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ABSTRACT 

The Wide Field Coronagraph Telescope (WFCT) is a 4-meter space telescope for general astrophysics and exoplanet 
observations that meets the 2000 Decadal Committee requirements. 

This paper presents a design for a 4-m diameter, off-axis space telescope that offers high performance in both wide field 
and coronagraphic imaging modes. A 3.8 x 3.3-m unobstructed elliptical pupil is provided for direct coronagraphic 
imaging of exoplanets and a 4-m diameter pupil for wide-field imaging from far-ultraviolet (UV) to near-infrared (IR). 
The off-axis wide-field optics are all reflective and designed to deliver an average of 12 nm wavefront aberrations over a 
6 x 24 arcminute field of view (FOV), therefore providing diffraction-limited images down to 300 nm wavelength and 
15 mas images down to a wavelength limit set only by the mirror coatings. The coronagraph with phase-induced 
amplitude apodization (PIAA) provides diffraction suppression around a 360-degree field with high Strehl and 
sensitivity at the 1e-10 level to an inner working angle of 2 λ/D (or 50 mas at 500 nm wavelength). 

This paper focuses on the optical design that allows the above imaging features to be combined in single telescope, and 
gives a preliminary spacecraft design and costing, assuming a distant trailing orbit.  
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1. INTRODUCTION 
The science case and possible instrument suite are based on other more detailed mission concept studies in which several 
of the authors have participated. The goal of this paper is to introduce a novel technical approach for the telescope and to 
explore its scientific potential, rather than report on a well-established, ongoing mission study. Although compatibilities 
between instrument optical designs and our telescope design were not explored in detail or modeled, preliminary 
analysis suggests it will be valuable to NASA to explore this option, along with alternative imaging and coronagraphic 
solutions, or use of an external occulter. 

The WFCT mission concept is inspired from, and makes extensive use of, technologies and instrument concepts that 
have been developed by several groups. Significant recent advances (from theory to lab validation) in coronagraphy and 
wavefront control, performed at NASA centers and several U.S. universities, are incorporated.  

The Pupil Mapping Exoplanet Coronagraphic Observer (PECO) instrument, developed with NASA JPL and NASA 
Ames, is similar to the PIAA coronagraph instrument for WFCT, and the exoplanet science case is extrapolated from the 
PECO report. A summary of the Ames coronagraph testbed is also provided. The ongoing study of the application of 
WFCT/PIAA to high-precision mass measurement of exoplanets is summarized. The WFCT wide-field instruments are 
based on designs developed in detail for the Telescope for Habitable Exoplanets and Intergalactic/Galactic Astronomy 
(THEIA) mission concept studies. Additional studies exploring how coronagraphy and general astrophysics can be 
combined in a single mission were carried out for the Terrestrial Planet Finder-Coronagraph (TPF-C) flight baseline 1. 
Confidence in the practicality of the WFCT off-axis telescope is based on recent advances in metrology enabling 
manufacturing of large off-axis telescopes with little additional risk and cost compared to on-axis telescopes. Use of 
emerging technologies in vibration isolation and laser communications, which enable the construction of a large 
telescope with sufficient stability for high contrast coronagraphic imaging, are also envisioned. 

WFTC is a flagship class mission. The team estimates a lifetime cost of $4.2B, including $3.3B for development: $1.4B 
for the telescope, $700M for the instruments, and a $900M development reserve. 
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2. SCIENCE OVERVIEW 
2.1 WFCT Science Summary 

Over the past 25 years, the Hubble Space Telescope (HST) has revolutionized our view of the universe, excited and 
engaged the general public with its compelling images of the universe, and has been a workhorse for astrophysics. As a 
worthy successor to HST and companion to the James Webb Space Telescope (JWST), it is proposed that NASA build 
the Wide Field Coronagraph Telescope (WFCT), a flagship-class mission with a 4-meter primary mirror, featuring a 
visible and UV imager with an exceptionally wide field, a high resolution far-UV spectrograph, and an optimized 
coronagraph eminently capable of detecting, imaging, and spectroscopically characterizing terrestrial-class exoplanets. 

