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ABSTRACT 

Telescopes are ultimately limited by atmospheric turbulence, which is commonly characterized by a structure function.  
The telescope optics will not further degrade the performance if their errors are small compared to the atmospheric 
effects. Any further improvement to the mirrors is not economical since there is no increased benefit to performance. 
Typically the telescope specification is written in terms of an image size or encircled energy and is derived from the best 
seeing that is expected at the site. Ideally, the fabrication and support errors should never exceed atmospheric turbulence 
at any spatial scale, so it is instructive to look at how these errors affect the structure function of the telescope. The 
fabrication and support errors are most naturally described by Zernike polynomials or by bending modes for the active 
mirrors. This paper illustrates an efficient technique for relating this modal analysis to wavefront structure functions. 
Data is provided for efficient calculation of structure function given coefficients for Zernike annular polynomials. An 
example of this procedure for the Giant Magellan Telescope primary mirror is described. 
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1. INTRODUCTION 
 
The image quality of a distant star is a function of the atmosphere, telescope optics and instrumentation. The goal is to 
fabricate and support the telescope mirrors so that the performance degradation due to the optics matches the best 
atmosphere you are statistically likely to see. Any further improvement to the mirrors adds no benefit to performance 
and is not economical. Therefore, telescope performance is usually limited by atmospheric turbulence. Atmospheric 
turbulence causes wavefront phase errors on many spatial scales and this is best characterized by a structure function. 
Structure functions describe the average variance over all pairs of points in the pupil of a given separation and will be 
defined in the next section. Often, the telescope specifications chosen for the fabrication, support and alignment errors 
are in terms of a point spread function (PSF), spot size, encircled energy, or modulation transfer function (MTF), but 
structure functions may also be used. Structure functions were first used as manufacturing specifications for the William 
Herschel Telescope (WHT) polished by Grubb-Parsons in the 1980s.1 Other mirrors with polishing or figuring 
specifications on several spatial scales include the Large Binocular Telescope (LBT),2 the Giant Magellan Telescope 
(GMT)3 and the Discovery Channel Telescope (DCT).4   

The correlation length, or Fried parameter, is used to describe the strength of atmospheric turbulence and is a single 
parameter which defines the structure function for atmospheric turbulence.5 Previously, conversions have been made 
between the Fried Parameter and structure functions5 as well as between the Fried parameter and Zernike polynomials.6 
Dai and Mahajan recently wrote a paper discussing imaging through atmospheric turbulence by systems with annular 
pupils using the Zernike annular polynomials.7  They found the residual phase structure functions when a certain number 
of modes are corrected from Kolmogorov turbulence using a deformable mirror. However, this paper does not include a 
way to convert from a general set of annular Zernike coefficients8 to a structure function. Telescope polishing and 
support errors are normally measured using interferometers which output Zernike polynomials. In order to compare 
these errors to atmospheric errors, there exists a need for an efficient conversion from Zernike polynomials to structure 
functions, as shown in the following figure. 
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Fig. 1. This paper provides an efficient tool for converting a surface described by Zernike coefficients into a structure 

function. 

1.1 Structure functions 

Structure functions statistically define phase differences for pairs of points at different spatial separations. The structure 
function ( )rDφ  for different spatial separations r is defined as 

 ( ) ( ) ( )[ ]
x

xrxrD 2φφφ −+= , (1) 

where φ is the phase at a position x or x + r.  The angled brackets denote an average over x, which are all points in the 
pupil.  The units of the structure function are waves2. 

Equation 1 can also be expanded into 
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which shows that the structure function is related to the autocorrelation of the phase function.  Since autocorrelation and 
power spectral density (PSD) are related by Fourier Transform, one can think of the structure function as including the 
same information as a PSD, but in a different form. 

