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ABSTRACT

Since 1996, a team at the University of Arizona has been designing and fabricating lightweight, active space
mirrors. These glass/composite mirrors use a thin flexible substrate for the optical surface and an actuated
composite structure for support. We present a design method that yields the best figure correction for the
lightest mass by assuming that the substrate’s material properties are the limiting parameters. The results are
such that the designer decides on a total mass budget and an aperture area, and the algorithm provides the
substrate thickness, number of support points, and the mass distribution between the substrate and actuators.
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1. INTRODUCTION

Building space mirrors requires that they be lightweight, stowable, and durable. To date, several designs are
currently in use. The Hubble Space Telescope (HST) uses a conventional glass mirror that has been aggressively
lightweighted into a sandwich geometry. The mirror was figured in the optics shop, and it depends on its
structural stability to maintain the surface figure. The HST primary is an example of a passive mirror: the
surface figure cannot be changed or manipulated. By contrast, future space telescopes will employ an active
mirror design. Active mirrors use a thin, flexible substrate for the reflective surface and an array of position or
force actuators to maintain the surface accuracy. An example of an active mirror is the University of Arizona
design, shown in Figure 1.

The most important fabrication specifications for space mirrors (excluding cost) are mass and surface quality.
For the current generation of space telescopes, the largest portion of the mass budget is taken up by the primary
mirror. As a result, there is great interest in making high quality, durable, and lightweight space mirrors.

The mass and surface quality of an active mirror are controlled by two key fabrication parameters: the
substrate thickness and the number of support points. For example, the substrate can always be made more stiff
by increasing the thickness or the number of support points, but there’s a trade-off between the two parameters.
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Figure 1. The University of Arizona lightweight space mirror design.

UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts,
edited by Howard A. MacEwen, Proceedings of SPIE Vol. 5166 (SPIE,
Bellingham, WA, 2004) · 0277-786X/04/$15 · doi: 10.1117/12.507781

49



The membrane can be made thinner (and less massive), but the number of actuators must be increased to
compensate for the reduction in substrate stiffness.

In this paper, we derive a relationship between the substrate thickness and the number of actuators that
results in the most accurate lightweight mirror. Given a target mass budget for the entire mirror, we have
derived the optimum fabrication parameters (membrane thickness, membrane mass, and number of actuators)
to produce the lightest, most accurate mirror. The results are based on the assumption that the fundamental
limiting factor in surface quality are the CTE and temperature changes across the material. In an effort to
concentrate on the overall results, we only briefly describe the mathematics in the body of the paper. All of the
derivations are included in the appendices.

2. SUPPORTING A MEMBRANE WITH A DISCRETE NUMBER OF POINTS

Unlike conventional mirrors that derive their stiffness from their thickness, the surface quality for a thin∗, active
mirror isn’t determined by the structural geometry of the membrane. Instead, the design uses an array of
force or position actuators to correct for any localized figure errors. These figure errors can be from several
sources: self-weight deflection (gravity), temperature gradients across the material, or fabrication (polishing)
errors. Whatever the cause, all of these sources cause a strain in the membrane.

For the purposes of this analysis, we will assume that errors in the membrane are caused either by discrete
temperature differences (hot and cold spots on the membrane) or patches with different CTEs combined with a
temperature change. These effects cause errors in the membrane at various spatial frequencies, and we can fix
the errors that are larger in scale than the actuator spacing.

Figure 2 shows what happens locally when one of these effects causes an error in the membrane. If a region
on the membrane expands, it pushes against the area around it and a “blister” forms. Of course, if this occurs
over several actuator lengths, we can use them to remove this error from the surface figure.

In order to fix the blisters, the actuators must exert a force on the membrane. Because the membrane is
supported by a discrete number of points, the surface will consist of local bumps (or holes) over every actuator.
Obviously, these bumps will affect the surface quality of the membrane, and we can quantify this effect by using
a relationship that Nelson developed1 that describes the rms surface error of a plate that is supported by N
points:

δrms = 0.0012
P

D

(
A

N

)2

. (1)

∗We define “thin” as having an aspect ratio of over 100. That is, the diameter is at least 100 times that of the thickness.
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Figure 2. If a region on the membrane expands, it pushes against the area around it and creates a blister.
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This relationship is a function of the force per unit area, P , applied by N actuators, and it is the starting
point for our derivation. A is the total plate area, and N is the number of support points. D is the modulus of
rigidity, and it depends strongly on the geometry of the membrane. This relationship is discussed in more detail
in Appendix A, Equation 6. Equation 1 has two key assumptions associated with it:

• The substrate is a thin shell.

