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ABSTRACT 

Optical testing of a large convex aspheric surface, such as the secondary of a Ritchey-Chretien telescope, can be 
performed with a Fizeau interferometer that utilizes subaperture aspheric reference plates, each providing a null test of a 
subaperture of the larger mirror.  The subaperture data can be combined or stitched together to create a map of the full 
surface.  The region of the secondary mirror surface under test in each sub-aperture is an off-axis segment of the parent 
aspheric surface, therefore, the Fizeau reference requires a non-axi-symmetric aspheric surface to match it. Misalignment 
of the Fizeau reference relative to the parent in each sub-aperture will then result in aberrations in the measurements 
other than the ordinary terms of piston and tilt. When stitching sub-aperture measurements together, the apparent 
aberrations due to the null lens misalignment need to be fitted and subtracted. This paper presents an algorithm to 
perform this particular type of stitching.     
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1. INTRODUCTION 

It is always difficult to interferometrically test a large convex aspheric surface, such as secondary mirrors for Ritchey-
Chretien type of telescopes. The main reason is that a high quality reference surface larger than the test surface is needed 
for the full aperture test of the surface. A few large convex mirrors, both spherical and aspheric, have been tested with 
full-aperture Fizeau test at the University of Arizona, Steward Observatory Mirror Lab1. Diffractive test plates were used 
as reference surfaces. As the telescope apertures get bigger and bigger, so do the secondary mirrors. Then the full 
aperture test is simply impossible. A feasible alternative is to test it in sub-apertures with a small reference surface, then 
stitch them together to get the full surface map. Stitching technique is not new2-8, yet testing an aspheric convex surface 
with an aspheric test plate presents new challenges. Besides the usual piston/tip/tilt that need to be fitted over the 
overlapped area of the adjacent sub-aperture maps, the lateral misalignment of the aspheric test plate introduces other 
aberration terms which must be fitted as well and removed from the sub-aperture measurement maps. In this paper, we 
present an algorithm for fitting these lateral misalignment. The algorithm is extended from the one developed by Otsubo, 
et al2. We wrote Matlab code to implement this algorithm. And we used this program to simulate testing a aspheric 
convex mirror 1.4m in diameter with an aspheric test plate that is the shape of an off-axis segment of the mirror under 
test. The simulation results are presented. 

2. ALGORITHM 

When using an interferometer to test a flat in subaperture, then stitch the measurements together to get the full aperture 
map, only the piston, tip and tilt for each map need to fitted to remove the difference between the adjacent maps in the 
overlapped area. Otsubo et al outlined the theory behind it. As shown in Figure 1, two adjacent sub-aperture 
measurement over areas A and A’ have height of ZA and ZA’, both expressed in global coordinate (x, y). There are 
relative piston, tip and tilt between these two measurements. In the overlapped area, there exists a right combination of a, 
b and c that makes the following relationship true: 
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' ( , ) ( , )A Az x y z x y ax by c= + + + . (1) 

Figure 1. Illustration of piston/tip/tilt between the adjacent subaperture measurements.  

Assuming there are N subaperture measurements, and the Nth one is chosen as the reference which does not need to fit, 
but all other maps have to fit and compensate tip/tilt and piston to minimize the difference over the overlapped area 
between the adjacent subaperture measurements. For the i-th subaperture map,  

,' ( , ) ( , )i i N i i i iz x y z x y a x b y c
≠

= + + + . (2) 

The coefficients for tip, tilt and piston for each map, (ai, bi, ci) must be fitted and then compensated to get the full 
aperture map. Least squared fit is used: 
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The algorithm can be generalized when more terms need to be fitted. The fitting functions for each map may not be 
limited to tip/tilt and piston. They can be any predefined functions, e.g. they can be arbitrary functions fi(x,y) where 
i=1,2,..L, and L is number of functions. Then  
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where coefficients Fik need to be fitted. Again least squared fitting is used:  
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Eq. (5) can be transformed to a group of linear equations. For the i-th sub-aperture measurement, the fitting coefficients 
form an Lx1 vector R whose k-th element is Fik, i.e.  

[ ]i ikR k F= , (6) 

For any two subaperture measurements, e.g. the i-th and j-th, we construct an Lx1 vectors Pij and an LxL matrix Qij, 
where 
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and  
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We borrow the concept of cell array from Matlab9 and make cell arrays P, Q and R which are defined as follows: 
1. P is a (N-1)x1 cell array whose element is  
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2. Q is a (N-1)x(N-1)cell array whose element is 

1

{ , }
N

ij ik ij
k

i j Q Qδ
=

= − +∑Q , (10) 

where 
1

0ij

i j

i j
δ

=⎧
= ⎨

≠⎩
.   

3. R is a (N-1)x1 cell array whose element is 
{ ,1} ii R=R . (11) 

Note that P, Q and R can be collapsed to regular vectors/matrix with dimensions ((N-1)⋅L)x1, ((N-1)⋅L)x((N-1)⋅L) and 
((N-1)⋅L)x1, respectively.  Then Eq. (5) becomes 

= ⋅P Q R . (12) 

To solve this in Matlab is straightforward: 
\=R Q P . (13) 

Now we have obtained the fitting coefficients Fik since they are elements of R, then we can combine the subaperture 
measurements together to get the full aperture map. At the overlapped areas, average is taken over all the subapertures 
which have valid data over this area. Normal analysis can be performed on the stitched map, such as Zernike 
decomposition, subtraction of certain reference maps, etc.  

A further extension of this approach is that each subaperture map may be fitted to different functions for misalignment.  
Then Pij, Qij and Ri are constructed differently, the rest of steps are the same as illustrated above. An example for this 
application is to test a large convex mirror with two different test plates, each used for different part of the mirror along 
radial position. Then the lateral misalignment of the test plates will have combinations of different amount of 
astigmatism and coma.  

