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Abstract: By generalizing the wave aberration function to include plane
symmetric systems, we describe the aberration fields for a combination of
plane symmetric systems. The combined system aberration coefficients for
the fields of spherical aberration, coma, astigmatism, defocus and distortion
depend on the individual aberration coefficients and the orientations of the
individual plane symmetric component systems. The aberration coefficients
can be used to calculate the locations of the field nodes for the different
types of aberration, including coma, astigmatism, defocus and distortion.
This work provides an alternate view for combining aberrations in optical
systems.
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1. Introduction

Optical systems that do not have an axis of rotational symmetry have been and continue to be
of interest in optical design. In his Ph. D. dissertation, Buchroeder [1] described a class of
non-axially symmetric systems, called “tilted component optical systems’ constructed from
axially-symmetric components. These components may be tilted about their nodal points in
such a way that a particular ray, which defines the reference axis, remains undeviated. The
aberrations of tilted component optical systems then can be expressed using Shack’s [2]

vector aberration function where the field vector H is modified by a displacement term to
account for each component tilt. With vector notation, the final system aberration fields can
be found and analyzed as shown by Thompson [3,4].

A plane symmetric system is a system that has a plane of symmetry: that is, one half of the
system is a mirror image of the other. Axially symmetric and double-plane symmetric
systems belong to the class of plane symmetric systems. Sasian [5,6] developed an aberration

function for describing plane symmetric optical systems that uses a vector i to define the
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direction of plane symmetry. The question is: can the plane symmetric formalism be extended
to a combination of plane symmetric systems which do not necessarily share the same
orientation for their respective planes of symmetry? Using the vector notation developed by
Thompson [3,4] we extend the plane symmetric formalism to a combination of plane
symmetric systems. The final, or global, system is not necessarily plane symmetric. Instead it
may not have any identifiable symmetry.

The result of the work in this paper is a more general theory for non-axially symmetric
systems than “tilted component optical systems’ given that the component systems are not
restricted to being axially symmetric. For example, this theory can be applied to both systems
comprised of off-axis aspheres, as long as a plane of symmetry can be defined, and tilted
plane symmetric optical components if they aretilted in the plane of symmetry. However this
theory is not applicable to all asymmetric systems. It cannot be applied to systems with
components that can not be simplified as plane symmetric.

There are several methods to concatenate asymmetric systems which can be used to
combine plane symmetric systems. For example, Andrews [7], Forbes [8,9] and Stone [9]
have developed methods for the concatenation of asymmetric systems using Hamiltonian
methods. Our concatenation methodology differs in that it is based in component system
rotation about an optical axisray.

In addition to these methods, modern commercia lens design programs are capable of
analyzing combinations of optical systems. Our approach provides an intuitive understanding
of the combination of plane symmetric systems that can guide a lens designer using
commercial lens design software. We show which of the aberrations are dependent on the
orientation of the plane of symmetry. And we show that for these aberrations, the combined
system aberration is simply the sum of the i vectors, denoting the direction of the plane of
symmetry of the subsystem, weighted by the aberration coefficient for each subsystem.
Conceptually it follows that a given aberration can be canceled by adding an egua and
opposite amount of the aberration if the orientation of the plane of symmetry is chosen
properly. It also follows that the aberration cannot be canceled if the plane of symmetry
orientations are not chosen properly. To aid in this conceptual understanding, we have
included figures for each of the aberrations and have grouped similar types of aberration
fields.

For completeness, we find the nodes of each of the aberration fields. This provides a
conceptual example of how the aberration fields for a combination of plane symmetric
systems contributes to the overall system aberrations. We build on previous work [3,4] in
aberration theory, add graphics to help clarify concepts, and contribute to the theory by
including plane symmetric component systems. Specifically the new contributions to the
theory are: 1) component system addition is specified by angular displacement rather than by
component tilt, resulting in an aternate view of system concatenation, 2) a wider class of
optical systems regarding the symmetry of the component systems can be treated, 3) we point
out and discuss the occurrence of line nodes, and 4) the graphics contribute to the
understanding of vector aberration theory.