WFCT will be capable of addressing many of the most important questions in astronomy: Are we alone? Are there other 
habitable planets? How frequently do solar systems form and survive? How do stars and galaxies form and evolve? How 
is dark matter distributed within and between galaxies? Where are most of the atoms in the universe? How were the 
elements necessary for life created and distributed through cosmic time? 

2.2 WFCT Instrument Capabilities 

The WFCT telescope design is an off-axis three-mirror anastigmat (TMA), with a 4-meter MgF coated primary mirror 
(PM), a LiF-coated secondary mirror (SM), and three main instruments: (1) the wide field imager (WFI), a dual-channel, 
wide-field UV and optical imager covering 6 x 24 arc-minutes on the sky with 18 milli-arc-second (mas) pixel scale and 
spectral sensitivity from 120–1100 nm, to be resolved (TBR); (2) a multipurpose far UV spectrograph (UVS) optimized 
for high sensitivity observations of faint astronomical sources at spectral resolutions R/30,000–100,000 in the 1000–
3000 Å band; and (3) the Phase Induced Amplitude Apodization Coronagraph (PIAAC) instrument (Guyon, 2003), with 
four narrow-field cameras, dividing the observation band from 200–1200 nm (TBR), and an R/70 integral field 
spectrograph (IFS). 

2.3 WFCT Mission Considerations 

Both ground and space systems extensively leverage heritage equipment, processes, and procedures. The mission is 
developed by an experienced team including ARC, LM, UA, and ITT. The key mission parameters are given in 
Section 4.0. The Optical Telescope Assembly (OTA) is detailed in Section 5.0, and the science instruments (SI) are 
described in Section 6.0. The spacecraft design is discussed in Section 7.0. 

The major challenges for the WFCT mission are: (1) fabricating a 4-meter telescope that is diffraction-limited at 300 nm; 
(2) fabricating the large required focal plane arrays; and (3) fabricating and correcting the PIAA coronagraph optics to 
the required level. Well-defined, realizable solutions exist to these challenges; however, the mission will require 
technology development. 

2.4 Astrophysical Rationale for WFCT 

The large-aperture UV and optical wavelength telescope proposed for WFCT is wide-field, diffraction-limited, point 
spread function (PSF), stable, and clearly an all-purpose facility and a necessary complement to JWST. The case for 
such a mission has been made in many previous documents, including the proposal for THEIA (Kasdin, 2009), the 
original concept that provides a foundation for the new design presented here. Unlike THEIA, the off-axis/coronagraph 
design of WFCT eliminates the need for a companion occulting satellite.  

Given that dramatic technical advances have made tractable the stringent wavefront control requirements for 
coronagraphy and reduced the costs of off-axis mirrors, the current mission design provides a less complex and 
potentially lower cost path to the exciting science described in the THEIA white paper. Furthermore, the three principal 
THEIA instruments can be adapted to fit to the WFCT OTA and will easily fit in the WFCT telescope bay. Several 
additional scientific programs that require the wide-field, high spatial resolution and PSF-stable characteristics of WFCT 
are highlighted below. Like HST, many of most important discoveries will likely be unanticipated. 

2.5 History of the Local Volume 

The star formation history of galaxies can be reconstructed from detailed synthesis of stellar color magnitude diagrams 
(CMDs) (cf. Harris & Zaritsky, 2004). Such a program is under way using HST, and the variety and detail of the CMDs 
is manifest, as shown in Figure 2.5-1. The CMDs can be used to reconstruct the history of each galaxy and of the overall 
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volume. WFCT will have several advantages over current baselines: (1) larger FOV; (2) supreme PSF stability with  
~two times sharper PSF; and (3) increased aperture. 

Many of the nearby galaxies have optical sizes exceeding a few arc-minutes, and the stellar halos of these galaxies have 
recently been found to extend much farther than the “optical size.” The Large Magellanic Cloud halo is at least a factor 
of two larger than the classical size, and perhaps even much larger (Munoz et al, 2006). Streamers are found in M 31 to 
~five larger radius than the size of its disk (Ibata et al, 2007). The halos of these galaxies are particularly interesting in 
constraining the oldest populations and in uncovering the relics of their presumably tumultuous growth; therefore FOV 
is critical.  