For Kolmogorov turbulence, ( )rDφ can be written as  
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r0 is the correlation length introduced by Fried which depends on wavelength and scales to 6/5 power. (If no wavelength 
is specified 0.5 µm might be assumed.) Typical values are on the order of centimeters and larger values describe better 
seeing and sharper telescope images. The following graph shows the structure function for Kolmogorov turbulence for 
two different values of r0 (0.1 and 0.2) and demonstrates how smaller values of r0 lead to larger structure functions 
values. 
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Fig. 2. The structure function for Kolmogorov turbulence for two different values of r0 (0.1m and 0.2m) for a wavelength of 

500nm. Structure functions are normally plotted in log-log space to better see differences at a variety of spatial scales. 

1.2 Zernike polynomials 

Zernike polynomials are a convenient set of orthonormal basis functions for a unit circle.8 They are frequently used in 
optics to describe wavefront errors because many optical elements are circular. However when telescopes have a central 
obscuration, they are better described by annular Zernike polynomials which are correctly normalized over the annular 
pupil.9 Telescope mirrors may have errors from many sources, including bending modes due to changing mirror 
orientations with respect to gravity or figuring errors from fabrication. Bending modes may be determined using finite 
element analysis and once those are known, they can be decomposed into Zernike coefficients. During fabrication, 
figuring errors can be found using interferometers that output surface errors in terms of Zernike coefficients. Active 
supports are often used to correct for mirror bending modes or low order figuring errors.  It is then possible to calculate 
the leftover shape errors in terms of Zernike polynomials and using the results of this paper, determine the structure 
function of the telescope. 

There are different ways of normalizing and ordering the Zernike coefficients. In this paper, we use the Zernike 
polynomials used by Noll6, which are called the Zernike standard polynomials and Zernike annular polynomials in 
Zemax.9 Using this definition, the magnitude of the coefficient of a term is equal to the RMS contribution of that term. 
Annular Zernike polynomials are defined similarly to the standard circular Zernike polynomials, however they have an 
added dependence on the obscuration ratio, ε, the ratio of the inner radius of the annulus to the outer radius of the 
annulus which varies between 0 and 1. Circular Zernike polynomials are a special case of the annular Zernike 
polynomials, where ε = 0. Since the structure function is the average variance over all pairs of points of a given 
separation in the pupil, a rotation of the surface does not change the structure function. All of the non-axially symmetric 
Zernike terms come in pairs which only differ by a rotation and hence can be described by one structure function. 

Finally, as a note of caution, some interferometer software programs may give you Zernike coefficients for data over an 
annular region, but these may not actually be properly normalized annular Zernike coefficients. If you use the results of 
this paper to convert a Zernike polynomial into a structure function, you should be careful to use the same Zernike 
ordering and normalization as used here. 

2. STRUCTURE FUNCTIONS OF THE ZERNIKE POLYNOMIALS 
2.1 Algorithm 

MATLAB10 was used to numerically calculate the structure function for the annular Zernike polynomials and the 
algorithm is as follows: 

• The Zernike polynomial surface was created using a matrix of points (201 x 201). 



 

• For each point in the pupil a second point was found a distance r away and a determination was made if this 
point also lies in the pupil. 

o This was repeated for a number of different angles (36) 

• The squared difference of the phase was summed for all pairs of points that both lay in the pupil a distance r 
apart.  The average was found by dividing by the total number of pairs. 

• This was repeated for all of the different spatial separations r desired to create the structure function ( )rDφ  

• This procedure was repeated for each Zernike polynomial (Z = 2...28) and each obscuration ratio (ε = 0, 0.2, 0.4 
and 0.6) 

2.2 Example and discussion 

This algorithm is best understood by using an example. First the Zernike polynomial describing astigmatism with an 
obscuration ratio of ε = 0.4 was created as matrix of points. Each point of the matrix inside the pupil corresponds to the 
positions of x in Equation 1 and φ(x) is the value of the Zernike polynomial at that point.  For every point x in the pupil, 
a large number of points (~36) a distance r away are found at different angles. The value of the Zernike polynomial at 
these points is φ(x + r).  For simplicity, in the figure below, only seven points separated by a distance r from the first 
point are shown. 

 
Fig. 3. An example of finding the structure function for the Zernike astigmatism term for an obscuration ratio of ε = 0.4.  

For the 1st point falling on the surface as shown, seven 2nd points are found. 