2. Aberration function and fields
The wave aberration function for arotationally symmetric optical system in vector form [2] is

W(H, )= S Waeunamenn (H-H) (5 5)"(H - )" @

k,mn

where H isthe field vector and p is the aperture vector, as shown in Fig. 1.
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Fig. 1. Conventions for the plane symmetry, field and aperture vectors.

The aberration function can be modified for aplane symmetric system [5]:

oo

WH, A= S Wi pamnignpgH H@ A(H- 90 - HPG - 9 )
kmnpq

where i is aunit vector that specifies the direction of plane symmetry. Theindicesk, m, n, p
and q are integer numbers. On the right hand side of Eq. (2), the W s represent the aberration
coefficients and convey the magnitude of a given aberration. Note that the first subscript

2k+n+p is the algebraic power of the field vector H , and the second subscript 2mtn+q is the
algebraic power of aperture vector p. To combine several systems, one can use a field

displacement term H —o; for each of the tilted component systems as Thompson did. We

instead combine several plane symmetric systems using the vector T] that indicates the

relative orientation among each of the j plane symmetric systems.

The aberration function describes the aberrations about the optical axis. The center of the
field of view, the center of the aperture stop and the pupils lie on the optical axis ray [1].
Optically, the optical axis ray is a straight line; that is, looking at the optical axis from image
space, the axis appears like a straight line, while in reality it isaray that is reflected, refracted
or diffracted by the system surfaces. In effect, the system can be unfolded such that the

optical axis ray is a straight line. The vector i is perpendicular to the optical axis ray.
Parametric expressions for the aberration coefficients of a plane symmetric system are given
by Sasian [5,6]. Using the notation established by Sasian, the aberration function for asingle
plane symmetric system up to fourth-order is:

Wooo00 +Wooo1 (i * 8) +Wagaro (i - H) +

Woz000 (£ * £) +Wi1100(H - £) +Wogo00 (H - H) +
Wozo02 (i 8)? +Whgop1 (i H) (I« 5) +Whgoao (i - H)? +
W(H, 5,1") =| Woaoor (i - B)(B £) +Wazo1 (i - A)(H - §) +Wangr0(i - H) (5 5) + )
Wai001 (i B)(H - H) + W15 H)(H - §) +Wagq0 (- H)(H - H) +
Woa000(8 - 5) % +Wazgo0(H - £)(8 - B) +Wapeo (H - §)* +

W.000(H - H)(5- p) +Wapa00(H - H)(H - p) JFVV40000(|:| ‘H)?
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The total or global aberration function of a number j of plane symmetric systems with relative

orientation Tj and with aberration coefficients Wy, p ominign,pqj 1S the sum of the

individual aberration functions. The fact that the total aberration is still a sum of the
individual surface aberrations, even when there are tilted or decentered components, was
discussed by Buchroeder [1]. The sum to fourth-order is:

Wooo00; +Wooorj (i +5) +Wigoro; (i - H) +

Wozoo0j (£ £) +Wi1100) (H-p) +Waoo00; (H-H)+

W020021' (ij- '/3)2 +W11011j (Ti 'H)(rj “P) +W20020j (Ti ":')2 +
W(H.p) =3, Wosoo1j (ij» PP P) +Wig0q (rj p)(H - ) +Wig010 (ij» -H)(p-p)+ -4
Wazo0s; (7 IGE |:|)+W21110j (i - H)(H - p) +Waoo0; (1 H)(H-H)+
Woso0oj (6-p)* +Waz100j (H-p)(p-p) +Wa2200 (H-p)%+

Wa2000; (H-H)(p-p) +Wa100 (H-H)(H-p) +Wiago00j (H-H)?

This combination of plane symmetric systems still shares the same optical axis ray. The
relative orientation of each of the systems is conveyed by the vectors Tj . Figure 2 shows an
example of possible orientations of these vectors as seen looking down the optical axisray.

Fig. 2. Possible orientation of vectors Tj as seen looking down the optical axis. Notice that

the vectors are al unit vectors in different directions. (The optical axisisin and out of the page

at (x,y) =(0,0))
To organize the aberrations in Eq. (4), we first define the variables listed in Table 1. These
variables label each of the aberration coefficients by the aberration type and field dependence.