The photometry is typically limited by crowding rather than by photon noise. As such, these types of analyses rely on 
PSF fitting and subtraction of nearby neighbors. A diffraction-limited PSF is key, but so is PSF stability, so that the 
modeling is highly constrained.  

Finally, the gain in aperture size provides both reduced PSF and increased light-gathering capability, with a gain 
following the fourth power of the increased diameter, which is particularly applicable in the outer galactic regions that 
are not crowding-limited. The current program includes ~70 galaxies within 4 Mpc, but is incomplete and barely reaches 
other nearby groups of galaxies. By going somewhat further, we gain both in the range of environments explored and in 
the number of giant galaxies available, both of which are key to obtaining a truly representative reconstructed history of 
the star formation in the universe. 

 
Figure 2.5-1. Sixteen example CMDs from the ANGST survey 

2.6 The Nature of Dark Matter 

Until dark matter is detected in the laboratory, study of most of the matter in the universe is limited to indirect 
measurements in astrophysical settings. Until recently, the measurements of dark matter on galaxy and cluster scales 
were also fit with relatively simple ad hoc variations of gravity. The discovery and study (Clowe et al, 2006) of the 
colliding Bullet Cluster, shown in Figure 2.6-1, made the case for much stronger dark matter, since the mass, as traced 
by gravitational lensing, was found to be displaced from the dominant baryonic component (the hot gas). Clusters are 
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particularly useful for dark matter studies, because they are the one environment in which nearly all of the baryons are 
accounted for (therefore the dark matter and missing baryon problems are decoupled). WFCT provides a sharp and 
stable PSF and high sensitivity, which is ideal for high-precision weak lensing measurements. 

A second result of the Clowe et al study was the measurement of an upper limit on the self-interaction cross-section of 
dark matter. The precision of this measurement is currently limited by the relative centroiding of the galaxy distribution 
and weak lensing signals. With deep, diffraction limited imaging over wide fields, it is possible to go further down the 
luminosity function to increase the number of cluster galaxies identified and also improve weak lensing maps. 
Furthermore, such imaging should also reveal a sea of strongly lensed images that can be used jointly with the weak 
lensing to remove the mass-sheet degeneracy (Bradac et al, 2008) and examine the central dark matter profile, which 
itself can constrain the self-interaction strength of dark matter. 

 
Figure 2.6-1. The Bullet Cluster. Blue shows mass distribution (from weak lensing) and pink shows X-ray emitting plasma. 
The displacement proves dark matter is not simply the incorrect calculation of the gravitational potential due to baryons. 

2.7 Galactic Mass Accretion 

Galaxies grow partly by accretion of gas from the surrounding intergalactic medium and partly by mergers with other 
galaxies. Observational studies of galaxy assembly have focused primarily on merger rates, which can be measured 
indirectly by counting close pairs and merger remnants of galaxies. However, all the mass that enters the galaxy 
population ultimately does so by accretion—mergers can only redistribute this mass from smaller systems to larger 
systems (Keres et al, 2004). Identifying the signatures of this accretion would be a significant step in our understanding 
of how galaxies form. 

Recent simulations of galaxy formation predict that gas being accreted by young galaxies channels some of its 
gravitational cooling radiation into atomic emission lines such as hydrogen Lya (1216 A; Haiman, Spaans & Quataert, 
2000; Fardal et al, 2001). These predictions have coincided with the discovery of the so-called “Lya blobs,” mysterious, 
extended sources in the distant universe with typical sizes of 10–20 arcsec and Lya line luminosities of ~10^44 erg/s 
(e.g., Keel et al, 1999; Steidel et al, 2000; Francis et al, 2001; Dey et al, 2005; Yang et al, 2009). While the emission 
from these blobs could be cooling radiation, it could also arise from other sources, including collisionally ionized gas in 
galactic superwinds (Taniguchi & Shioya, 2000) or gas photoionized by young stellar populations or by active galactic 
nuclei. 

