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ABSTRACT  

Increasing demand for highly accurate freeform aspheric surfaces requires accurate and efficient measurement 
techniques. One promising possibility uses a sub-aperture scanning system that measures local curvature variations 
across the part. In this paper, we develop and demonstrate two different data processing algorithms, a zonal approach 
using Southwell integration method and a modal approach leveraging Zernike curvature basis, that reconstruct the 
surface 3-dimensional profiles from the curvature data. The performance of suggested methods and the sensitivity to 
noise is diagnosed for various SNR (Signal-to-Noise Ratio) cases.  

Keywords: Aspheric metrology, curvature sensing, optical testing, freeform aspherics  
 

1. INTRODUCTION  
Optical components that use freeform surfaces require special techniques for metrology. Surfaces are required to be 
measured accurately, yet they may have no symmetry and may have large departure from spherical. Coordinate 
measuring machines can measure such surfaces, but with limited spatial sampling and accuracy.1 Full aperture 
interferometry with CGH (Computer Generated Hologram) provides highly accurate measurements, but requires a 
custom CGH for each part.2 Sub-aperture interferometry coupled with stitching software can provide surface 
reconstruction for some classes of surfaces.3  

We introduce and discuss data reduction for a different class of sub-aperture interferometer that samples very small 
regions of the surface to determine the local curvature. Such instruments and algorithms that provide curvature along one 
direction and integrate this to determine optical surface shape profiles have been highly successful.4-6 We reference the 
GEMM6 (Geometry Measuring Machine) in figure 1 developed at NIST (National Institute of Standards and Technology) 
that uses interferometry to sample all three second derivatives across full freeform optical surfaces.  

 
Figure 1. GEMM (Geometry Measuring Machine) developed at NIST (National Institute of Standards and Technology), 
which measures local curvature along a scanning line to reconstruct the freeform optical surface profile 6 
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A circular sub-aperture surface shape fsub(x, y) about its center (0, 0) can be expressed using Taylor series expansion as 
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At the same time, fsub(x, y) can be represented in terms of Zernike polynomials, which is a complete and orthogonal basis 
over a normalized unit circle, as 

                                                                               ,),(),( ∑ ⋅=
n

nnsub yxZayxf                                                               (2) 

 

where an is the n-th Zernike coefficient and Zn is the n-th Zernike basis function defined as  

 

11 =Z                                                 (Piston)                                         

xZ =2 ,           yZ =3                                 (Tip and tilt)                                 

 122 22
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The first 6 Zernike polynomials are shown in figure 2. 

 
Figure 2. The first 6 Zernike polynomials within a unit (radius = 1) circle area (Blue to Red: -1 to 1)  

By comparing equation (1) and (2) term by term, the three second derivative values (dxx, dxy and dyy) in the local sub-
aperture region can be determined in terms of power and two astigmatism Zernike coefficients, a4, a5 and a6 as  
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In this paper, we discuss the form of the second derivative data (i.e. curvature vector) and provide two different methods 
of processing curvature data to reconstruct the surface maps. A two-step integration algorithm using Southwell’s zonal 
approach7 is provided that maintains high spatial resolution of the data. Another technique utilizing Zernike curvature 
basis8 is provided that offers a convenient modal reconstruction approach to fit the curvature data. The performance of 
these algorithms is evaluated and compared. 
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2. REPRESENTATION OF CURVATURE DATA 
A synthetic 0.2m diameter freeform surface with ~0.8mm maximum sag difference was generated as shown in figure 3 
(top-left) and used for various simulations in this paper. Three ideal second derivative maps of the synthetic surface were 
also calculated and presented in figure 3. The dxx and dyy represent the second derivatives of the surface map in x and y 
direction while dxy contains the cross-term information of the curvature. The sampling was made on 501 by 501 grid 
points equally spaced over the synthetic surface. The three second derivative values at those local sampling points across 
the freeform surface produce a curvature vector (x, y) defined as [dxx(x, y), dxy(x, y), dyy(x, y)], where (x, y) is the 
coordinates of the sampling locations. 

 

 
Figure 3. Synthetic 0.2m diameter freeform aspheric surface (top-left) and its ideal curvature vector  components [dxx(x, y), 
dxy(x, y), dyy(x, y)] containing the local second derivative values on the 501 by 501 sampling grid 

The curvature vector (x, y), in practice, could be measured using various curvature sensors mounted on a scanning 
system. The measured (x, y) is used to reconstruct the original surface map f(x, y) utilizing different data reduction 
approaches discussed in Section 3. 