This table also shows which of the aberrations have no dependence on i or are dependent on
i or i 2. It shows how the aberration coefficients from each component are combined into

the system aberration coefficient. For the aberrations that depend on i, the combined system
aberration coefficient is simply the sum of the aberration coefficient for the individual

components multiplied by the i vector denoting the orientation of plane of symmetry. In
general, the plane of symmetry for each aberration coefficient of the combined system will

have a different plane of symmetry so the combined i vectors are redefined. To minimize the
combined system aberrations, either the individual subcomponent aberration coefficients can
be minimized or, like with axially symmetric systems, the combined aberration can be
reduced by balancing aberrations with equal but opposite amounts of the individual
component aberrations, as long as the proper orientation of the individual planes of symmetry
is chosen.
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Table 1. Coefficient and vector definitions

Uniform Piston: Field Displacement: Linear Piston:

W = ZWooooo i Wigitg = ZWomon i Wipiip = ZW10010 i
Defocusj,: M agnificatji on: Quadrati cJ Piston I:
Wy = ZWozooo j W, = Z\NlllOO i qul = szoooo i
Defocu;from Congtant M agnifijcation from Quadrati:: Piston lla
Astigmatism: Anamorphism: Wopiia = % szoozoj
Wica = %Zwozooz i Wi = %anonj i
Constant AJstigmatism: Anamorpriism: Quadratic Piston I1b:

=2 _1 =2 =2 _ 1 =2 2 _1 =2
Wealca _EZWOZOOZJ' i Wiy _Ezwllollj I Wepiib! apiib = EZWZOOZOJ‘ I
i j j

Constant Coma: Linear Astigmatism: Field Tilt:

chrcc = ZWOSOOlj iAj \Nlaﬂa =%ZW121011' Tj Wftrft = ZW1201O i iAj
Quadratic JDistortion I: Quadratic I:;istortion I Cubic Pi stjon:

qul rqdl = Z\NZlOOlj iAj qun rqdll = szmo jrj chrcp = Z\NSOOle i)j
Spherical AIéJerration: Linear Coma_'J Quadratic JAstigmatism:
Wg, = ZW04000 j W = ZW13100 j an = %szzzoo j
Field CLJJrvature: Cubic Djistortion: Quartic Pi]ston:

Wi, = Zjlwzzooo i Wy = ;V\lslloo i qu = Zj;W4oooo i

LIS

In Table 1, the terms “constant,” “uniform,” “linear,” “quadratic’ and “cubic” describe the
algebraic power of the field dependence (first subscript). (We chose the name “uniform
piston” for the aberration that would typically be called “ constant piston” in this paper so that
the subscript would be different from cubic piston, which uses“cp”.)

Each time the direction unit vector i occurs in Table 1, it is always normalized to one.
For example, in the constant coma case, we have:

Z W03001j iAj

S — (5)

Z W03001j rj
J

lec

Therefore, the W coefficient accounts for the entire weight, such as in the constant coma term:

W = . (6)

ZWosoou I
j

Multiplying Eq. (5) and Eqg. (6) resultsin the constant coma equation in Table 1.
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In order to better illustrate the field dependence of the aberration function in Eq. (4), we
group the aberration coefficients by their dependence on the aperture vector p . As shown in

Table 2 this groups the aberration function into six aberration fields: spherical aberration,
coma, astigmatism, defocus, distortion, and piston.

Table 2. Aberration fields of a combination of plane symmetric systems

Field of Piston Wy, + W, i - H )+ Woy +W, p”a)(q.q)

=0

+vvp,,b(qpllb H2)+ W iy - H H - H )+ w,

H H
Field of Distortion {Wfdi‘fd +(Wm +Wrra)|:| +Wai}flrl* " }

Wl (H : ﬁ)ﬁdl + Wi (qdll 'H)H +ch

q

Field of Defocus Md Wy +Wft(i‘ft'|:|)+vvla(iia H) (\N +ch H- H p o)

e TR BT 7
Field of Coma {chi;:c +V\/|c|:|}'/5(,5'/3)

Field of Spherical = \2

Aberration Waa(p5)

