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Large segmented telescopes cannot be modeled accurately with fast-Fourier-transform techniques since
small features such as gaps between the segments will be inadequately sampled. An analytic Fourier-
transform method can be used to model any pupil configuration with straight edges, including tolerance
analysis and some types of apodization. We analytically investigated a 32-m segmented primary with 18
hexagonal segments for high-contrast imaging. There are significant regions in the image in which
extrasolar planets could be detected. However, the hexagonal profile of the pupil was not as useful as
expected. The gaps between the segments, the secondary obscuration, and the secondary spiders must be
as small as possible and their edges must be apodized. Apodizing the edges of the individual segments
reduced the useful regions in the image since the gaps appeared to be wider. © 2005 Optical Society of
America

OCIS codes: 350.1260, 110.6770.

1. Introduction

Ground-based telescopes with single primaries 30 m
in diameter have been proposed. Such a diameter
may allow planet imaging from the ground if images
of high contrast can be achieved over regions large
enough for planet detection.1,2 Most of the proposed
primary configurations use segmented mirrors.3,4 For
a proposed primary configuration consisting of seg-
ments with gaps between them, diffractive modeling
is needed to reveal the image and how that image is
affected by pupil configuration; gap width; apodiza-
tion; and mispositioning, piston, and tilt errors on the
individual segments.

Fast-Fourier-transform (FFT) techniques are usu-
ally used to calculate the image from a complex pu-
pil.5 For 30-m telescopes, however, the gaps between
the segments are often small compared to the seg-
ment diameters. For example, one proposed configu-
ration uses 8-m hexagonal segments in a 32-m
primary with 30-mm gaps between the segments.3
Use of FFT calculations to see the effects of the gaps
on the system’s image would require at least ten pix-

els across a gap, which leads to an unmanageable
array size of over 10,0002.

The solution can often be calculated analytically
instead. The Fourier transform of virtually any pupil
function with only straight edges can be calculated by
geometric integration and the properties of the Fou-
rier transform. In this paper we explain this method
and how it is used to explore the behavior of a 30-m
primary with hexagonal segments.

2. Useful Properties of the Fourier Transform

The goal is to calculate the intensity in the image
plane I�x, y� due to a complex pupil function. Fraun-
hofer diffraction theory6 states that the image plane
intensity is related to the complex square of the Fou-
rier transform of the pupil function:

I(x, y) � � 1
�f�2 ���� f(x, y)exp�i2��(x, y)	�


� exp�i2�(�y � �x)
	x	y�
�→y⁄�f,�→x⁄�f

�2

, (1)

where f�x, y� is the apodizing function across the pu-
pil and ��x, y� is any phase error that might be
present in the pupil. The Fourier kernel is the term
exp�i2���y � �x�
. The integration is carried out over
the area of the pupil, and it results in a function of the
spatial-frequency coordinates � and �. These can be
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converted to real space coordinates x and y by the
transformations � → y	��f� and n → x	��f� where � is
the wavelength under consideration and f is the focal
length of the telescope. Alternatively, � and � can be
converted to angular coordinates on the sky by the
transformations � → y	� and � → x	�.

The Fourier-transform operation has several use-
ful properties that will aid in the calculation of
I�x, y�.7 These are

Y Linearity: The transform of a sum of two func-
tions is the sum of their individual transforms. This
is a restatement of Babinet’s principle.

Y Shift: The Fourier transform of a shifted func-
tion is the transform of the unshifted function mul-
tiplied by a linear phase factor.

Y Rotation: The Fourier transform of a rotated
function is the rotated Fourier transform of the un-
rotated function.

