diameter 2 mm passes through a sinusoidal
phase grating with period 0:1 mm, the zT

8 ,
zT
4 ,

zT
2 ,

3zT
4 ,

and zT occur at 4.0, 2.7, 3.3, 2, and 1:3 mm from
one another. This can be calculated by solving the

R2 when the effective propagation distance Le equals
some fraction of the Talbot distance. An ASAP simu-
lation is also performed to verify the calculation, and
both the amplitude and phase variations are shown
in Fig. 8. The data from the ASAP simulation are
shown at the appropriate propagation distance.

Note that ASAP calculates the complex field in a
plane instead of a sphere, so the light near the edge
of the pupil propagates a longer distance than the on-
axis one and there is a cosine effect. For this F=10
system, the cosine effect causes a propagation dis-
tance error of about 0.1%. In Fig. 8, the amplitude
variation is shown on a plane where ASAP calculates
the field distribution. The phase variation is shown
on a curved surface. The ripples are scaled to show
the phase ripples clearly.

The pure phase variation occurs right after the
grating, at both the half and one Talbot distances.
The pure amplitude variation happens at a quarter
and three-quarters of Talbot distance. At zT

8 , there are
both amplitude and phase variations. The calculated
equivalent propagation distance for converging
wavefront with a phase grating matches the simula-
tion using ASAP.

7. Conclusion

This paper uses conventional Fourier analysis to de-
monstrate the Talbot effect for a sinusoidal ripple in
amplitude or phase. A sinusoidal approximation is
made for the case where the phase or amplitude rip-
ples are small, which allows direct determination of
the field for an arbitrary propagation distance.
Coupled with a straightforward method for calculat-
ing the effect in a diverging or converging beam, the
Talbot method provides a useful approximation for a
class of diffraction problems. The derivation in this
paper is very useful for solving or explaining the
phase smoothing and edge diffraction effects in

Fig. 7. (Color online) (a) Phase and (b) amplitude distribution at x ¼ 0 as a weak phase ripple propagates one Talbot distance. The results
from the Fourier analysis were validated with numerical simulation using ASAP.

Fig. 8. (a) Amplitude and (b) phase distributions at some frac-
tional Talbot distance in a converging spherical beam. The calcu-
lated equivalent propagation distance for converging the
wavefront with a phase grating matches the simulation using
ASAP. The data from the ASAP simulation are shown at appropriate
propagation distances. It is clear that the results have a character-
istic period defined using the equivalent propagation distance.
Also, the presence of higher harmonics is seen in the nonsinusoidal
shape at zT=8. The amplitude variation is scaled by the inverse
area in this figure, and the phase variation is also scaled to show
its variation. Only ten cycles at the middle of the aperture are
shown in both pictures. The numbers in the figures have units
of millimeters.
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coherent imaging systems, especially with small
variations in amplitude or phase.
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