Some of the terms in Table 2, involve the product of vectors, such as iH orH2. This
operation, named “vector multiplication” by Shack [2], is different from both a vector dot

product and a vector cross product. If we have two vectors A and B expressed as

A=aexp(ia) = a(sin of +cosj ) 7
B:bexp(iﬂ):b(sinﬂiﬁcosﬂf), (8)
then the vector product AB is defined as:

AB = abexpli(a + B)) = ablsin(cr + B) +cosla + B)] ). (9)

The conjugate of avector is areflection of the vector across the y-axis:
B =bexp(—i8) = blsin(- A) + cos(— B)])=bl-sin & + cos ). (10)

The following vector identities were also used to generate Table 2 [3]:
(&-B)A-C)=1|(A AfB-C)+ A28, (11)
and (A-6C)= (48" -C). (12)

For an explanation of vector multiplication, see Thompson [3].

The vector identities shown in Egs. (11) and (12) are used to split the anamorphic
distortion and each of the astigmatism terms into a combination of two aberrations. Thisis
discussed in the appendix.

The aberrations discussed here are to the fourth-order of approximation, as discussed by
Sasian [5], and do not include higher-order terms. For example, terms like cylindrical field
curvature are not considered. The use of higher-order terms would impact the nature of the
aberration fields and their point and nodal lines where they vanish.
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3. Graphical view of aberration field components

All of the components of the aberration fields in graphical form are shown in Tables 3 and 4
(except for piston which is a phase error that does not affect the image). These are similar to
those presented by Thompson for tilted component systems but they correspond to a
combination of plane symmetric systems which includes tilted component systems. In our
graphical representation, anamorphism is described with respect to the average image size.
Astigmatism is described with respect to the medial surface; see Appendix.

Table 3. Aberration field components that contribute to distortion mapping errors, shown in both grid and vector plot
forms. In the grid form, the dotted lines show the nominal mapping positions of a square grid. The solid line shows
the distortion of the square grid. In the vector form, the vectors show the magnitude and direction of the mapping
distortion. All i vectors used in creating these graphs are pointing to the right.
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Table 4. Aberration field components. The field of defocusis represented by circles that convey the size of the
defocused image across the field. Astigmatism is represented by a projection of the astigmatic focal lines. Comais
represented by a collection of circles. Each circle represents a fixed magnitude of the aperture vector, p, thus the
collection of circles show the magnitude and orientation of the aberration in the field. Spherical aberration is
represented by circles that show the magnitude of the aberration. All i vectors used in creating these graphs are
pointing to theright. (Color online: Red denotes |ocations in the field where the focus position is before the image

plane)
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4. Aberration field nodes

Since each of the aberration fields listed in Table 2 is the sum of multiple terms, each with a
different field dependence, it is possible that these terms sum to zero at certain locations in the
field. These special locations are called field nodes and geometrically can be points, lines or
circles. Following the work of Thompson [3,4] for tilted component systems, we find the
nodes for a combination of plane symmetric systems. In many cases the location of the nodes
is similar, but because we use different vector definitions than Thompson the equations used
to find the nodes are not always the same.

To find the nodes in the field of view, we treat each aberration field independently. Notice
that the pupil dependence for each field in Table 2 has been factored out. This leadsto aterm
in brackets that depends only on the field vector, plane of symmetry vectors, and the
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aberration coefficients. In order to find the location of the nodes, we set this bracketed term
equal to zero and solve for H asa function of the aberration coefficients and i.

4.1 Spherical aberration

The field of spherical aberration is uniform; it does not vary as afunction of the field of view,
so there are no field nodes.

4.2 Coma

The field of coma can be linear or constant with respect to the field of view:
WCCT(:C +VV|C|:| =0. (13)

Thus, there can be one field node:

H=-"Ci. (14)

4.3 Agtigmatism

The magnitude of the astigmatism can be uniform, linear or quadratic as afunction of the field
of view. Thisfield can have one or two nodes where the astigmatism vanishes. Shack [2] was
the first to recognize that the field of astigmatism could have two nodes and he called this case
binodal astigmatism. In the presence of constant, linear, and quadratic astigmatism the node
positions satisfy the equation:

Wi +WigiigH +WeH? =0, (15)

The locations of the nodes are at the two field points that can be found solving Eg. (15) and
are given by:

2
=t Ma g o ipMaJﬂi—“%ié- (16)
2W, 4\ Wq, W,

There are some special cases where the location of the nodeis simplified:

1) If there is no congtant or linear astigmatism (W, =0and W, =0), there is one field node
at the optical axisray (H =0).