Attempts to isolate the origin of blob emission and their likely end-products have foundered due to several factors. First, 
the few known Lya blobs have been found in non-random, clustered fields, so it is difficult to assess how representative 
these samples are and to compare them directly with gas accretion simulations, which are best at modeling random 
patches. Second, the relationship between these extended Lya sources and more numerous, compact, Lya-emitting 
galaxies is muddled by our inability to detect an intermediate population of fainter, moderately extended sources in 
ground-based seeing. Third, the properties of Lya sources are even less understood at redshifts below 2, because of the 
inaccessibility of the Lya line from the ground. 
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The large aperture, wide-field, PSF-stability, and diffraction-limited capability of WFCT makes it possible to conduct 
blind and thus representative surveys for the full range of Lya sources, including hundreds of Lya blobs and tens of 
thousands of compact emitters. With a narrow- or medium-band filter set, a wide-field UV/optical imager on WFCT 
could detect these sources in a consistent manner from the current epoch to redshifts of 8. 

2.8 Planet Detection and Characterization  

WFCT will directly image planetary systems of nearby stars in visible light with spectral resolution R = λ/dλ = 70. It will 
have the sensitivity to detect Earth-like rocky planets at in habitable zones and to spectrally characterize their surfaces or 
atmospheres. WFCT can detect small (1–2 Earth radius) and giant planets, as well as circumstellar disks with high 
spatial resolution (~25 mas) and high contrast (~1e-10), as close as 2λ/D (50 mas at 500 nm) from host stars. WFCT will 
produce R=70 images in up to over the 200–1200 nm (TBR) wavelength range. 

With a 3.8 x 3.3 meter unobstructed elliptical pupil, combined with the high throughput, low IWA PIAA coronagraph, 
WFCT is well suited to characterize a large number of exoplanets and disks. The science case for exoplanet imaging and 
spectroscopy with a 4-m class telescope was previously formulated by the THEIA team; only the key highlights are 
given here. 

High SNR images from WFCT of nearby exoplanetary systems will allow unambiguous identification of Earth mass 
exoplanets and disk features, and will have sufficient resolution for orbit determination. Figure 2.8-1 shows simulated 
four- hour exposures of a Sun + Earth + Exozodi system at 8.7 pc (top) and 4.35 pc (bottom) in the 500nm–600nm 
bandpass with a 25% efficiency. 

WFCT can identify Earth-like planets around a large number of stars. In the 500–600 nm 
band alone, SNR = 7 detection of a candidate planet is achieved in under 10 hours 
integration (with 25% efficiency and maximum elongation), for more than 50 stars. 

WFCT has the sensitivity to characterize the atmospheres of several Earth-like planets and 
potentially provide evidences of life. At 550 nm, there are 20 stars for which WFCT can 
acquire a R = 50 spectrum, at SNR = 10, with under 24-hour integration. The number of 
such “high sensitivity” stars decreases as wavelength increases.  

The major PIAAC Planet Finding Goals are: (1) to conduct a “Grand Tour” of the 
habitable zones of many nearby stars, searching for Earth and Super-Earth planets, and 
visit each target multiple times for possible detections; (2) to characterize detections and 
measure spectral features by integrating to S/N = 20–30: (3) to detect known radial 
velocity planets (RVPs) with single visits at maximum elongation, observe RVPs by 
integrating to S/N >30, and obtain spectral features; and (4) for exozodiacal disks and gas 
giants to obtain a snapshot survey of several hundred nearby stars, study diversity of dust 
disks, and search for gas giant planets. 

2.8-1 High Precision Mass Measurement of Expoplantes 

Initial results (Guyon, Shao, Shaklan et al, 2010) indicate that WFCT allows simultaneous 
coronagraphic imaging of exoplanets and deep imaging of a wide field around the 
coronagraphic field. The astrometric signal can be detected as a shift between background stars and a central star. 
Referencing between two fields is provided by small dots on the primary mirror. 

 
Figure 2.8-1. PIAAC 
detection of a Sun + 
Earth + Exozodi system 
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Fig. 2.8.1-1 Dots on primary mirror create a series of diffraction spikes used to calibrate astrometric distortions. 