Assume there are N subaperture measurements, Li functions denoted as fik(x,y) need to be fit for the i-th subaperture 
measurement, and the coefficients are Rik, i.e 
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where i = 1, 2, …, N-1 assuming the N-th measurement is used as reference with no-misalignment fitting needed.  

Define vector Pij similarly as in Eq. 7, i.e. 
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Note that in definition described by Eq. 7, Pij and Pji have the same number of elements, and the corresponding elements 
have the same magnitude but opposite sign. Yet, in the definition for the more general case, there is no such relationship 
for Pij and Pji. Even the number of elements may be different. 

Define vector Ri exactly as in Eq. 6, 

[ ]i ikR k F= . (16) 

Again, Ri and Rj may have different number of elements. 

Define Qij as follows: 
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From the new Pij, and Ri, we can construct the cell arrays P and R exactly the same as outlined above. But Q is a little 
different, 

{ , } iji j Q=Q . (18) 

Again, P, Q and R can be collapsed to vectors and matrix, then it is straightforward to get the best fit of the coefficients, 
Fik, by using Eq. 13. 

3. SIMULATION 

We implemented in Matlab the simpler version of the algorithm where each subaperture measurement is fitted to the 
same group of functions. We did a simulation on testing a large convex aspheric mirror with a aspheric test plate. The 
aspheric test plate is small such that only subaperture measurement can be made on the convex mirror (see Figure 2). 
The subaperture measurements are arranged such that they cover the whole convex mirror with sufficient overlap 
between them (see Figure 3). In each subaperture, we need to fit the tip/tilt, piston and power due to the vertical 
alignment change between subaperture measurements, as well as two other terms that represent the lateral alignment 
change. The subaperture represents a off-axis portion of the aspheric surface. When the test plate and the mirror under 
test are both perfect, and perfect null fringe is obtained when they are perfectly aligned. Any lateral misalignment of the 
test plate in regard to the mirror under test, either a shift along radial direction or clocking or a combination of the two, 
will produce apparent aberrations which must also be fitted and taken out (see Figure 4).     

Figure 2. Testing a convex aspheric mirror with smaller test plate. (a) Schematic of test setup. (b) Illustration of full aperture 
and subaperture relation. 

   interferometer 1400 mm 

Subaperture test
800 mm 
at 12 positions 
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Figure 3. Schematic of the arrangement of the 12 subaperture measurements, 30 degrees apart. 

Apparent aberration map for 1mm radial shift:  

Zernike standard 
coefficients (rms nm): 
Z4 (power): -173 
Z6 (0° astigmatism): 122 
Z7 (90° coma): 38 

(a) 
Apparent aberration map 
for 0.05° clocking: 

Zernike standard 
coefficients (rms nm): 
Z5 (45° astigmatism): -
48 
Z8 (0° coma): 15 

(b) 
Figure 4. Illustration of lateral alignment error of the test plate and associated apparent aberration map. (a) radial shift, (b) 

clocking. 

Six functions are fitted for each subaperture measurement to remove the errors caused by misalignment of the test plate 
relative to the mirror under test. They are listed in Table 1. 

Nominal 
position 

clocking 

Nominal 
position 

Radial shift 
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Table 1. List of terms fitted for each subaperture measurement. 

Term Expression Corresponding test plate alignment error 
1 

1( , ) 1f x y = piston 

2 
2 ( , )f x y x= Tilt in x direction 

3 
3 ( , )f x y y= Tilt in y direction 

4 2 2
4 ( , )f x y x y= + Focus error in z 

5 
5 ( , ) 0.122 6( , ) 0.038 7( , )f x y Z x y Z x y= ⋅ + ⋅ Radial shift in x-y plane 

6 
6 ( , ) 0.048 5( , ) 0.015 8( , )f x y Z x y Z x y= ⋅ + ⋅ Clocking in x-y plane 

We simulated testing the mirror in 12 angular positions, 30 degrees apart, as shown in Figure 3. The software is 
thoroughly tested. When there is only aberrations due to test plate misalignment in each subaperture measurement, the 
stitching returns a perfect null map of full aperture. We further simulated the noise effect by adding 3nm rms correlated 
noise to each subaperture map, besides the aberrations caused by random alignment errors. A typical subaperture map is 
shown in Figure 5. And the result of a typical stitching run is shown in Figure 6.  

= 

noise 

+ 

Piston/tip/tilt/power 

+ 

Z5-8 

Figure 5. A typical subaperture map is composed of three parts: correlated noise, alignment errors of piston, tip, tilt and 
power and alignment errors of combinations of astigmatism and coma. 

Subaperture measurements raw data: 

Subaperture maps AFTER removing test plate alignment error: 
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Fitted map With zl-z4 removedStitched map With zl-z 4 removed

IS
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Stitching result: 
Stitched map: 
RMS: 4.1nm  

Fitted map: 
RMS 3.8nm 

Residual: 
RMS: 1.5nm 

Figure 6. The result of a typical stitching rum.  

4. SUMMARY 

We generalized a stitching algorithm to deal with cases where, besides the usual tip, tilt and piston terms to be fitted for 
subaperture measurements,  additional terms of virtually arbitrary form need to be fitted as well. We outlined the 
algorithm in this paper. We also implemented a simpler version in Matlab where each sub-aperture is fitted with the 
same group of functions. The stitching software we wrote in Matlab was tested extensively and proven to be accurate. 
We then use it to study testing an aspheric convex mirror in subaperture measurements with a smaller aspheric test plate. 
The results were presented here.  The general version of the stitching algorithm described in Section 2 will be 
implemented in the near future. 
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