There are a number of different techniques one could choose to use if the second point falls outside of the pupil. The 
method chosen should depend on the operation of the mirror. For the case here, we just ignored the second point. In the 
example above, five of the seven points are in the pupil and are used in the structure function calculation and the other 
two points are discarded. 

This process of finding the average variance for all pairs of points is repeated for all of the different spatial separations r.  
In this paper, the structure functions are found for 10 different values of r between 0.01 and 1, where 1 is the normalized 
diameter of the pupil. As the value of r increases toward 1, the chance of the second point also falling in the pupil 
becomes increasingly smaller. For larger separations, fewer point pairs are used to describe the structure function so the 
value of the structure function is not statistically significant. Also, as will be shown in the next section, the structure 
functions for large spatial separations have some ringing near the edge where r = 1. Power spectral density (PSD) plots 
also have a similar problem which is often addressed by using windowing or filtering.  

2.3 Results 

The following figure shows the resulting structure functions for all of the annular Zernike polynomials and obscuration 
ratios listed in the appendix. For convenience, these numbers will be also available online at 
http://www.optics.arizona.edu/loft/Publications/StructureFunctions.xls. The first Zernike polynomial represents a piston 
error, which has a structure function of zero since there are no differences in value between any of the points, so it is not 
included here. For an individual Zernike coefficient, the structure function does not change very quickly with the value 
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of the obscuration ratio.  Therefore, it is reasonable to interpolate the structure functions shown to obtain other 
obscuration ratios, if desired.  
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Fig. 4. Structure functions for obscuration ratios of 0, 0.2, 0.4 and 0.6 for annular Zernike polynomials 2-28. (The structure 

function for Zernike polynomial 1 (piston) is zero for all values of r.) 

2.4 Finding the total structure function for a surface described by Zernike polynomials 

To find the total structure function, one must add up the scaled individual structure functions for each of the Zernike 
polynomials that describe the surface.  To scale the structure function, multiply by the squared value of the coefficient 
describing the Zernike term (which is the rms value of the term). For example, if the scaling coefficient is c, then the 
total phase (assuming one Zernike term) is ( ) ( )xcxtotal φφ = and the total structure function can be found as follows: 

 ( ) ( ) ( )[ ] ( ) ( )[ ] ( )rDcxrxcxcrxcrD
xxtotal φφφφφφ

2222 =−+=−+= . (4) 

Therefore, the structure function will have the units of c2 which may be waves2 or nm2 or other distance unit squared. 
Now, instead assume the phase is composed of two different Zernike terms ( ) ( ) ( )xxx 21 φφφ +=  and expand the structure 
function definition as follows: 

 ( ) ( ) ( )[ ] ( ) ( )( ) ( ) ( )( )[ ]
xx

xxrxrxxrxrD 2
2121

2 φφφφφφφ +−+++=−+= . (5) 
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Collect the like Zernike polynomial terms together to find: 

 ( ) ( ) ( )( ) ( ) ( )( )[ ]
x

xrxxrxrD 2
2211 φφφφφ −++−+= . (6) 

Expand the square and separate each term into its own average over the pupil to find: 

 ( ) ( ) ( )( )[ ] ( ) ( )( )[ ] ( ) ( )( )[ ] ( ) ( )( )[ ]
xxx

xrxxrxxrxxrxrD 2
222211

2
11 2 φφφφφφφφφ −++−+−++−+= . (7) 

The middle term in the above equation is equal to zero because all of the terms in its expansion cancel: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 021212121 =++−+−++ xxxx xxxrxrxxrxrx φφφφφφφφ . (8) 

Therefore the total structure function is the sum of the individual structure functions of each of the Zernike terms: 

 ( ) ( ) ( )rDrDrD
21 φφφ += . (9) 

In summary, if the total phase is comprised of individual terms, each scaled by some factor, as in the following equation: 

 ( ) ( ) ( ) ( ) ...332211 +++= xcxcxcx φφφφ , (10) 

then the total structure function may be found as the sum of the individual structure functions, each scaled by the square 
of the coefficient as shown in the following equation: 

 ( ) ( ) ( ) ( ) ...
2

2
2

2
21

2
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+++= rDcrDcrDcrD φφφφ . (11) 