3. SURFACE RECONSTRUCTION  
3.1 Zonal Approach: Two-step Integration using Southwell Method 

A synthetic freeform surface reconstruction using a zonal approach was simulated. Two-step integration was applied 
using Southwell method7. The first two curvature vector components dxx and dxy were integrated to get the x-slope map 
of the original surface. In the same way, y-slope map was calculated by integrating dxy and dyy. Those two slope maps 
went through the second Southwell integration step to reconstruct the original surface shape. A schematic diagram 
showing the flow of this two-step zonal approach is presented in figure 4.  

Starting from the ideal (i.e. noise-free) curvature vector in figure 3, the 0.2m synthetic surface map was successfully 
reconstructed. A comparison between the original synthetic surface and the reconstructed result is presented in figure 5 
with the reconstruction error (i.e. difference between the original and the reconstructed surface). As the input data was 
noise-free, the reconstruction error map represents the intrinsic error associated with the numerical zonal integration 
method used in this study. 
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Figure 4. Schematic block diagram showing the two-step zonal integration process using Southwell method 

The piston and tip-tilt terms have been subtracted from the maps as the curvature-based reconstruction is fundamentally 
blind to those terms. In other words, the second derivatives do not maintain any information about the surface’s piston 
and tip-tilt components. The reconstructed surface’s RMS (Root-Mean-Square) 0.080461mm is almost same as the 
original surface RMS 0.080449mm. The reconstruction error map shows only ~0.000019mm RMS residual difference as 
shown in figure 5 (right).    

 

 
Figure 5.  Zonal reconstruction result using Southwell method: Original synthetic surface (left), reconstructed surface 
(middle) and reconstruction error map (right) (Note: The piston and tip-tilt have been subtracted from the maps. The 
reconstruction error is the difference between the original and the reconstructed surface.) 

3.2 Modal Approach: Fitting using Zernike Curvature Basis  

A new Zernike curvature basis8, C polynomial, has been defined and used to demonstrate the modal approach for a 
surface reconstruction. This method directly fits the curvature vector using the orthogonal basis and produces the 
analytical description of the original surface. The overall data processing flow is summarized in figure 6.  
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Figure 6. Schematic block diagram showing the modal reconstruction approach using Zernike curvature basis 

The three second derivative components in the curvature vector (x, y) are slightly re-arranged to form a vector  

 

                                                                    ′( , ) = +
− ,                                                                       (5) 

 

which can be fitted to the curvature C polynomials (orthonormal over a circular domain) as 
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where bn is the n-th C polynomial coefficient and C  is the n-th C polynomial basis function. 8 Since each term in C 
polynomials is a combination of the second derivatives of Zernike polynomials, the scalar function f(x, y) that represents 
the surface whose second derivatives are ′( , ) can be written in terms of Zernike polynomials as 

 

                                                                             ,),(),( ∑ ⋅=
n

nn yxZayxf                                                                   (7) 

 

where coefficients an are directly calculated from coefficients bn. 

For a comparison with the zonal approach in Section 3.1, the identical synthetic map was reconstructed via the modal fit 
approach using same ideal curvature vector. The reconstructed surface (middle) and the reconstruction error (right) is 
presented in figure 7. Similar to the zonal case in figure 5, the reconstruction error for this noise-free case is very small 
(practically 0) as shown in the figure 7 reconstruction error (right). This error value provides a good baseline to evaluate 
other cases simulating certain noise levels for the curvature data in Section 4.  
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Figure 7.  Modal reconstruction result using Zernike curvature basis: Original synthetic surface (left), reconstructed surface 
(middle) and reconstruction error map (right) (Note: The piston and tip-tilt have been subtracted from the maps. The 
reconstruction error is the difference between the original and the reconstructed surface.)  

4. PERFORMANCE ANALAYSIS OF DATA REDUCTION TECHNIQUES 
4.1 Noise Rejection during Reconstruction Process  

A noise rejection analysis for the two reconstruction approaches (zonal and modal method) in Section 3 has been 
conducted using simulated noisy curvature data. In practice, curvature data noise may come from various sources 
including curvature sensor noise, finite size sub-aperture area and numerical fitting errors during a local curvature 
determination. 

Three different levels of SNR (Signal-to-Noise Ratio) cases were examined. Gaussian random noise statistics were 
assumed for the curvature noise from a sampling location to another location. The SNR was defined as ratio of mean 
magnitude curvature to standard deviation σ of the Gaussian random noise. Three different curvature vectors for SNR=1, 
4, and 16 cases were generated and the three components for SNR=1 curvature vector case are presented in figure 8 as 
an example. 

