
Aberration fields of a combination of plane 
symmetric systems 

Lori B. Moore, Anastacia M. Hvisc and Jose Sasian* 

College of Optical Sciences, University of Arizona, 1630 E. University Boulevard, Tucson, AZ 85721, USA 
*Corresponding author: jose.sasian@optics.arizona.edu  

Abstract: By generalizing the wave aberration function to include plane 
symmetric systems, we describe the aberration fields for a combination of 
plane symmetric systems.  The combined system aberration coefficients for 
the fields of spherical aberration, coma, astigmatism, defocus and distortion 
depend on the individual aberration coefficients and the orientations of the 
individual plane symmetric component systems.  The aberration coefficients 
can be used to calculate the locations of the field nodes for the different 
types of aberration, including coma, astigmatism, defocus and distortion.  
This work provides an alternate view for combining aberrations in optical 
systems. 
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1. Introduction  

Optical systems that do not have an axis of rotational symmetry have been and continue to be 
of interest in optical design.  In his Ph. D. dissertation, Buchroeder [1] described a class of 
non-axially symmetric systems, called “tilted component optical systems” constructed from 
axially-symmetric components. These components may be tilted about their nodal points in 
such a way that a particular ray, which defines the reference axis, remains undeviated.  The 
aberrations of tilted component optical systems then can be expressed using Shack’s [2] 
vector aberration function where the field vector H

�

 is modified by a displacement term to 
account for each component tilt. With vector notation, the final system aberration fields can 
be found and analyzed as shown by Thompson [3,4].  

A plane symmetric system is a system that has a plane of symmetry: that is, one half of the 
system is a mirror image of the other.  Axially symmetric and double-plane symmetric 
systems belong to the class of plane symmetric systems.  Sasian [5,6] developed an aberration 

function for describing plane symmetric optical systems that uses a vector i
�

to define the 
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direction of plane symmetry.  The question is: can the plane symmetric formalism be extended 
to a combination of plane symmetric systems which do not necessarily share the same 
orientation for their respective planes of symmetry?  Using the vector notation developed by 
Thompson [3,4] we extend the plane symmetric formalism to a combination of plane 
symmetric systems.  The final, or global, system is not necessarily plane symmetric.  Instead it 
may not have any identifiable symmetry.  

The result of the work in this paper is a more general theory for non-axially symmetric 
systems than “tilted component optical systems” given that the component systems are not 
restricted to being axially symmetric.  For example, this theory can be applied to both systems 
comprised of off-axis aspheres, as long as a plane of symmetry can be defined, and tilted 
plane symmetric optical components if they are tilted in the plane of symmetry.  However this 
theory is not applicable to all asymmetric systems.  It cannot be applied to systems with 
components that can not be simplified as plane symmetric.  

There are several methods to concatenate asymmetric systems which can be used to 
combine plane symmetric systems.  For example, Andrews [7], Forbes [8,9] and Stone [9] 
have developed methods for the concatenation of asymmetric systems using Hamiltonian 
methods.  Our concatenation methodology differs in that it is based in component system 
rotation about an optical axis ray.   

In addition to these methods, modern commercial lens design programs are capable of 
analyzing combinations of optical systems.  Our approach provides an intuitive understanding 
of the combination of plane symmetric systems that can guide a lens designer using 
commercial lens design software.  We show which of the aberrations are dependent on the 
orientation of the plane of symmetry.  And we show that for these aberrations, the combined 
system aberration is simply the sum of the i vectors, denoting the direction of the plane of 
symmetry of the subsystem, weighted by the aberration coefficient for each subsystem.  
Conceptually it follows that a given aberration can be canceled by adding an equal and 
opposite amount of the aberration if the orientation of the plane of symmetry is chosen 
properly.  It also follows that the aberration cannot be canceled if the plane of symmetry 
orientations are not chosen properly.  To aid in this conceptual understanding, we have 
included figures for each of the aberrations and have grouped similar types of aberration 
fields.  