2) When there is no congtant astigmatism (W, =0), there are two nodes:

H=0andH = - Va
W

ga

ila - (17)

3) If thereis no linear astigmatism (W, = 0), then there are two nodes at:

ica- (18)
ga
4) If there is no quadratic astigmatism (W =0), the field of astigmatism is linear in field
and there is only one node located at:
=2
H = Vea lea (19)
W lla
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4.4 Defocus

The nodes of defocus can be point nodes, line nodes, or circle nodes. A single point nodeis a
circle node of radius zero. The defocus nodes must satisfy the following equation:

Wd +Wdca +Wft (rft ’ H )+\Nla(ﬁa ’ |:| )+(an +ch )(H ’ |:|)= 0. (20)

Note that the astigmatism terms in the field of defocus describe the defocus required to move
from the image plane to the medial astigmatic surface.
A line node will occur if the quadratic astigmatism term is balanced by the field curvature

term (Wy, =-Wy.). As an example, if the defocus also balances the defocus from constant
astigmatism (W, =-W,, ), then the line node satisfies the following equations:

W (e - H )+ Wigliia - H)=0 (21)
or (Wi +Wiaija ) H =0. (22)

Thus, the line node occurs when the field vector H is perpendicular to the vector
Wiig +Waia- If the two defocus terms do not cancel, then

(\thrft +VV|aﬁa)' H = —(Wy +Wica)- (23)

The line node will shift and it no longer crosses through the center of the field of view. It is
possible to shift the node outside the field of view. An example of aline node is plotted in
Fig. 3.

oo ° o0 000000000 - 2000000
oo o o0 ©00000O0OO - 200000
0o o ©0 = o0 000 0 0 0 o0 o000
0o o P - o 000000 o o e 000
oo oo + = 0o o )
0o oo 00 o o
0 o o B ccccooco0o0o0 200 e

P 5 0 000000000

0o o0 000000000 88882:

Fig. 3. A line node in the field of defocus from a combination of field tilts. (Color online: Red
is focused before theimage plane.)

However in general, the nodes from defocus will be circular. The values of the coefficients
and the directions of the i vectors will determine the location of the circle and where it is
centered. Figure 4 shows an example circular node in thefield of defocus.

Fig. 4. A circular node in the field of defocus from a combination of field curvature and
constant defocus. (Color online: Red is focused before the image plane.)

If the field tilt is balanced by the linear astigmatism (Wi s = -Wi,i;,), then the circular node
is centered on the on-axis field point. The radius of this circular node is derived asfollows:

W +Weq + W +Wee NH - H )= Wy +Wyeq + (Wga + Wi JH2 =0 (24)
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H= |- M . (25)
an +ch

Note that the quantity in parenthesis must be negative or else the field radius where the
circular node exists will be imaginary and there will not be a circular node at all.

4.5 Distortion

Distortion is purely a mapping error which does not cause blurred images. Therefore it is
possible to correct distortion with post-processing of the image. There are still applications
where post-processing is hot possible or distortion should be minimized to reduce the error in
the post-processing. For this reason we describe the types of nodes found in the field of
distortion. The distortion nodes satisfy the following equation:

Wigitg + Wiy + Wi JH Wi 2H + Wi - A + (F - F Wogrige +WegH)=0.  (26)

Table 5 shows some sample distortion vector plots with two, three, and four nodes and
list the contributing coefficient amounts.

Table 5. Some distortion plots showing 2, 3, and 4 nodes. The surface maps represent the magnitude of the distortion.
The points where the surfaces meet the plane are the nodes. In the vector plots, the vectors represent both the
magnitude and direction of the mapping distortion. The shading represents the magnitude of the distortion. Darker
shades have less distortion. All i vectors used in creating these graphs are pointing to the right.