  

 
Figure 8.  Three curvature vector components, dxx, dyy, and dxy for Gaussian random noise of SNR=1 case 

Each curvature vector was fed in to both the Southwell integration routine and the Zernike curvature basis modal fit 
routine, separately. Both simulation results showing the reconstructed surface with their residual reconstruction error for 
SNR=1 case are compared in figure 9 (top vs. bottom). For both approaches, in general, the reconstructed surfaces were 
very similar to the true answer (i.e. original surface) even if the added curvature noise level was comparable to the true 
signal magnitude (i.e. SNR=1). It is important to note that this result depends on the number of sampling points. 
(Additional study result using different sampling rate is presented in Section 4.2.) The propagated noise effects in the 
reconstructed surface are well observed in the reconstruction error maps. 
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Figure 9.  Reconstruction performance comparison in terms of noise rejection (SNR=1 case): Southwell integration result 
(top row) and Zernike curvature basis modal fit result (bottom row). Original synthetic surface (left), reconstructed surface 
(middle) and reconstruction error (right). (Note: piston and tip-tilt have been subtracted from the maps.) 

The results for all SNR cases are summarized in table 1. A performance criterion, normalized reconstruction error ε, was 
defined as  

                                                                          [%]100
_

_ ⋅≡
surfaceoriginal

errortionreconstruc

RMS
RMS

ε  .                                                          (8) 

 

It was demonstrated that both approaches give very good <0.25% normalized reconstruction error for the high SNR=16 
case. As the SNR becomes low (SNR=1), ε goes up to ~1.4%. Both the Southwell-based zonal approach and the C 
polynomial-based modal approach demonstrated their high noise rejection capability in these simulations.  

 

Table 1. Normalized reconstruction error ε comparison between the zonal and modal approach (501 by 501 sampling) 

SNR 
Original 

surface RMS 
(mm) 

Zonal approach Modal approach 

Reconstruction 
error RMS (mm) 

Normalized 
reconstruction 
error ε a (%) 

Reconstruction 
error RMS (mm) 

Normalized 
reconstruction 
error ε a (%) 

1 0.080449 0.001120 1.39 0.001072 1.33 

4 0.080449 0.000392 0.49 0.000558 0.69 

16 0.080449 0.000197 0.24 0.000175 0.22 

∞ b 0.080449 0.000019 0.02 0.000000 0.00 
a Normalized reconstruction error ε defined in equation (8). 
b This case represents the intrinsic errors belongs to the reconstruction method shown in figure 5 and 7. 
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4.2 Spatial Sampling Frequency Analysis  

The spatial sampling frequency of the curvature vector is another critical factor affecting the reconstruction performance 
in the presence of noise. It not only defines the spatial resolution of the reconstructed surface map (for the zonal 
approach), but also affects the robustness of the reconstruction process against noisy curvature data discussed in Section 
4.1. Identical sets of simulations using same data with half sampling rate in each direction (251 by 251 sampling grid 
over the curvature vector component map) were performed. In other words, the size of each curvature vector component, 
dxx, dxy and dyy, became 1/4. The simulation results are summarized and presented in table 2. 

  

Table 2. Normalized reconstruction error ε comparison between the zonal and modal approach (251 by 251 sampling) 

SNR 
Original 

surface RMS 
(mm) 

Zonal approach Modal approach 

Reconstruction 
error RMS (mm) 

Normalized 
reconstruction 
error ε a (%) 

Reconstruction 
error RMS (mm) 

Normalized 
reconstruction 
error ε a (%) 

1 0.076452 0.002833 3.70 0.004448 5.80 

4 0.076452 0.000859 1.12 0.000914 1.20 

16 0.076452 0.000251 0.32 0.000287 0.38 

∞ 0.076452 0.000072 0.09 0.000000 0.00 
a Normalized reconstruction error ε defined in equation (8). 

In comparison to the original sampling rate case in table 1, it is obvious that the overall normalized reconstruction error 
got worse by factor of ~2.6-2.7 for both the zonal and modal approaches. Also, the modal approach showed slightly 
higher ε values compared to the zonal case. However, we acknowledge that more rigorous statistical analysis (not just 8 
case studies) such as Monte Carlo simulation is required to draw more general conclusion about these noise rejection 
characteristics. Detailed analysis and further discussions are planned to be provided in a separate paper. 9 

5. CONCLUSION 
Surface measurements that sample curvature do not rely one precise mechanical positioning, therefore they can be made 
nearly insensitive to alignment and vibration. A number of successful scanning systems have been developed to utilize 
this advantage. The integration of profile curvature data is straightforward. We evaluate two classes of algorithms that 
integrate full curvature data sampled over the full aperture. Direct integration using two iterations of Southwell’s method 
proves to be robust, and maintains the full resolution of the data. A modal technique was also explored, where curvature 
basis functions are fit to the data. These functions have one-to-one correspondence with surface functions, allowing a 
direct computation from the curvature coefficients. The initial evaluation shown here demonstrates both techniques to 
have surprisingly good noise rejection.  This work will be followed up by analysis that provides parametric relationships 
for the performance. 
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