3. GIANT MAGELLAN TELESCOPE EXAMPLE 
This section describes an example using an 8.4m segment of the Giant Magellan Telescope.3 During the analysis of the 
optical test, Zernike coefficients were found which describe the expected errors due to misalignments of the test optics. 
To find the total structure function, each individual structure function was scaled by the squared value of the Zernike 
coefficient. It is convenient to think of the phase errors in terms of difference in surface height (units of distance) during 
manufacturing. Therefore, the square root of the structure function was found. Finally, since this example involves 
surface errors for a mirror, the structure function needs to be multiplied by 2 because phase errors are doubled upon 
reflection. The calculation for this example is shown in the appendix.  The following figure shows the structure function 
for the optical test errors along with the structure function for the mirror specification.  

 
Fig. 5. Structure function analysis for a GMT segment shows the expected optical test errors and the mirror specification 
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The mirror specification was derived from an atmospheric structure function with r0 = 92 cm (large compared to the 
typical atmospheric coherence length) and has two modifications, shown by the following equation: 
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In Equation 12, the wavelength is λ = 500 nm, the Fried parameter is r0 = 92 cm (at a 500 nm wavelength) and the mirror 
diameter is D = 8.4 m. The first modification is a term to reduce the allowed error on large scales and corresponds to the 
removal of the average wavefront tilt across the aperture of diameter D, as in the case of a telescope with rapid active 
guiding. The second modification is the 2σ2 term, which is a relaxation at small spatial separations for scattering losses. 
σ may be found from the equation for scattering losses of 1.5%: 

 ( ) %5.11
2/2 =−= − λπσeL . (13) 

The curve labeled “Allowable error after testing” comes from subtracting in quadrature the optical test from the mirror 
specification curve. This example shows that the optical test errors are small compared to the mirror figuring 
specification, so there is still room in the budget for errors on the telescope mirror itself. 

4. CONCLUSION 
This paper offers an efficient way to convert Zernike polynomials into structure functions to be able to compare a mirror 
surface to atmospheric turbulence at all spatial scales. The technique used to calculate the structure function is described 
and the results are provided in the appendix and online.  
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5. APPENDIX 
5.1 Structure functions tables 

Table 1. Structure Functions for ε = 0 (Standard circular Zernike polynomials) 

separation 
Zernike 

0.01 0.02 0.05 0.1 0.2 0.3 0.45 0.6 0.8 0.95 

2, 3 0.0002 0.0008 0.0051 0.0203 0.0811 0.1825 0.4106 0.7300 1.2977 1.8301 
4 0.0012 0.0047 0.0284 0.1077 0.3843 0.7669 1.4230 2.0482 2.6497 2.8417 

5, 6 0.0006 0.0024 0.0145 0.0563 0.2106 0.4421 0.8911 1.4066 2.0974 2.5478 
7, 8 0.0027 0.0106 0.0617 0.2190 0.6881 1.2143 1.8976 2.3521 2.5923 2.5147 
9, 10 0.0012 0.0047 0.0281 0.1055 0.3696 0.7248 1.3098 1.8303 2.2510 2.2995 
11 0.0057 0.0220 0.1202 0.3863 1.0176 1.5711 2.2062 2.6336 2.6358 2.1011 

12, 13 0.0048 0.0185 0.1038 0.3455 0.9649 1.5365 2.1169 2.3561 2.2117 1.8740 
14, 15 0.0020 0.0077 0.0454 0.1651 0.5426 0.9956 1.6117 1.9765 1.9675 1.7081 
16, 17 0.0096 0.0361 0.1856 0.5441 1.2524 1.8151 2.4337 2.5898 2.0366 1.6108 
18, 19 0.0074 0.0282 0.1521 0.4770 1.2015 1.7613 2.1937 2.1905 1.7541 1.4825 
20, 21 0.0029 0.0114 0.0661 0.2327 0.7189 1.2346 1.7821 1.8969 1.5458 1.3211 