For completeness, we find the nodes of each of the aberration fields.  This provides a 
conceptual example of how the aberration fields for a combination of plane symmetric 
systems contributes to the overall system aberrations. We build on previous work [3,4] in 
aberration theory, add graphics to help clarify concepts, and contribute to the theory by 
including plane symmetric component systems.  Specifically the new contributions to the 
theory are: 1) component system addition is specified by angular displacement rather than by 
component tilt, resulting in an alternate view of system concatenation, 2) a wider class of 
optical systems regarding the symmetry of the component systems can be treated, 3) we point 
out and discuss the occurrence of line nodes, and 4) the graphics contribute to the 
understanding of vector aberration theory.  

2. Aberration function and fields 

The wave aberration function for a rotationally symmetric optical system in vector form [2] is 
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where H
�

 is the field vector and ρ� is the aperture vector, as shown in Fig. 1.  
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Fig. 1.  Conventions for the plane symmetry, field and aperture vectors. 

The aberration function can be modified for a plane symmetric system [5]:  
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where i
�

is a unit vector that specifies the direction of plane symmetry.  The indices k, m, n, p 
and q are integer numbers.  On the right hand side of Eq. (2), the W’s represent the aberration 
coefficients and convey the magnitude of a given aberration.  Note that the first subscript 

2k+n+p is the algebraic power of the field vector H
�

, and the second subscript 2m+n+q is the 
algebraic power of aperture vector ρ� .  To combine several systems, one can use a field 

displacement term jH σ−
�

 for each of the tilted component systems as Thompson did.  We 

instead combine several plane symmetric systems using the vector ji
�

 that indicates the 

relative orientation among each of the j plane symmetric systems. 
The aberration function describes the aberrations about the optical axis.  The center of the 

field of view, the center of the aperture stop and the pupils lie on the optical axis ray [1].  
Optically, the optical axis ray is a straight line; that is, looking at the optical axis from image 
space, the axis appears like a straight line, while in reality it is a ray that is reflected, refracted 
or diffracted by the system surfaces.  In effect, the system can be unfolded such that the 

optical axis ray is a straight line.  The vector i
�

is perpendicular to the optical axis ray.  
Parametric expressions for the aberration coefficients of a plane symmetric system are given 
by Sasian [5,6].  Using the notation established by Sasian, the aberration function for a single 
plane symmetric system up to fourth-order is: 
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The total or global aberration function of a number j of plane symmetric systems with relative 

orientation ji
�

 and with aberration coefficients jqpnqnmpnkW ,,,,2,2 ++++ is the sum of the 

individual aberration functions.  The fact that the total aberration is still a sum of the 
individual surface aberrations, even when there are tilted or decentered components, was 
discussed by Buchroeder [1].  The sum to fourth-order is: 
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This combination of plane symmetric systems still shares the same optical axis ray. The 

relative orientation of each of the systems is conveyed by the vectors ji
�

.  Figure 2 shows an 

example of possible orientations of these vectors as seen looking down the optical axis ray.  

 
Fig. 2.  Possible orientation of vectors ji

�

 as seen looking down the optical axis.  Notice that 

the vectors are all unit vectors in different directions. (The optical axis is in and out of the page 
at (x,y) = (0,0).) 

To organize the aberrations in Eq. (4), we first define the variables listed in Table 1. These 
variables label each of the aberration coefficients by the aberration type and field dependence.  

This table also shows which of the aberrations have no dependence on i
�

or are dependent on 

i
�

or 2i
�

.  It shows how the aberration coefficients from each component are combined into 

the system aberration coefficient.  For the aberrations that depend on i
�

, the combined system 
aberration coefficient is simply the sum of the aberration coefficient for the individual 

components multiplied by the i
�

vector denoting the orientation of plane of symmetry.  In 
general, the plane of symmetry for each aberration coefficient of the combined system will 

have a different plane of symmetry so the combined i
�

vectors are redefined.  To minimize the 
combined system aberrations, either the individual subcomponent aberration coefficients can 
be minimized or, like with axially symmetric systems, the combined aberration can be 
reduced by balancing aberrations with equal but opposite amounts of the individual 
component aberrations, as long as the proper orientation of the individual planes of symmetry 
is chosen.  
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Table 1. Coefficient and vector definitions 

Uniform Piston: 