Under the linearity property, Eq. (1) becomes a
summation of k pieces within the pupil that do not
overlap and each integration is carried out over only
the area of the kth piece:

I(x, y) � � 1
�f�2���

k
�� fk(x, y)exp�i2��k(x, y)	�


� exp�i2�(�y � �x)
	x	y�
�→y	�f, �→x⁄�f

�2

, (2)

The properties of shift and rotation allow the trans-
form of each piece k to be calculated in any convenient
coordinate system. The resulting Fourier transform
can be adjusted for the shift and rotation required to
return the kth piece to its proper position in the pupil.
Let f�x, y� be a known pupil function and g��, �� be its
Fourier transform, as shown in Eq. (3). The trans-
form of the same function shifted by �x0, y0� and ro-
tated by � is given in Eq. (4):

��f(x, y)
 � g(�, �), (3)

�
f(x 
 x0, y 
 y0, �)� � exp�i2�(x0� � y0�)
g(� cos �

� � sin �, 
� sin � � � cos �), (4)

where � is the Fourier-transform operation and � is
positive for a clockwise rotation.

These three Fourier-transform properties com-
bined show that the Fourier transform of any pupil
can be calculated if the pupil is the sum of smaller
pieces that do not overlap and whose Fourier trans-
forms are known. The problem in Eq. (1) is reduced
to calculating �� fk�x, y�exp�i2��k�x, y�	�
exp�i2���y
� �x�
	x	y in any convenient coordinate system for
each of the pieces in the pupil.

3. Analytic Fourier Transform of a Hexagon and
Related Systems

Any pupil with straight edges can be broken up into
smaller pieces whose Fourier transform is easy to

calculate. As an example, consider a regular hexagon.
The hexagon can be seen as the sum of two trapezoids
as shown in Fig. 1. Assume there is no apodization so
that f�x, y� � 1, and also assume that there is no
phase error so that ��x, y� � 0. Let D be the flat-
to-flat width of the hexagon.

To calculate the analytic transform, consider the
upper trapezoid to be the sum of an infinite number
of horizontal strips, as shown in Fig. 1. The end points
of the strips are given by the sides of the trapezoid:
x � �y 
 D�	�3 and x � �y 
 D�	�
�3�. The sum of the
strips from y � 0 to y � D	2 gives the complete
Fourier transform of the trapezoid g:

g(�, �) ��
0

D	2��
(y
D)	�3

(y
D)	(
�3)

exp�i2�(�y � �x)
	x�	y

�

exp�
i�D�2�

�3
� ���

4�2(�3 
 3��2) ((�3� 
 3�)

� �exp(i�D�3�) 
 exp�i�D� 4

�3
� � ����

� (�3� � 3�)�exp(i�D�	�3) 
 exp(i�D�)
).

(5)

The transform of the entire hexagon must be the
sum of the two trapezoids, one of which is rotated
about the origin by 180°:

hex(�, �) � g(�, �) � g(
�, �), (6)

Fig. 1. Regular hexagon is the sum of two trapezoids, and each
trapezoid is the sum of strips whose length depends on the height
of the strip in the trapezoid.
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and the intensity in the image plane will be

� 1
�f�2 �hex� y

�f ,
x
�f��2

. (7)

The image from the hexagonal pupil is plotted in Fig.
2.

The FFT technique is now useful as a check that
the analytic answer is correct. The analytic Fourier
transform of the hexagon f can be sampled rather
coarsely and an inverse FFT applied. The complex
square of the result gives the original pupil intensity,
as shown in Fig. 2.

We can now easily apply the properties of the Fou-
rier transform discussed above to calculate the Fou-
rier transform of more complicated hexagonal-based
pupils without carrying out further integrations. Ta-
ble 1 lists some useful cases. The cases showing po-
sition, piston, and tilt errors can be used to examine
the tolerances of the primary mirror segments. The
tilt terms indicate a phase error across the hexagonal
segment of exp�i2���y � 
x�	�
.

4. Apodization

The images from pupils with apodization can also be
calculated analytically in some cases. Consider the
apodized hexagon shown in Fig. 3. It contains just
two shapes: a trapezoid with a constant amplitude of
1 and a smaller trapezoid with a cosine-squared pro-
file.