2 nodes 3 nodes 4 nodes
Wig = -0.25; Wy = -1 Wo=-1L, Wy=1 Wig =1, Wya = -1
Woan =2 Woai = -0.78

._v\'\‘]‘ ~
grecnny, 2
‘ o -
N [, d

— “

~N &

’T’(& ik )
‘—(‘(lx Jl{&&&tx\ e

As with the field of defocus, it isalso possible to get circular nodes and line nodes with the
field of distortion. For example, if al other terms cancel except field displacement and
quadratic distortion I, then thefield of distortion simplifiesto

Mfd itg +Weal (':' H ﬁqdl } p. (27)

This leadsto acircular node (shown in Table 6), with aradius derived as follows:
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Wfdffd +qu| qu| (I:i : |:|)=O (28)
w
H= [-—9 . (29)
qul

Like with the case of circular defocus nodes, Wiy and W,y must have opposite signs or the
radius of the circle node will be imaginary and there will not be anodein the field.

Another circular node can be created from magnification and cubic distortion. This set
also has anode on axis. If:

(Wi + W JF +Weg (H - F)F = (Wi + Wi )+ Weg (H - F JH =0, (30)
then thereis one node on axis and a circular node (shown in Table 6) at
H = | Wi+ Wog) | (31)
Wed

Again the term (W, + Wi,) and Wy must have different signs for there to be a node.

A line node in the distortion field may be found when there is no cubic distortion. One
simple example of aline node is the case of quadratic distortion 1. Additionally, by adding
an equal, but opposite, amount of quadratic distortion | to quadratic distortion I, (in effect
Wog =-Wgqy and iy =14, ) aline node will be created. A line node may also be found by
adding complementary amounts of magnification and anamorphism. It is also possible to get
aline node and a point node using a combination of quadratic distortion 11 and magnification.

Table 6. Some distortion plots showing line and circular nodes. The surface maps represent the magnitude of the
distortion. Inthe vector plots, the vectors represent both the magnitude and direction of the mapping distortion. The
shading represents the magnitude of the distortion. Darker shades have less distortion. All i vectors used in creating

these graphs are pointing to theright.

a) Circular distortion node

b) Circular distortion node
with on-axis node

¢) Line distortion node
with on-axis node

Wi+ Wma=-1, Wy=1

Wi + Wia = -0.75; Wy = 1
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5. Summary

This paper adds to the theory of non-axially symmetric systems. Specificaly, we extended
the plane symmetric vector aberration function to determine the aberration fields for a
combination of plane symmetric systems that do not necessarily share the same orientation for
their respective planes of symmetry. Noteworthy is that the system combination is carried out
by rotations about the optical axis ray of each system component. This paper provides
mathematical expressions for the resulting aberration fields: spherical aberration, coma,
astigmatism, defocus, and distortion. To help the conceptual understanding of the aberrations
we defined and plotted the individual aberration terms that contribute to each field. In
addition, the paper furthers the concept of field nodes by using the equations for the aberration
fields to calculate and illustrate the locations of the field nodes, which may be point nodes,
line nodes, or circle nodes depending on the aberration field. Although this theory is
applicable only to the range of asymmetric systems that can be considered plane symmetric, it
is in principle more general than the previous theories that apply only to axially symmetric
System components.

Appendix A

The anamorphic distortion and astigmatism terms in Eq. (4) can each be split in to two terms.
For the case of anamorphic distortion, the split terms change the reference to an average
magnification. For the case of astigmatism, the split terms change the reference to the medial
astigmatic surface.

1. Anamorphism
Anamorphic distortion is given by:

> Waoyy; (i - H)GTj - 5) - (32)
J

This equation can be split into:

ZWllOlli (rj 'H)(Tj P) :Z(%Wnonj (F' '/3)+%W11011jrj2H* '/3)
J i

=Wy (H - B )+ W,i2H" 5. (33)

The first term in Eq. (33) represents a magnification change and the second term represents a
mapping change in two orthogonal directions. It is the second term that is used in Table 3.
Thus in Table 3 anamorphism is described with respect to the average magnification rather
than as the usual anamorphic, one-directional mapping stretch. This is shown graphically in
Fig. 5.
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Fig. 5. Anamorphism can be described as an average magnification (center figure) plus an
anamorphic term (figure on the right).
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2. Astigmatism