3. TECHNICAL OVERVIEW & MISSION REQUIREMENTS 
The WFCT spacecraft will be a Spitzer heritage vehicle flown on a Delta-II launch vehicle, and the spacecraft will 
launch into an Earth-trailing, drift-away heliocentric orbit, with the required stable thermal environment, similar to the 
Spitzer orbit. The low launch energy allows for significant mass savings over other orbit options. The spacecraft design 
is described in Section 7.0. A CAD model of the observatory is shown in Figure 3-1. Mission requirements are given in 
Table 3-1. 

 

Table 3-1. Mission requirements 
Lifetime 5 yrs (10 yrs goal) 
Launch date Oct 1, 2019 
Orbit altitude Earth trailing 
SC-Earth Distance 0.6 AU 
Epoch Time 30 days from launch 
C3 Energy 0.4 
P/L Mass 427 kg 
Optics Temp 270±10K 
Focal Plane Temp 150±2K 
P/L Power (EOL) 1430 W 
Downlink 30 Mbps at 0.6 Au 
Uplink 2 kps 
Data Storage 40 Gbytes 
Ground Contact 2-2 hr/ week 
Fine Pointing 0.1 arc-secs 
Coarse Pointing 3 arc sec 
Jitter/Stability <1milli arc-sec 
Fine Guidance P/L to provide to spacecraft 
Sun Avoidance 60 deg 
Radiation 20 krad 
Launch vehicle Delta IV / Atlas V 

Figure 3-1 4-m WFCT Configuration Safe Mode System Autonomous Safing  

3.1 Optical Telescope Assembly (OTA) Design 

The OTA is a three-mirror anastigmat (TMA) design provided by Jim Burge, University of Arizona. It has an off-axis 
primary mirror, optimized for a very wide field of view (24 x 6 arcmin) and a system focal length for the baseline design 
of 64 meters. The corresponding plate scale is thus 319 microns/arcsec, or 32 mas per 10-micron detector pixel. The 
primary mirror (PM) shape is that of a portion of a 7.7-m diameter f/0.9 on-axis parent. The secondary mirror (SM) is 
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offset, resulting in a 3.8 x 3.3 m unobscured elliptical pupil. The OTA fits within a cylinder 4-m in diameter and 8-m 
long (acceptable for Delta-II 5-m fairing). 

Figure 3.1-1 shows the OTA ray-trace.  

 
Figure 3.1-1. OTA Ray-Trace for WFCT TMA Design 

The WFE is less than 10 nm rms over most of the 6 x 24 arcmin field, and averages only 12 nm rms over all the field. 
Thus the image quality results in excellent diffraction-limited images down to 300 nm wavelength, and 15 mas images at 
shorter wavelengths down to a wavelength limit set only by the mirror coatings. The mean imaging distortion is < 0.4%. 
See Figure 3.1-2. 

 
Figure 3.1-2. Wavefront aberration in nm rms over the 6 x 24 arcsec FOV 

A fine steering mirror (FSM) is located at the system exit pupil. The field curvature corresponds to a 2.2 m ROC, and the 
field curvature is concentric with the fine steering mirror at the stop, allowing for a large field of regard for FSM motion. 
FSM motion could also allow switching between instruments, each of which would have access to the full 6 x 24 arcmin 
FOV. 

Alternate designs with longer focal length to better match pixels to the UV diffraction limit are also possible and are 
being developed. For example, a design 100 m focal length yields 10 micron pixels of 21 mas. 

The selected optical telescope assembly (OTA) design for WFCT is highly leveraged from the recently launched 1.1-
meter high resolution NextView Electro-Optical payload developed by ITT. This approach maximizes the use of high 
TRL hardware and proven design and manufacturing processes.  
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The optical prescription was selected to be off-axis to prevent diffraction from any 
obstructions (ee Figure 3.1-3). To maximize the amount of light collection, a unique 
optical design was developed, in which the SM only slightly obstructs a region of the 
PM for a strongly concentrated diffraction pattern only slightly degraded from the 
classical Airy pattern. The 4-meter off-axis system will be packaged in a standard 5-
meter diameter shroud fairing. This concept also allows for a long stray light baffle to 
extend forward from the PM’s metering structure towards the SM. 