∑=
j

jup WW 00000  

Field Displacement: 
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Linear Piston: 
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Magnification: 
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Quadratic Piston I: 
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1  
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Quadratic Distortion II: 
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Spherical Aberration: 
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Linear Coma: 
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j

jlc WW 13100  

Quadratic Astigmatism: 

∑=
j

jqa WW 222002
1  

Field Curvature: 

∑=
j

jfc WW 22000  

Cubic Distortion: 

∑=
j

jcd WW 31100  

Quartic Piston: 

∑=
j

jqp WW 40000  

 

In Table 1, the terms “constant,” “uniform,” “linear,” “quadratic” and “cubic” describe the 
algebraic power of the field dependence (first subscript).  (We chose the name “uniform 
piston” for the aberration that would typically be called “constant piston” in this paper so that 
the subscript would be different from cubic piston, which uses “cp”.) 

Each time the direction unit vector i
�

occurs in Table 1, it is always normalized to one.  
For example, in the constant coma case, we have: 

 

∑

∑
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j
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. (5) 

Therefore, the W coefficient accounts for the entire weight, such as in the constant coma term: 

 ∑=
j

jjcc iWW
�

03001 . (6) 

Multiplying Eq. (5) and Eq. (6) results in the constant coma equation in Table 1. 
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In order to better illustrate the field dependence of the aberration function in Eq. (4), we 
group the aberration coefficients by their dependence on the aperture vector ρ� .  As shown in 
Table 2 this groups the aberration function into six aberration fields: spherical aberration, 
coma, astigmatism, defocus, distortion, and piston. 

Table 2. Aberration fields of a combination of plane symmetric systems 
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Field of Spherical 
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Some of the terms in Table 2, involve the product of vectors, such as Hi
��

or 2H
�

.  This 
operation, named “vector multiplication” by Shack [2], is different from both a vector dot 
product and a vector cross product.  If we have two vectors A

�

and B
�

expressed as 

 ( )jiaiaA ˆcosˆsin)exp( ααα +==
�

  (7) 

 ( )jibibB ˆcosˆsin)exp( βββ +==
�

,  (8) 

then the vector product BA
��

is defined as: 

 ( )( ) ( ) ( )( )jiabiabBA ˆcosˆsinexp βαβαβα +++=+=
��

. (9) 

The conjugate of a vector is a reflection of the vector across the y-axis:  

 ( ) ( )( ) ( )jibjibibB ˆcosˆsinˆcosˆsin)exp(* βββββ +−=−+−=−=
�

. (10) 

The following vector identities were also used to generate Table 2 [3]: 

 ( )( ) ( )( )[ ]CBACBAACABA
�����������

⋅+⋅⋅=⋅⋅ 2
2
1 , (11) 

 and ( ) ( )CBACBA
������

⋅=⋅ * . (12) 

For an explanation of vector multiplication, see Thompson [3]. 
The vector identities shown in Eqs. (11) and (12) are used to split the anamorphic 

distortion and each of the astigmatism terms into a combination of two aberrations.  This is 
discussed in the appendix. 

The aberrations discussed here are to the fourth-order of approximation, as discussed by 
Sasian [5], and do not include higher-order terms.  For example, terms like cylindrical field 
curvature are not considered.  The use of higher-order terms would impact the nature of the 
aberration fields and their point and nodal lines where they vanish. 
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3. Graphical view of aberration field components 

All of the components of the aberration fields in graphical form are shown in Tables 3 and 4 
(except for piston which is a phase error that does not affect the image).  These are similar to 
those presented by Thompson for tilted component systems but they correspond to a 
combination of plane symmetric systems which includes tilted component systems. In our 
graphical representation, anamorphism is described with respect to the average image size.  
Astigmatism is described with respect to the medial surface; see Appendix.  

Table 3. Aberration field components that contribute to distortion mapping errors, shown in both grid and vector plot 
forms. In the grid form, the dotted lines show the nominal mapping positions of a square grid.  The solid line shows 
the distortion of the square grid.  In the vector form, the vectors show the magnitude and direction of the mapping 
distortion.  All i vectors used in creating these graphs are pointing to the right. 