For the case of agtigmatism, each of thetermsin Eq. (4) related to the field of astigmatism can
be gsplit into two aberration components. For example, the term that describes linear
astigmatism is split into:

> Wiy (- B)(H - ) =Wiaia - H )5 - 5)+ WhaiiaH - 57 (34
]

The first term of the split Wi, (i, -H )3 5) has the same functional form as field tilt. This
locates the medial astigmatic surface on atilted plane. In Table 2, the field of astigmatism is
described from the medial astigmatic surface by the second term of the split Wi H - 5.

Figure 6 shows the components of the field of astigmatism, constant, linear and quadratic
astigmatism, and their relation to the image plane as expressed in Eqg. (4). The surfaces shown
are the locus of the astigmatic focal lines. The medial surface is shown in blue online. In
contrast, Fig. 7 shows the astigmatic surfaces with respect to the medial surface as
mathematically represented in Table 2 and graphically shown in Table 4. This representation
is used by Thompson [3,4].

Line Image Surface
Medial Surface

e — Image Plane
>/

Linear Astigmatism

Line Image Surface

Medial Surface = - 77—  Medial Surface

NN W/
Image Plane & [ ——%% —— | Image Plane &
Line Image Surface Sagittal Surface

Constant Astigmastim Quadratic Astigmastim

Fig. 6. Astigmatic surfaces and their relationship according to the astigmatism termsin Eq. (4).
Defocus from the image plane is in the AZ direction. (Color online: The media surface is
shown in blue)

The surfaces in Figs. 6 and 7 are the locus of the astigmatic line images. These surfaces
are called sagittal and tangential astigmatic surfaces for the case of quadratic astigmatism.
However because the orientation of the line images in linear astigmatism depart from the
radial symmetry of quadratic astigmatism, the terms sagittal and tangential are not quite
appropriate for describing the line images of linear astigmatism. Instead we will refer to them
with the more general term — line image astigmatic surfaces [4]. As shown in Fig. 7, for the
case of linear astigmatism the line image astigmatic surfaces are along a cone, and astigmatic
lines with the same orientation are located along a line. For example, note the same
orientation of the astigmatic lines along the dashed red or green lines in Fig. 7 for linear
astigmatism.
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Tangential Surface

<
Image Plane &

Medial Surface
<
i
QLine Image Surface

Constant Astigmatism

Image Plane &
Medial Surface

Sagittal Surface
Quadratic Astigmatism

Fig. 7. Location and orientation of the astigmatic surfaces for the linear, constant, and quadratic
astigmatism with respect to the medial surface and as mathematically represented in Table 2.
Defocus from the medial surface is in the AZ direction. The dashed lines in the linear
astigmatism figure highlight the locations of the sagittal and tangential foci. (Color online: The
medial surfaceisblue. The tangential foci arered. The sagittal foci are green.)

3. Transverseray aberrations

The transverse ray aberration vector £ was used to make some of the figures in this paper.
Table 7 provides the transverse ray aberrations derived from the standard relationship,

g = %va(ﬁ 5) (35)

where n isthe index of refraction and U’ isthe margina ray slope in image space.
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Table 7. Transverse ray aberrations

Eiii%rct)}con nu-é iw? g + (W, +VAVm)|:|ﬁ+1NaiAa2|:|l+ N
WQC" (H -H qdi +qu|| (iqdll -H )H +ch (H -H )H
Fidld of |y = oy + W +Wy i H oW i H )+ +wi JH - H
RGOl | = 2l Wl +Weubi 5]
pdol | e =W (-l +2li)p}+Wel(6- p)H +2H - )o)
F|e|d Of nu'g — 4\N F Y
Spherical (- P)p
Aberration

The following vector identities were used:

V(@ p)=a (36)
V(p-p)=2p (37)

v(a- 5?)=2ap (39)

V(@ p)p-p)=(p-pla+2@-p)p (39)
and V(p-p)* =4(p-p)p (40)

where 4 isany vector (i,H,i ?H", etc) that does not depend on 5.
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