22 0.0153 0.0557 0.2644 0.6946 1.4384 2.0484 2.5174 2.3262 1.9105 1.7803 
23, 24 0.0142 0.0520 0.2529 0.6832 1.4345 2.0166 2.4917 2.2689 1.6242 1.6145 
25, 26 0.0105 0.0396 0.2054 0.6085 1.3958 1.9067 2.1503 1.9046 1.4153 1.4971 
27, 28 0.0041 0.0158 0.0896 0.3063 0.8896 1.4278 1.8199 1.6689 1.2409 1.3592 
29, 30 0.0218 0.0771 0.3394 0.8161 1.6124 2.2237 2.4129 2.0941 1.7724 1.9963 
31, 32 0.0194 0.0697 0.3200 0.8038 1.5882 2.1683 2.3703 1.8712 1.4874 1.8811 
33, 34 0.0141 0.0522 0.261 0.7323 1.5455 1.9825 2.0142 1.5918 1.3283 1.7796 
35, 36 0.0054 0.0208 0.1158 0.3839 1.0466 1.5620 1.7405 1.3934 1.1843 1.6658 

37 0.0307 0.1047 0.4213 0.9332 1.8088 2.3344 2.3048 1.8950 2.0117 2.3825 
 

Table 2. Structure Functions for ε = 0.2 

separation 
Zernike 

0.01 0.02 0.05 0.1 0.2 0.3 0.45 0.6 0.8 0.95 

2, 3 0.0002 0.0008 0.0049 0.0198 0.0791 0.1779 0.4002 0.7115 1.2650 1.7840 
4 0.0013 0.0053 0.0323 0.1233 0.4460 0.8995 1.6576 2.2736 2.3508 2.3725 

5, 6 0.0006 0.0024 0.0146 0.0571 0.2172 0.4634 0.9452 1.4891 2.1605 2.5398 
7, 8 0.0027 0.0104 0.0608 0.2161 0.6800 1.2000 1.8888 2.4134 2.7144 2.5936 

9, 10 0.0012 0.0047 0.0284 0.1073 0.3826 0.7641 1.4054 1.9712 2.3200 2.2173 
11 0.0065 0.0248 0.1364 0.4409 1.1704 1.7926 2.3249 2.3882 2.4032 2.4088 

12, 13 0.0048 0.0186 0.1042 0.3491 0.9847 1.5772 2.1582 2.3954 2.3351 1.9073 
14, 15 0.0020 0.0077 0.0458 0.1678 0.5620 1.0511 1.7365 2.1478 2.0013 1.5471 
16, 17 0.0098 0.0365 0.1879 0.5490 1.2513 1.8015 2.4539 2.6439 2.2012 1.7041 
18, 19 0.0074 0.0283 0.1533 0.4848 1.2415 1.8473 2.2975 2.2406 1.8060 1.4780 
20, 21 0.0029 0.0114 0.0666 0.2366 0.7449 1.3049 1.9248 2.076 1.5386 1.1179 

22 0.0173 0.0629 0.3000 0.7947 1.6503 2.2214 2.246 2.0247 2.4011 1.7549 
23, 24 0.0142 0.0521 0.2539 0.6879 1.4426 2.0209 2.5265 2.3803 1.7615 1.5837 
25, 26 0.0106 0.0397 0.2071 0.6189 1.4460 2.0106 2.2843 1.9552 1.3940 1.4688 
27, 28 0.0041 0.0158 0.0904 0.3115 0.9225 1.5085 1.9675 1.8303 1.2059 1.1581 
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Table 3. Structure Functions for ε = 0.4 

separation 
Zernike 

0.01 0.02 0.05 0.1 0.2 0.3 0.45 0.6 0.8 0.95 

2, 3 0.0002 0.0007 0.0044 0.0177 0.0709 0.1595 0.3588 0.6379 1.1342 1.5991 
4 0.0020 0.0078 0.0474 0.1816 0.6616 1.3308 2.3442 2.4288 2.0790 1.9598 