Field Displacement  

 

Magnification 

 

Anamorphism 

 
Quadratic Distortion I   

 

Quadratic Distortion II:   

 

Cubic Distortion:    
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Table 4. Aberration field components. The field of defocus is represented by circles that convey the size of the 
defocused image across the field. Astigmatism is represented by a projection of the astigmatic focal lines. Coma is 
represented by a collection of circles.  Each circle represents a fixed magnitude of the aperture vector, ρ, thus the 

collection of circles show the magnitude and orientation of the aberration in the field.  Spherical aberration is 
represented by circles that show the magnitude of the aberration. All i vectors used in creating these graphs are 

pointing to the right.  (Color online: Red denotes locations in the field where the focus position is before the image 
plane) 

Defocus 

 

Field Tilt 

 

Field Curvature 

 
Constant Astigmatism 

 

Linear Astigmatism 

 

Quadratic Astigmatism 

 
Constant Coma 

 

Linear Coma 

 

Spherical Aberration 

 

4. Aberration field nodes 

Since each of the aberration fields listed in Table 2 is the sum of multiple terms, each with a 
different field dependence, it is possible that these terms sum to zero at certain locations in the 
field.  These special locations are called field nodes and geometrically can be points, lines or 
circles.  Following the work of Thompson [3,4] for tilted component systems, we find the 
nodes for a combination of plane symmetric systems.  In many cases the location of the nodes 
is similar, but because we use different vector definitions than Thompson the equations used 
to find the nodes are not always the same. 

To find the nodes in the field of view, we treat each aberration field independently.  Notice 
that the pupil dependence for each field in Table 2 has been factored out.  This leads to a term 
in brackets that depends only on the field vector, plane of symmetry vectors, and the 
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aberration coefficients.  In order to find the location of the nodes, we set this bracketed term 
equal to zero and solve for H

�

as a function of the aberration coefficients and i. 

4.1 Spherical aberration 

The field of spherical aberration is uniform; it does not vary as a function of the field of view, 
so there are no field nodes.  

4.2 Coma 

The field of coma can be linear or constant with respect to the field of view: 

 0=+ HWiW lccccc

�
�

. (13) 

Thus, there can be one field node: 

 cc
lc

cc i
W

W
H

�
�

−= . (14) 

4.3 Astigmatism 

The magnitude of the astigmatism can be uniform, linear or quadratic as a function of the field 
of view. This field can have one or two nodes where the astigmatism vanishes.  Shack [2] was 
the first to recognize that the field of astigmatism could have two nodes and he called this case 
binodal astigmatism.  In the presence of constant, linear, and quadratic astigmatism the node 
positions satisfy the equation: 

 022 =++ HWHiWiW qalalacaca

��
��

. (15) 

The locations of the nodes are at the two field points that can be found solving Eq. (15) and 
are given by: 

 22

2

4

1

2

1
ca

qa

ca
la

qa

la
la

qa

la i
W

W
i

W

W
i

W

W
H

���
�

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
±−= . (16) 

There are some special cases where the location of the node is simplified: 

1) If there is no constant or linear astigmatism ( 0=caW and 0=laW ), there is one field node 

at the optical axis ray ( 0=H
�

).  

2) When there is no constant astigmatism ( 0=caW ), there are two nodes: 

 0=H
�

 and la
qa

la i
W

W
H

�
�

−= . (17) 

3) If there is no linear astigmatism ( 0=laW ), then there are two nodes at:  

 ca
qa

ca i
W

W
H

�
�

−±= . (18) 

4) If there is no quadratic astigmatism ( 0=qaW ), the field of astigmatism is linear in field 

and there is only one node located at: 

 
la

ca
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ca

i

i

W

W
H
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�
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2

−= . (19) 
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4.4 Defocus 

The nodes of defocus can be point nodes, line nodes, or circle nodes.  A single point node is a 
circle node of radius zero.  The defocus nodes must satisfy the following equation: 

 ( ) ( ) ( )( ) 0=⋅++⋅+⋅++ HHWWHiWHiWWW fcqalalaftftdcad

���
�

�
�

. (20) 

Note that the astigmatism terms in the field of defocus describe the defocus required to move 
from the image plane to the medial astigmatic surface. 