The off-axis nature of the OTA, compared to an on-axis design, does introduce 
additional technical complexities. However, technology developments over the last 
15 years in terms of optical processing, metrology, and alignment techniques enable 
off-axis systems to be made with only small impacts to cost, schedule, and risk. 

3.2 OTA Mechanical Design 

The PM and SM will be fabricated out of Corning Ultra Low Expansion (ULE®) 
glass for its excellent thermal stability characteristics around room temperature. A mechanical design has been 
developed for the PM, which is manufacturable utilizing today’s technology. The mirror blank comprises a segmented 
abrasive water jet weight core with hexagonal cells that is fused to monolithic facesheets. The design has global and 
local stiffnesses that are comparable to optics ITT has polished in the past with similar requirements (global stiffness 
relates to the first flexible mode, and local stiffness relates to the gravity deflection of the unsupported regions of the 
optical surface).  

The OTA precision metering structures coupled with a fairly simple thermal control system are able to keep the optics in 
alignment to the required tolerances. The precision metering structures are fabricated using fibers and a state-of-the-art 
cyanate siloxane resin system (co-patented by ITT). ITT’s experience in using these materials results in metering 
structures that have thermal stability on the same order of magnitude as ULE® glass with nearly negligible hygroscopic 
effects. 

The OTA is surrounded by a monolithic outer barrel assembly (OBA), which is scarfed at 45° to minimize stray light 
effects. The OBA is also integral to the thermal control system, and science instrument radiators may be mounted to it. 
The OBA will also have a contamination cover to maintain OTA cleanliness throughout ground test and launch. 

3.3 WFCT Science Instrument Descriptions 

The WFCT science payload is currently conceived as having three science instruments: a wide field imager (WFI), UV 
spectrograph (UVS), and Phase Induced Amplitude Apodization Coronagraph (PIAAC). 

The PIAAC instrument is considered first, with the interface to the OTA, in Section 6.1, and a summary of instrument 
capabilities in Section 6.2. The UVS and WFI instruments are considered subsequently, with a summary of the WFI and 
UVS design and capabilities in Section 6.3. The WFI and UVS instruments have not been designed to the level of detail 
of the PIAAC instrument, as noted in Section 1.0. 

3.4 PIAAC Instrument Interface to OTA 

The total spectral range is 200–1200 nm (TBR), split into four spectral sub-channels. 

The mirror labels (M1 – M4) are indicated in Figure 3.1-1. A narrow FOV is extracted at the fold mirror M3 (the central 
hole in M3 delivers light to the coronagraph instrument while the rest of the field is reflected to M4 for wide-field 
imaging) or, preferably, with a smaller mirror in the telescope aberrated focal plane. In the first scheme, the size of the 
hole is approximately 3 arcmin diameter (5% of the full FOV) in the optical design considered, and is a function of the 
distance between the telescope aberrated focal plane and M3. The optical design and packaging can be modified to 
minimize this distance if the resulting loss in FOV is scientifically too costly for general astrophysics.  

At the coronagraph input, an aspheric mirror will correct the aberrated wavefront over a very narrow FOV (< 1 arcsec). 
This correction can be included within the prescription of the aspheric PIAA mirrors, therefore requiring no additional 
aspheric optics. Thanks to extensive use of dichroics, the instrument design combines exoplanet detection and 
spectroscopy in a single observing mode. The currently proposed number of spectral channels (16) can be increased due 
to higher SNR from the large PM. This modification can be achieved at the back end of the instrument by including 

Figure 3.1-3. A 4-m wide-
field pupil, showing very 
small obscuration 
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wave front sensor (LOWFS); and (3) eliminate vibration coupling from reaction wheels by utilizing the DFP. Another 
driving requirement is the thermal control of the primary mirror, with ~mK stability required.  

The proven Spitzer spacecraft concept considerably reduces risk and cost: the spacecraft bus (TRL 8.5) is the most 
dimensionally stable in the industry, providing <1 arcsec 1-day stability using bus-mounted star trackers and gyros, thus 
avoiding mounting these components on the telescope focal plane. 