5, 6 0.0006 0.0023 0.0144 0.0569 0.2205 0.4805 1.0230 1.6793 2.4490 2.7114 
7, 8 0.0029 0.0115 0.0675 0.2422 0.7784 1.4064 2.2441 2.4218 2.4561 2.7073 
9, 10 0.0012 0.0047 0.0286 0.1097 0.4029 0.8327 1.6308 2.3825 2.7276 2.3687 
11 0.0094 0.0361 0.1969 0.6281 1.5903 2.2256 2.3001 2.0871 2.0804 2.1481 

12, 13 0.0049 0.0188 0.1060 0.3561 1.0098 1.6295 2.3253 2.6004 2.5434 2.1720 
14, 15 0.0020 0.0078 0.0464 0.1725 0.5979 1.1651 2.0774 2.6587 2.3050 1.5267 
16, 17 0.0118 0.0442 0.2283 0.6719 1.5499 2.1669 2.3416 2.1186 2.3049 2.3383 
18, 19 0.0074 0.0284 0.1546 0.4928 1.2754 1.9099 2.4719 2.6229 1.9958 1.4385 
20, 21 0.0029 0.0115 0.0675 0.2436 0.7946 1.4549 2.3373 2.5801 1.6385 0.9750 

22 0.0250 0.0906 0.4251 1.0923 2.0541 2.2915 1.8137 2.2579 2.1175 2.2626 
23, 24 0.0152 0.0559 0.2723 0.7372 1.5493 2.1641 2.4516 2.2704 2.1892 1.7957 
25, 26 0.0106 0.0399 0.2095 0.6334 1.5113 2.1325 2.4871 2.2969 1.3991 1.3049 
27, 28 0.0041 0.0159 0.0916 0.3207 0.9847 1.6854 2.4076 2.2459 1.1334 1.0145 

 
Table 4. Structure Functions for ε = 0.6 

separation 
Zernike 

0.01 0.02 0.05 0.1 0.2 0.3 0.45 0.6 0.8 0.95 

2, 3 0.0002 0.0006 0.0038 0.0151 0.0605 0.1361 0.3062 0.5444 0.9677 1.3640 
4 0.0040 0.0157 0.0956 0.3646 1.2885 2.3494 2.2833 2.1202 2.0532 2.0253 

5, 6 0.0005 0.0022 0.0136 0.0539 0.2122 0.4700 1.0225 1.7048 2.6520 3.2281 
7, 8 0.0046 0.0182 0.1077 0.3932 1.2950 2.2728 2.2636 2.1566 2.1566 2.1992 

9, 10 0.0012 0.0046 0.0283 0.1101 0.4188 0.8952 1.7943 2.6609 3.3079 3.1439 
11 0.0189 0.0713 0.3755 1.1101 2.2457 2.2696 2.0592 2.0458 2.0368 2.0409 

12, 13 0.0061 0.0237 0.1349 0.4609 1.3571 2.2319 2.2680 2.2726 2.3470 2.3333 
14, 15 0.0020 0.0077 0.0469 0.1786 0.6513 1.3374 2.4553 3.1624 2.8820 1.9058 
16, 17 0.0207 0.0773 0.3927 1.1161 2.2224 2.2815 2.0292 2.0131 2.0217 2.0516 
18, 19 0.0083 0.0316 0.1731 0.5563 1.4699 2.2700 2.4674 2.5123 2.3325 1.9107 
20, 21 0.0029 0.0116 0.0692 0.2567 0.8921 1.7482 2.8825 3.0843 1.8688 0.8927 

22 0.0494 0.1741 0.7523 1.6735 2.2676 1.7834 2.1091 2.0535 2.0465 2.0497 
23, 24 0.0230 0.0844 0.4102 1.1068 2.1803 2.3288 2.0897 2.0823 2.0999 2.1110 
25, 26 0.0111 0.0419 0.2213 0.6736 1.6194 2.3424 2.5918 2.4458 1.7593 1.3326 
27, 28 0.0041 0.0160 0.0939 0.3389 1.1171 2.0708 2.9940 2.5572 1.0472 0.9326 
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5.2 Sample structure function calculation from GMT example 
Table 5. Calculation of expected optical test errors (dotted black line in Figure 5). The bold numbers are used in the plot. 