A line node will occur if the quadratic astigmatism term is balanced by the field curvature 
term ( fcqa WW −= ).  As an example, if the defocus also balances the defocus from constant 

astigmatism ( dcad WW −= ), then the line node satisfies the following equations: 

 ( ) ( ) 0=⋅+⋅ HiWHiW lalaftft

�
�

�
�

 (21) 

 or ( ) 0=⋅+ HiWiW lalaftft

�
��

. (22) 

Thus, the line node occurs when the field vector H
�

is perpendicular to the vector 

lalaftft iWiW
��

+ .  If the two defocus terms do not cancel, then  

 ( ) ( )dcadlalaftft WWHiWiW +−=⋅+
�

��

. (23) 

The line node will shift and it no longer crosses through the center of the field of view.  It is 
possible to shift the node outside the field of view.  An example of a line node is plotted in 
Fig. 3.  

 

+ 

 

= 

 
Fig. 3. A line node in the field of defocus from a combination of field tilts. (Color online:  Red 
is focused before the image plane.) 

However in general, the nodes from defocus will be circular.  The values of the coefficients 
and the directions of the i vectors will determine the location of the circle and where it is 
centered.  Figure 4 shows an example circular node in the field of defocus. 

 

– 

 

= 

 
Fig. 4. A circular node in the field of defocus from a combination of field curvature and 
constant defocus. (Color online:  Red is focused before the image plane.)  

If the field tilt is balanced by the linear astigmatism ( lalaftft iWiW
��

−= ), then the circular node 

is centered on the on-axis field point.  The radius of this circular node is derived as follows: 

 ( )( ) ( ) 02 =+++⇒⋅+++ HWWWWHHWWWW fcqadcadfcqadcad

��

 (24) 
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⎟
⎟
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⎞

⎜
⎜

⎝

⎛

+
+

−=
fcqa

dcad

WW

WW
H . (25) 

Note that the quantity in parenthesis must be negative or else the field radius where the 
circular node exists will be imaginary and there will not be a circular node at all. 

4.5 Distortion 

Distortion is purely a mapping error which does not cause blurred images.  Therefore it is 
possible to correct distortion with post-processing of the image.  There are still applications 
where post-processing is not possible or distortion should be minimized to reduce the error in 
the post-processing.  For this reason we describe the types of nodes found in the field of 
distortion.  The distortion nodes satisfy the following equation:   

 ( ) ( ) ( )( ) 0*2 =+⋅+⋅++++ HWiWHHHHiWHiWHWWiW cdqdIqdIqdIIqdIIaamamfdfd

�
�

����
�

�
�

�
�

. (26) 

Table 5 shows some sample distortion vector plots with two, three, and four nodes and 
list the contributing coefficient amounts.  

Table 5. Some distortion plots showing 2, 3, and 4 nodes.  The surface maps represent the magnitude of the distortion.  
The points where the surfaces meet the plane are the nodes.  In the vector plots, the vectors represent both the 

magnitude and direction of the mapping distortion.  The shading represents the magnitude of the distortion.  Darker 
shades have less distortion.  All i vectors used in creating these graphs are pointing to the right. 

2 nodes 3 nodes 4 nodes 
Wfd = -0.25; WqdI = -1 

WqdII = 2 
Wa = -1; Wcd = 1 Wfd = 1; WqdI = -1 

WqdII = -0.78 

 

 

 

 

 

 
 

As with the field of defocus, it is also possible to get circular nodes and line nodes with the 
field of distortion.  For example, if all other terms cancel except field displacement and 
quadratic distortion I, then the field of distortion simplifies to  

 ( ){ } ρ�
�

��
�

⋅⋅+ qdIqdIfdfd iHHWiW .  (27) 

This leads to a circular node (shown in Table 6), with a radius derived as follows: 
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 ( ) 0=⋅+ HHiWiW qdIqdIfdfd

��
��

 (28) 

 
qdI

fd

W

W
H −= .  (29) 

Like with the case of circular defocus nodes, Wfd and WqdI must have opposite signs or the 
radius of the circle node will be imaginary and there will not be a node in the field.   