• The actuators are arranged in a triangular, periodic pattern. A triangular geometry is more effective at
correcting the surface error than a hexagonal, circular, or rectangular geometry.1

Equation 1 is difficult to apply to our situation because we usually don’t know how much pressure each
actuator must exert to fix a blister. To that end, we have derived an expression for P that depends on more
appropriate variables. Because we want to focus on the practical conclusions to be drawn from this relationship,
we will only show the results here. A detailed derivation is included the Appendix A. Our expression for P is as
follows:

P =
2t

[
0.36(12

t3 D(1 − ν2))
]
∆(α T )

R
,

and we can substitute this into Equation 1 to get a new expression for δrms:

δrms =
0.01(1 − ν2)∆(α T )

R t2

(
A

N

)2

. (2)

For the sake of clarity, here are the variables that are used in Equation 2:

ν Poisson’s ratio: − εtransverse
εlongitudinal

, ε represents the strain: ∆l
l

∆(α T) The change in CTE (α) and/or temperature (T ) across the material
R Semi-diameter of the blister
t Shell thickness

A Shell area
N Number of actuators

Equation 2 represents an important conclusion. We now have an expression for RMS surface error that de-
pends on the two material properties responsible for causing the error: temperature (T ) and CTE (α) differences.
They are grouped together in the parenthesis because it is assumed that these effects will occur concurrently
with each another. Also note that, unlike Equation 1, Equation 2 is now in terms of three fabrication parameters:
t, A, and N, the thickness, shell area and number of actuators, respectively. Most important, these parameters
are all dependent on mass.

A fundamental relationship for thin mirrors is contained within Equation 2. The variables for shell thickness
and number of actuators are both in the denominator: more actuators or a thicker shell result in a smaller
residual error. Also, there is a direct tradeoff between shell thickness and number of actuators. For example, if
the shell thickness decreases by half, then the number of actuators must double to maintain the same surface
quality.

Finally, it’s worth noting that Equation 2 does not contain Young’s modulus, E. (It falls out of the derivation.
See Appendix A.) This implies that the designer does not gain anything by choosing a stiffer material: in theory,
rubber is just as acceptable as glass or metal, given our initial assumptions. Choosing a stiffer material will
require more force from the actuators to remove the blisters, but the membrane will also be less likely to initially
distort in the first place. These two effects cancel each other out, and E is not a factor in our algorithm.
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3. OPTIMIZING THE SYSTEM FOR THE SMALLEST MASS

Equation 2 yields some insightful information, but it doesn’t provide a solution for building an optimized mirror.
Practically speaking, the system mass is the biggest driving factor in designing lightweight space mirrors. All
three of the fabrication parameters (t, A, and N) depend on mass, so we can optimize Equation 2 to find the
optimum fabrication parameters for the smallest mass.

If we express t and N in terms of mass, we can take the derivative – with respect to the substrate mass – of
Equation 2, set it equal to zero, and find the mass condition that minimizes δrms. This procedure is shown in
detail in Appendix B. When t and N are expressed in terms of mass, Equation 2 can be written as follows:

δrms =
0.01 (1 − ν2)∆(α T )ρ2A2

R
(

msub

A

)2
(

m−msub

mact

)2 , (3)

where msub is the mass of the substrate, mact is the mass of each actuator, and m is the total mass (m =
msub + Nmact). When we take the derivative of Equation 3 and set it equal to zero, we find the following
relationship:

(4msub − 2m)(msub − m) = 0.

The relationship is stunningly simple! The solution where msub = m is trivial; the other solution is the
important one. This relationship states that the minimum surface error will occur when the shell mass, msub,
makes up one half of the mass budget. In other words, the optimum correction occurs when

substrate mass = actuator mass.

This result yields an important fabrication relationship for building the lightest mirror with the best surface
performance. Here are the basic relationships:

t =
msub

Aρ
=

Nmact

Aρ
(4)

msub = Nmact =
m

2
.

With these relationships in place, we can outline a procedure for designing a mirror:

1. Determine the mass budget and substrate diameter. This sets the values for the total mass, m, and the
area of the substrate, A.