 separation 0.01 0.02 0.05 0.1 0.2 0.3 0.45 0.6 0.8 0.95 

 
8.4m * 
separation 0.084 0.168 0.42 0.84 1.68 2.52 3.78 5.04 6.72 7.98 

Zernik
e term 

Zernike 
coefficients Structure functions (for ε = 0), scaled by the square of the coefficients 

1 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 
4 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 
5 0.12 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 
6 0.79 0.00 0.00 0.01 0.04 0.13 0.28 0.56 0.88 1.31 1.59 
7 7.03 0.13 0.52 3.05 10.81 33.97 59.95 93.68 116.12 127.97 124.14 
8 0.93 0.00 0.01 0.05 0.19 0.59 1.05 1.64 2.03 2.24 2.17 
9 0.33 0.00 0.00 0.00 0.01 0.04 0.08 0.14 0.20 0.24 0.25 

10 0.28 0.00 0.00 0.00 0.01 0.03 0.06 0.10 0.14 0.18 0.18 
11 5.57 0.18 0.68 3.72 11.97 31.53 48.67 68.35 81.59 81.66 65.09 
12 5.63 0.15 0.59 3.29 10.97 30.62 48.76 67.18 74.78 70.19 59.47 
13 0.84 0.00 0.01 0.07 0.24 0.68 1.09 1.50 1.67 1.56 1.33 
14 0.19 0.00 0.00 0.00 0.01 0.02 0.03 0.06 0.07 0.07 0.06 
15 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 
16 3.65 0.13 0.48 2.48 7.26 16.72 24.23 32.48 34.57 27.18 21.50 
17 25.45 6.22 23.4 120.2 352.3 810.9 1175 1576 1677 1319 1043 
18 4.04 0.12 0.46 2.49 7.80 19.65 28.81 35.88 35.83 28.69 24.25 
19 4.70 0.16 0.62 3.36 10.53 26.53 38.89 48.43 48.36 38.73 32.73 
20 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 
21 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
22 10.48 1.68 6.11 29.0 76.2 157.9 224.9 276.3 255.3 209.7 195.4 
23 2.04 0.06 0.22 1.05 2.85 5.98 8.40 10.38 9.45 6.77 6.73 
24 13.62 2.63 9.65 46.9 126.8 266.2 374.2 462.3 421.0 301.4 299.6 
25 0.44 0.00 0.01 0.04 0.12 0.27 0.37 0.42 0.37 0.28 0.29 
26 0.92 0.01 0.03 0.17 0.51 1.18 1.61 1.81 1.60 1.19 1.26 
27 0.45 0.00 0.00 0.02 0.06 0.18 0.28 0.36 0.33 0.25 0.27 
28 0.26 0.00 0.00 0.01 0.02 0.06 0.09 0.12 0.11 0.08 0.09 
29 4.67 0.47 1.68 7.39 17.8 35.1 48.4 52.5 45.6 38.6 43.5 
30 0.68 0.01 0.04 0.16 0.38 0.75 1.04 1.13 0.98 0.83 0.93 
31 0.59 0.01 0.02 0.11 0.28 0.56 0.76 0.84 0.66 0.52 0.66 
32 0.56 0.01 0.02 0.10 0.25 0.50 0.68 0.75 0.59 0.47 0.59 
33 0.15 0.00 0.00 0.01 0.02 0.04 0.05 0.05 0.04 0.03 0.04 
34 0.17 0.00 0.00 0.01 0.02 0.05 0.06 0.06 0.05 0.04 0.05 
35 0.09 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.01 0.01 
36 0.15 0.00 0.00 0.00 0.01 0.02 0.04 0.04 0.03 0.03 0.04 
37 2.23 0.15 0.52 2.09 4.64 8.98 11.59 11.45 9.41 9.99 11.83 

 

structure 
function 
D(r)  12.13 45.07 225.81 642.07 1449.2 2099.6 2744.4 2818.7 2268.9 1937.0 

 2*sqrt(D(r)) 7.0 13.4 30.1 50.7 76.1 91.6 104.8 106.2 95.3 88.0 
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This should be 4.2m, since the separation was normalized to the radius.