Another circular node can be created from magnification and cubic distortion.  This set 
also has a node on axis. If: 

 ( ) ( ) ( ) ( )( ) 0=⋅++⇒⋅++ HHHWWWHHHWHWW cdmamcdmam

�������

, (30) 

then there is one node on axis and a circular node (shown in Table 6) at 

 
( )

cd

mam

W

WW
H

+
−= .  (31) 

Again the term (Wm + Wma) and Wcd must have different signs for there to be a node. 
A line node in the distortion field may be found when there is no cubic distortion.  One 

simple example of a line node is the case of quadratic distortion II.  Additionally, by adding 
an equal, but opposite, amount of quadratic distortion I to quadratic distortion II, (in effect 

qdIIqdI WW −= and qdIIqdI ii
��

= ) a line node will be created.  A line node may also be found by 

adding complementary amounts of magnification and anamorphism.  It is also possible to get 
a line node and a point node using a combination of quadratic distortion II and magnification. 

Table 6. Some distortion plots showing line and circular nodes.  The surface maps represent the magnitude of the 
distortion.  In the vector plots, the vectors represent both the magnitude and direction of the mapping distortion.  The 
shading represents the magnitude of the distortion.  Darker shades have less distortion.  All i vectors used in creating 

these graphs are pointing to the right. 

a) Circular distortion node b) Circular distortion node 
with on-axis node 

c) Line distortion node 
with on-axis node 

Wfd = -1; WqdI = 1 Wm + Wma = -1; Wcd = 1 Wm + Wma = -0.75; WqdII = 1  
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5.  Summary  

This paper adds to the theory of non-axially symmetric systems.  Specifically, we extended 
the plane symmetric vector aberration function to determine the aberration fields for a 
combination of plane symmetric systems that do not necessarily share the same orientation for 
their respective planes of symmetry.  Noteworthy is that the system combination is carried out 
by rotations about the optical axis ray of each system component. This paper provides 
mathematical expressions for the resulting aberration fields: spherical aberration, coma, 
astigmatism, defocus, and distortion.  To help the conceptual understanding of the aberrations 
we defined and plotted the individual aberration terms that contribute to each field.  In 
addition, the paper furthers the concept of field nodes by using the equations for the aberration 
fields to calculate and illustrate the locations of the field nodes, which may be point nodes, 
line nodes, or circle nodes depending on the aberration field.  Although this theory is 
applicable only to the range of asymmetric systems that can be considered plane symmetric, it 
is in principle more general than the previous theories that apply only to axially symmetric 
system components. 

Appendix A 

The anamorphic distortion and astigmatism terms in Eq. (4) can each be split in to two terms. 
For the case of anamorphic distortion, the split terms change the reference to an average 
magnification. For the case of astigmatism, the split terms change the reference to the medial 
astigmatic surface.  

1. Anamorphism 

Anamorphic distortion is given by: 

 ∑ ⋅⋅
j

jjj iHiW ))((11011 ρ�
���

.         (32) 

This equation can be split into:  

 ( )( )∑∑ ⋅+⋅=⋅⋅
j

jjj
j

jjj HiWHWiHiW ρρρ �

��

�

�

�

���

*2
110112

1
110112

1
11011 ))((  

 ( ) ρρ �

��

�

�

⋅+⋅= *2HiWHW aama . (33) 

The first term in Eq. (33) represents a magnification change and the second term represents a 
mapping change in two orthogonal directions.  It is the second term that is used in Table 3. 
Thus in Table 3 anamorphism is described with respect to the average magnification rather 
than as the usual anamorphic, one-directional mapping stretch. This is shown graphically in 
Fig. 5. 

 

= 

 

+ 
 

 
Fig. 5. Anamorphism can be described as an average magnification (center figure) plus an 
anamorphic term (figure on the right).  
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2. Astigmatism 

For the case of astigmatism, each of the terms in Eq. (4) related to the field of astigmatism can 
be split into two aberration components.  For example, the term that describes linear 
astigmatism is split into: 

 ( )( ) 2
12101 ))(( ρρρρρ �

��

��

��

�

�

�

�

⋅+⋅⋅=⋅⋅∑ HiWHiWHiW lalalala
j

jj . (34) 

The first term of the split ( )( )ρρ ��

��

⋅⋅ HiW lala  has the same functional form as field tilt. This 
locates the medial astigmatic surface on a tilted plane.  In Table 2, the field of astigmatism is 

described from the medial astigmatic surface by the second term of the split 2ρ�
��

⋅HiW lala . 
Figure  6 shows the components of the field of astigmatism, constant, linear and quadratic 

astigmatism, and their relation to the image plane as expressed in Eq. (4). The surfaces shown 
are the locus of the astigmatic focal lines. The medial surface is shown in blue online.  In 
contrast, Fig. 7 shows the astigmatic surfaces with respect to the medial surface as 
mathematically represented in Table 2 and graphically shown in Table 4. This representation 
is used by Thompson [3,4]. 
 