The spacecraft design of major subsystems is shown in Table 3.9-1. 

Table 3.9-1. Spacecraft design of major subsystems 

Subsystem Design Features 
Structure Modular octagonal Gr/CE composite with high stability payload interface, fixed solar panel 
Mechanisms Low shock deployment devices, focus mechanism on secondary mirror – internally redundant, low 

disturbance design FPO translation stage 
Pointing 
Control 

3-axis stabilized with wide-angle Sun sensors, star trackers, and inertial reference units for coarse pointing 
and contingencies. Instrument focal plane provides fine guidance during observations. Payload attitude 
control using DFP actuals with angle offload to spacecraft reaction wheels 

Electrical 
Power 

28±6 VDC fully solid-state direct energy transfer system. 16 Ahr Li ion battery, 26.8% efficiency 
improved triple-junction solar cell solar arrays 

C&DH Light, low power, block redundant RAD 750 design 
Flight 
Software 

Highly modular C/C++ open architecture based on extensive planetary observatory mission heritage, and 
COTS VxWorks OS 

Comm Laser communication, 2 Kbps uplink, 30 Mbps downlink at 0.6 Au 
Thermal 
Control 

Passive coatings with thermal blankets, constant conductance heat pipes, thermostatically controlled 
redundant heaters 

Propulsion Cold gas integral propellant management device 
 

3.10  Pointing Control 

The focal plane fine-pointing stability requirement is 1 mas. With a star of moderate brightness, the LOWFS achieves 
this precision at 100 Hertz. Pointing accuracy must always be better than 2 arcsec for LOWFS target acquisition. The 
key pointing stability requirement of <1mas is met using the DFP. This is readily attainable since HST achieves stability 
of 4 mas in a difficult low Earth orbit, viewing Earth’s albedo essentially every orbit. HST has five flexible appendages 
and many operating mechanisms and meets 4 mas without the need for an articulating secondary mirror or fine steering 
mirror in the focal plane. 
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4. TECHNOLOGY DRIVERS 
4.1 Disturbance Free payload, DFP, Vibration Isolation 

 The decoupling provided by the DFP (Pedreiro, 2002, 2003) provides the capability to meet the 1 mas requirement with 
margin. The DFP is a Lockheed Martin proprietary technology that has been developed over six years of internal 
research and development, and has currently achieved TRL 5/6. The DFP concept is based on a strict mechanical 
separation of the payload from the spacecraft, so that no mechanical load path exists for transmission of structural 
vibration. The DFP concept is shown in Figure 4.1-1. 

The DFP method allows unprecedented payload 
isolation from spacecraft vibrations and simultaneous 
precision payload motion control. Non-contact 
actuators at the payload-to-spacecraft interface, which 
are commanded by error signals derived from either the 
LOWFS during fine pointing mode or by a payload 
inertial measurement unit, allow the payload to react 
against the mass of the spacecraft to precisely control 
angular line-of-sight. The limited stroke and gap of the 
interface actuators, with noncontact interface sensors, is 
then managed by control laws that command spacecraft 
inertial actuators, driving the spacecraft to follow the 
payload in inertial space. 

Lockheed Martin has followed a comprehensive program of maturation of the DFP technology, encompassing modeling 
and simulation, component testing, integrated testing in a limited laboratory environment, and full, 6-DOF testing using 
realistic flight-like structures and control algorithms.  

The DFP architecture brings several critical performance features to the WFCT mission. (1) Since DFP payload isolation 
occurs through mechanical separation, vibration isolation down to zero frequency is possible. The low-frequency 
stability requirements of the WFCT instrument makes isolation to zero frequency particularly important. (2) The non-
contact interface sensors do not participate in payload inertial attitude control; thus, the payload attitude isolation 
performance is not limited by the noise characteristics of these sensors. (3) The mechanical separation of spacecraft and 
payload implies that requirements on structural stiffness and damping of spacecraft structure and disturbance sources 
(such as reaction wheels) can be significantly relaxed, leading to reduced spacecraft development cost. (4) The 
mechanical separation of spacecraft and payload on-orbit allows for greater flexibility for integration and testing of the 
WFCT system, since payload performance is largely independent of the structural response of the host spacecraft . 