2. Calculate the mass budget for the substrate:

msub =
m

2
.

3. Calculate the substrate thickness:
t =

msub

Aρ
.

4. Use the thickness to determine the total number of actuators from the mass of each actuator: (We assume
that the actuator mass is a predetermined constant.)

Nmact = tAρ.
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Notice that the relationship between the number and mass of each support point is an independent variable.
However, mirror designers usually have a working actuator design in mind when they design an active mirror
so they can use this value to calculate the number of required support points. As the actuator mass decreases,
more actuators can be included in the design.

Finally, it’s important to notice that this design scheme does not include the mass of the support structure.
The support structure’s design depends on the system dynamics so we do not consider it in this analysis. When
we discuss the “mass budget,” we refer only to the elements that maintain the reflective surface: the thin
membrane and the actuators.

4. PRACTICAL EXAMPLE: 2-M MIRROR FOR USE IN GEOSYNCHRONOUS
ORBIT

As a practical example, let’s put the four step procedure to work by calculating the parameters for a hypothetical
two meter mirror for use at geosynchronous orbit. Geosync orbit is useful for Earth-imaging situations because
the satellite remains fixed over the same position as the Earth rotates. Let’s assume that an areal density of
5 kg

m2 is the nominal areal density required for this application.2 Applying the areal density over a two meter
mirror, we find that the mass budget for the glass and the actuators is as follows:

total mass = areal density × aperture area

m = 5
kg
m2

× (1m)2π

= 5π kg
m ∼ 16 kg.

Now that we know the target mass and mirror diameter, we can calculate the mass budget for the substrate:

msub =
m

2

=
16 kg

2
= 8 kg.

Let’s assume that we’re going to use Corning’s ULE† as our substrate material. ULE has a density of 2210
kg
m3 . Using step three, we can calculate the substrate thickness:

t =
msub

Aρ

=
8 kg

(π m2)(2210 kg
m3 )

t = 1.2 mm.

Finally, we can use step four to calculate the required number of actuators. If we know a priori that we can
build 50 gram actuators (mact = 50 g), then we can calculate how many support points we will need:

†This glass has a very low coefficient of thermal expansion; standard-grade ULE has a CTE of 15 ppb
oC

. By comparison,

BK-7 has a CTE of 7000 ppb
oC

. This glass is usually a good choice for space applications.
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t =
Nmact

Aρ

N =
tAρ

mact

=
(.0012 m)(π m2)(2210 kg

m3 )
0.050 kg

N = 167 actuators.

It’s important to note that all of the values obtained via this procedure are reasonable and capable of being
fabricated! The University of Arizona has created 50 cm Zerodur substrates less than 1 mm thick.3 We have
designed and built actuators that are less than 40 grams.4 The numbers generated in this example are certainly
possible using existing fabrication methods.

5. CONCLUSION

We presented a set of scaling laws that give the lightest mirror with the best surface. Our derivation shows that
the optimum mirror performance occurs when the total actuator mass is equal to the substrate mass. We derived
this solution assuming that there are discrete patches on the surface that have different temperature and CTEs,
but we have also looked what happens when linear temperature or CTE gradients occur in the material. Our
preliminary results show that the same design rules fall out of the derivation, and this work will be discussed in
a future article.

Finally, it’s worth mentioning that mass, alone, does not determine the outcome of a mirror design. The cost
and time spent fabricating a mirror are certainly important components. However, if one had a similar set of
equations (cost or time as a function of mass and surface quality), the same procedure could be used to find the
optimum solution.

APPENDIX A. PRESSURE EXPRESSION FOR δRMS

In an ideal situation, once the actuator has been activated, it should be able to remove all of the surface error
caused by the strain. In reality, however, a small error remains. In 1982, Nelson presented a relationship that
describes that describes the rms surface error of a plate supported by N points:

δrms = 0.0012
P

D

(
A

N

)2

. (5)

This relationship is a function of the force per unit area, P , applied by the actuators. A is the total plate
area and N is the number of support points. D is the modulus of rigidity, which is given by this relationship:

D =
Et3

12(1 − ν2)
, (6)

where t is the shell thickness, ν is Poisson’s ratio ( εtrans
εlong

), and E is Young’s modulus.