Let the flat-to-flat width of the hexagon again be D
and the width of each apodizing strip be ε. The Fou-
rier transforms of sections A and B are

A(�, �) ��
0

(D
2�)
2 �

y
(D
2�)
�3

y
(D
2�)


�3 exp[i2�(�y � �x)]	x	y,

(8)

B(�, �) ��
0

� �
(y
D	2)

�3

(y
D	2)


�3 �cos
�(� 
 y)

2� �2

� exp[i2�(�y � �x)]	x	y, (9)

Table 1. Useful Hexagonal Fourier Transforms

Pupil Shape Fourier Transform of the Pupil

Trapezoid g��, �� � �0
D	2 
��y
D�	�3

�y
D�	
�3 exp�i2���y � �x�
	x�	y

Regular hexagon hex��, �� � g��, �� � g�
�, ��

Two hexagons, flat sides together, gap of �
between them

h1��, �� � exp�i��D � 	��
hex�� cos
�

6 � � sin
�

6, 
 � sin
�

6 � � cos
�

6�,

h2��, �� �exp�
i��D � 	��
hex�� cos
�

6 � � sin
�

6, 
 � sin
�

6 � � cos
�

6�,

htotal��, �� � h1��, �� � h2��, ��

Two hexagons with position errors
�	x1, 	y1, 	x2, 	y2�

exp�i2��	x1� � 	y1��
h1��, �� � exp�i2��	x2� � 	y2��
h2��, ��

Two hexagons with piston errors p1 and p2

in units of distance
exp�i2�p1	��h1��, �� � exp�i2�p2	��h2��, ��

Two hexagons with tilt errors ��1, 
1, �2, 
2�
in radians

h1�� 

�1

�
, � 



1

� � � h2�� 

�2

�
, � 



2

� �

Fig. 2. Image intensity from a hexagonal pupil can be calculated
analytically. As a check, a FFT can then be applied to the image
amplitude to recover the original pupil amplitude.
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The regions C are shifted and rotated versions of B:

C(�, �) � exp�
i2��D
4 � �

�3D
4 ��B�� cos

2�

3


 � sin
2�

3 , � sin
2�

3 � � cos
2�

3 ��. (10)

The Fourier transform of the entire segment G is
then a sum of these functions with the proper shifts
and rotations:

G(�, �) � A(�, �) � A(
�, �) � exp(i�D�)B(�, �)
� exp(
i�D�)B(
�, �) � C(�, �)
� C(
�, �) � C(
�, 
 �) � C(�, 
 �).

(11)

5. Investigation of a 32-m Primary Mirror

The techniques above were used to investigate the
performance of a hexagonal primary with a diameter
of 32 m, as shown in Fig. 4. The hexagonal shape was
chosen so that the majority of the diffracted light
would lie in six arms in the diffracted image, leaving
significant regions with low background available for
planet imaging. The system investigated here has 18
hexagonal segments with inner diameters of 8 m. The
gaps between the segments are � 30 mm. The second-
ary supports were taken to be 0.50 m in width, and
the obscuration was assumed to be a hexagon with an
8-m flat-to-flat diameter.

Figure 4 shows the analytic point-spread function
(PSF) of the hexagonal pupil. It was truncated to
1	1000 of its peak height so that sidelobe detail is
visible. The pupil is also shown, which we recon-
structed from the analytic PSF using FFT tech-
niques.

Figure 5 shows the four types of pupil that were
investigated: the perfect hexagonal pupil, the seg-
mented pupil with secondary and spider obscura-

Fig. 3. Apodized hexagon and its cross section, which falls off as
cos2.

Fig. 4. Analytic PSF irradiance plot for a segmented hexagonal
primary 32 m in diameter, with spider supports and secondary.

Fig. 5. System performance was evaluated with and without the
secondary and supports, with varying gap widths, and with two
styles of apodization.
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tions, the pupil with apodization of the outside edges
and obscurations, and the pupil with every hard edge
apodized. Widths of the gaps and apodization were
varied for each case.