 
 

    
 

Fig. 6.  Astigmatic surfaces and their relationship according to the astigmatism terms in Eq. (4).  
Defocus from the image plane is in the ΔZ direction.  (Color online: The medial surface is 
shown in blue)  

 
The surfaces in Figs. 6 and 7 are the locus of the astigmatic line images. These surfaces 

are called sagittal and tangential astigmatic surfaces for the case of quadratic astigmatism.  
However because the orientation of the line images in linear astigmatism depart from the 
radial symmetry of quadratic astigmatism, the terms sagittal and tangential are not quite 
appropriate for describing the line images of linear astigmatism.  Instead we will refer to them 
with the more general term – line image astigmatic surfaces [4].  As shown in Fig. 7, for the 
case of linear astigmatism the line image astigmatic surfaces are along a cone, and astigmatic 
lines with the same orientation are located along a line. For example, note the same 
orientation of the astigmatic lines along the dashed red or green lines in Fig. 7 for linear 
astigmatism.  
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Fig. 7. Location and orientation of the astigmatic surfaces for the linear, constant, and quadratic 
astigmatism with respect to the medial surface and as mathematically represented in Table 2.  
Defocus from the medial surface is in the ΔZ direction.  The dashed lines in the linear 
astigmatism figure highlight the locations of the sagittal and tangential foci.  (Color online: The 
medial surface is blue.  The tangential foci are red.  The sagittal foci are green.)  

3. Transverse ray aberrations  

The transverse ray aberration vector ε�  was used to make some of the figures in this paper.  
Table 7 provides the transverse ray aberrations derived from the standard relationship, 

 ( )ρε ρ
�

�

�

,
'

1
HW

nu
∇=  (35) 

where n is the index of refraction and u’ is the marginal ray slope in image space. 
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Table 7. Transverse ray aberrations 

Field of 
Distortion 

( )
( ) ( ) ( )HHHWHHiWiHHW

HiWHWWiWnu

cdqdIIqdIIqdIqdI

aamamfdfd
�����

��
��

�
�

�
�

�

⋅+⋅+⋅

++++=⋅ *2' ε
  

Field of 
Defocus 

( ) ( ) ( )( ){ }ρε �

���
�

�
�

�

HHWWHiWHiWWWnu fcqalalaftftdcad ⋅++⋅+⋅++=⋅ 2'  

Field of 
Astigmatism 

{ }*2**22' ρρρε �

�

�

�
�

�
�

�

HWHiWiWnu qalalacaca ++=⋅  

Field of 
Coma 

( ) ( )( ) ( ) ( )( )ρρρρρρρρε ��

��

����
��

���

⋅+⋅+⋅+⋅=⋅ HHWiiWnu lccccccc 22'  

Field of 
Spherical 
Aberration 

( )ρρρε ����

⋅=⋅ saWnu 4'  

The following vector identities were used:  

 ( ) aa
���

�

=⋅∇ ρ  (36) 

 ( ) ρρρ ���

�

2=⋅∇  (37) 

 ( ) ∗=⋅∇ ρρ ����

�

aa 22  (38) 

 ( )( ) ( ) ( )ρρρρρρρ ����������

�

⋅+⋅=⋅⋅∇ aaa 2  (39) 

 and ( ) ( )ρρρρρ �����

�

⋅=⋅∇ 42   (40) 

where a
�

 is any vector ( *2,, HiHi
����

, etc) that does not depend on ρ� . 

#96875 - $15.00 USD Received 30 May 2008; revised 19 Jul 2008; accepted 30 Aug 2008; published 19 Sep 2008

(C) 2008 OSA 29 September 2008 / Vol. 16,  No. 20 / OPTICS EXPRESS  15670