The expression for δrms will be more helpful if P is expressed in terms of something more tangible than the
pressure applied by the actuators. The following derivation for P generates an expression that depends on the
shell thickness, blister size, and the stress.

Figure 2 shows the blister that results when a local strain exists in a glass shell. The stress, σ, is defined as
the force per unit area. The stress is all located in the annular boundary (with area Abndry) around the blister.
Thus, the force in the z direction is
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Fz = σAbndry

= σ(2πRt)
= 2πσRt.

If we use an actuator to correct this blister, the actuator will apply a pressure over the area Ablstr:

Fz = PAblstr

= PπR2

If we assume that we apply enough pressure such that the system is in static equilibrium, then the two forces
shown above are equal:

2πσRt = P (πR2)

P =
2σt

R
. (7)

The expression for P in Equation 7 contains the reactive stress, σ. This quantity is not easily measured, but
we can replace it with other quantities. Using finite element modeling, we developed an empirical expression for
σ:

σ = 0.36E∆(αT ),

where ∆(αT ) represents a change in either α or T across the blister.‡ We can substitute this equation for σ into
Equation 7 to get a new expression for P :

P =
2σt

R

=
2t(0.36E∆(α T ))

R
(8)

Notice that Equation 8 now expresses pressure P as a function of the two possible sources of error: changes in
temperature, patches of different CTEs, or both.

Finally, we can rewrite Equation 6 to create an expression for Young’s modulus, E:

E =
12
t3

D(1 − ν2),

and we can substitute this into 8:

P =
2t(0.36E∆(α T ))

R
(9)

=
2t

[
0.36(12

t3 D(1 − ν2))
]
∆(α T )

R
. (10)

‡This calculation applies to thin shells, where diameter
thickness

∼ 104.
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Now that we have a new expression for P , we can substitute this into Equation 5, the starting pointing in
this derivation:

δrms = 0.0012
P

D

(
A

N

)2

= 0.0012

(
2t(0.36( 12

t3
D(1−ν2)))∆(α T )

R

)

D

(
A

N

)2

δrms =
0.01(1 − ν2)∆(α T )

R t2

(
A

N

)2

. (11)

Equation 11 now contains a tangible fabrication parameter that depends on mass: the substrate thickness t.

APPENDIX B. FINDING A MINIMUM OF δRMS BY TAKING A DERIVATIVE.

The system mass is the biggest driving factor in designing lightweight mirrors for use in space. All three of
the fabrication parameters (t, A, and N) depend on mass, so we can optimize Equation 2 to find the optimum
fabrication parameters for the smallest mass. To do this, we first need to express t and N in terms of mass.

First, let’s express the shell thickness, t, in terms of msub, the mass of the shell. We can do this by starting
with two well-known relationships:

V = At

ρ =
msub

V
,

where V is the volume of the shell and ρ is the density. If we combine these two relationships, we can get an
expression for the thickness in terms of the mass of the shell:

t2 =
(msub

A

)2 1
ρ2

. (12)

This result is squared because the thickness term in Equation 2 is squared.

Now, let’s express the number of actuators in terms of the shell mass. The total mass is equal to the following
expression

total mass = # actuators (mass at each support point) + shell mass
m = Nmact + msub,

where mact is the actuator mass. Solving this equation for N yields

N =
m − msub

mact
. (13)

Finally, we can substitute Equations 12 and 13 into Equation 11:

δrms =
0.01 (1 − ν2)∆(α T )ρ2A2

R
(

msub

A

)2
(

m−msub

mact

)2 . (14)
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Now that we have the residual surface rms error expressed in terms of mass, we can take a derivative with
respect to msub, set it equal to zero, and find the condition that minimizes the mass.

The dependent variable in Equation 14 is msub. It will be easier to take the derivative if we just concentrate
on the parts that include msub. With this in mind, let’s rewrite Equation 14 without all of the constants and
then take the derivative and set it equal to zero :

δrms ∝ 1
m2

sub(m − msub)2

∝ 1
m2

sub(m2 − 2mmsub + m2
sub)

∝ 1
m2

sub m2 − 2mm3
sub + m4

sub)
dδrms

dmsub
∝ 0 − (2msub m2 − 6mm2

sub + 4m3
sub)

(m2
sub m2 − 2mm3

sub + m4
sub)

2

0 = 4m3
sub − 6mm2

sub − 2m2 msub

(4msub − 2m)(msub − m) = 0
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