To evaluate the potential for finding planets with
these pupil configurations, signal-to-background
plots were created. Angel has shown that contrasts of
10
7 will be adequate for planet imaging, assuming
an 8-h exposure time, a 30-m primary, a bandwidth of
0.85 � 0.15 �m, and a specialized system.8 The
planet was assumed to have a circular PSF with the
same width as the FWHM of the central peak of the
star’s PSF. A discrete convolution of the scaled planet
signal with the star’s PSF revealed the locations for
which the signal-to-background value would be one
or greater. An example of the resulting signal-to-
background plots is shown in Fig. 6.

We could reduce the signal-to-background plots to
a single number by summing over the area inside the
star’s twentieth Airy ring (at 0.3 arc sec) and scaling,
giving the percentage of usable area for planet imag-
ing. The wavelength used for the calculations was
1 �m. Polychromatic calculations with a 10% band-
width showed no significant departures from the
monochromatic results.

For a perfect hexagonal primary of 32 m, the us-
able area was 7.3%, but dropped to just 1% after we
accounted for the secondary and supports. This sug-

gests that constraining the pupil shape to hexagonal
is not useful when realistic details such as secondar-
ies and supports are accounted for. Adjusting the
segments’ gap widths for the unapodized pupil con-
figuration had little effect on the system performance
since it was dominated by the secondary and sup-
ports.

Apodization of the pupil, secondary, and spider
edges improved the performance but increased the
significance of the gap widths, as shown in Fig. 7.
With a 42.8% loss of light due to the apodization of
the main edges, the usable area in the signal-to-
background plot rose to 22% in the unrealistic case of
no gaps. The signal-to-background plots for the sys-
tem with and without the main edges apodized are
shown in Fig. 6. Both plots include the effects of the
obscuration and supports and have gap widths of
zero.

With the major edges apodized, the system proved to
be fairly sensitive to phase errors. For example, with
the system apodized to 55.6% transmission, piston er-
rors with an average of 0.01 waves led to a 17% reduc-
tion in usable area. Piston errors with an average of
0.05 waves led to a drastic 85% reduction in usable

Fig. 8. Apodization of the individual segments initially leads to a
loss in performance because the gaps between segments appear to
be wider. Performance recovers somewhat as the apodization
width increases.

Fig. 6. Regions where planet detection is possible are shown in
gray for a perfect hexagonal pupil and for a hexagonal pupil with
secondary, supports, and the major edges apodized. The star’s PSF
is shown at the center. S–B, signal-to-background.

Fig. 7. Apodizing the main edges in the primary led to an im-
provement in the area usable for planet imaging, defined as re-
gions where the signal-to-background ratio is greater than 1. The
loss of performance due to the widening of the gaps is clearly
visible.
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area. Tilt and positional errors in the plane of the
primary have not yet been investigated for this system.

Apodizing the edges of the individual segments ini-
tially causes the gaps to seem wider, reducing the
performance. The performance is not improved by the
gaps’ apodization until this performance loss is over-
come, which is at roughly 45% loss of light in the
system investigated here (see Fig. 8).

6. Conclusions

For a hexagonal primary with an inner diameter of
32 m, there are significant regions for which planet
imaging is possible. To achieve such regions, the gaps
between the segments, secondary obscuration, and sec-
ondary spiders must be as small as possible. The major
edges in the system must be apodized. For gaps of
30 mm and apodization that leads to a loss of 29.7% of
the light, the usable area inside 0.3 arc sec is 9.3%.
Without apodization, the usable area dropped to 0.9%.

Designing the system to have hexagonal symmetry
did not prove to be as useful as expected. The diffrac-
tion pattern did have six arms, but the details of the
secondary and the spider arms interfered with the pro-
duction of the low background regions between the
arms.

Apodizing all the edges in the system with the
apodization function tested here led to no perfor-
mance gains because the apodization initially caused
the gaps to appear wider, decreasing the performance
and canceling out the benefits of apodization.

This research was supported by California Insti-
tute of Technology and National Science Foundation
grant AST-0138347.
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