The DFP testbed (Dewell, Pedreiro et al, 2005) shown in Figure 4.1-2 has demonstrated over 60-dB broadband 
spacecraft-to-payload isolation, and extensive thermal-vacuum testing has been performed on DFP non-contact actuators 
and interface cables to ensure that the testbed accurately reflects flight conditions.  

4.2 Precision Temperature Control 

Analytical prediction of transient temperature response with mK accuracy has been verified by test with a 33.5-cm Pyrex 
mirror subject to small thermal perturbations that induce steady-state temperature gradients of 10–100 mK. Figure 4.2-1 
shows the overall test configuration. The plano mirror was coated with protected silver on the front side and covered 
with MLI on the back and edges. A Kapton film heater on the back was used to induce step function heat loads on the 
mirror. Embedded PRTs, calibrated to ±1 mK over 15-40°C, provided axial and radial temperature data. Figure 4.2-2 
shows the transient axial gradient at the edge. A finite element thermal model for test correlation was generated in  
I-DEAS/TMG. Test data were used for surface optical properties and MLI effective emittance estimates. Thermal 
balance test data were used to adjust the model parameters, and the model was then used to predict the transient through-
thickness gradient response. Although the absolute gradient values differed by 25–40 mK, the transient prediction 
matched the data within approximately ±1 mK (Pecson, Hashemi, et al, 2002). 
 

 
Figure 4.1-1. Lockheed Martin DFP Concept 
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required for large monolithic mirrors. (3) ULE® striae (visibly detectable layers in the glass) are developed as a result of 
non-uniformities in the distribution of titanium oxide molecules that are introduced into the material to minimize the 
materials coefficient of thermal expansion. When ULE® is polished, the non-uniformities in the striae layers can result 
in high spatial frequency surface errors that could adversely impact the system performance of a telescope. 

5. OBSERVATORY I&T FLOW 
The observatory I&T sequence includes OTA, SI, and spacecraft post-delivery checkout, mechanical mating, alignment, 
ambient functional, deployment, RF compatibility, mission simulation, launch rehearsal, and environmental tests 
including EMC, vibration, acoustic and thermal vacuum, and thermal balance. To ensure system compatibility, ground 
station interfaces are validated at the spacecraft level prior to the observatory testing. End-to-end mission simulation 
testing is conducted at Lockheed Martin in Denver to reduce on-orbit operational risk. 

6. COST ESTIMATE & SCHEDULE 
The WFPC total mission cost is estimated to be $4.2B in FY 2009 dollars. That sum includes launch services at $220M.  

The cost of the WFI, UVS, management, system engineering mission design, spacecraft, system I&T and mission, 
science and science data center, ground system, and EPO was offered by THEIA and gratefully accepted. <Please check 
punctuation--meaning is unclear.> 

Our cost is $800M less than THEIA (Kasdin, 2009) because it does not need an occulter/ spacecraft/launch vehicle. 

The cost estimate and program schedule appear below. 

Cost Estimate $M 
Pre-Phase A Mission Concept 15 
Total Technology Development 140 
 PIAAC 40 
 Primary Mirror (off axis) 60 
 Detector 40 
Management, Sys Engr. 
Mission design & Mission 140 
Science & Science Data Center 250 
PL System 2100 
 WFI 400 
 UV 200 
 PIAA 100 
 Telescope 1400 
Spacecraft Bus system 200 
System Level I&T 100 
Mission Ops & Grd Data System 130 
EPO 35 
Reserve (30%) 900 
Launch Service 220 
Total Mission 4230 
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The launch of the WFCT in the 2024 timeframe is important for astronomy. At that time (2024), the operation of both 
HST and Spitzer will have ceased. JWST will be approximately ten years in orbit (it is designed for five years with a ten-
year goal), hence the launch of WFCT continues the outstanding astrophysics science of HST and carries out significant 
exoplanet science. The WFCT mission meets the requirements of the 2000 Decadal committee, which stipulated that a 
flagship exoplanet mission must also do important astrophysics science.  
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