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Error Compensation Software to Remove the Low-Frequency Error of
Aluminum Freeform Mirror for an Infrared Off-Axis Telescope
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We present Error Compensation Software (ECS) which uses a decic polynomial model and three-dimensional surface

measurement data for the fabrication of high precision freeform mirrors. ECS is designed based on a graphic user interface

that includes an error calculation mechanism and surface distribution maps, and it accepts the Ultrahigh Accurate 3D

Profilometer (UA3P) measurement data of the fabricated mirror surface. It exports surface coefficients and tool paths for the

Single Point Diamond Turning (SPDT) machine which allows engineers to utilize the software during the compensation

process. The ECS is based on Visual C++ and runs on the Windows operating system. The error compensation process

with ECS has been applied to the 90 mm diameter aluminum freeform mirrors for usage in view infrared satellites, and the

root mean square and peak-to-valley surface errors were reduced from 1.52 to 0.11 μm, and from 7.05 to 1.99 μm,

respectively, satisfying the requirement of the infrared camera.
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1. Introduction

High resolution imaging systems require complex surface shapes

of optical components. Freeform surfaces have become popular in

recent years thanks to the technological development in optical

component fabrication. They are widely applied to various industries

such as mobile phones, digital cameras, laser tracking systems, and

illumination systems and are also used for scientific researches as a

high-end optical system.1-3 Linear Astigmatism Free (LAF) confocal

off-axis systems are one of the representative optical systems that use

aluminum freeform mirrors.4 It has been designed for satellite

cameras and other wide field of view telescopes.5,6

Traditionally, the aspheric mirrors have been fabricated using

grinding and fly cutting techniques that can provide high-accuracy

surfaces. However, these methods are inappropriate for fabricating

freeform surfaces because of the asymmetrical shape of the

mirror.7 One of the common methods for fabricating the freeform

mirror is to use ultra-high precision diamond turning technology

with slow slide servo (SSS) techniques.7,8 In this method,

machining errors can occur due to a combination of various

conditions such as geometric errors, kinematic errors, temperature

fluctuations, etc,9,10 which implies that an appropriate way of the
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compensation process is required.

The error compensation process reduces the low-frequency error

(LFE) that seriously degrades optical performance.11 Reproducibility

in both machining and measurement is a critical factor for the high

precision compensation process. On-machine measurement is a

technique that fabricates and measures the optical surface without

detaching the specimen from a spindle, so the error compensation

process can be effectively performed. There have been recent

researches of on-machine measurements in ultra-precision

diamond turning. Chen12 proposed a compensation approach of an

aspheric surface by calculating the surface profile error data using

a contact probe in the on-machine measurement. This system has

equal measuring performance compared with commercially

available profilometers. However, this method uses the contact on-

machine measurement method with a probe which can damage the

fabricated optical surface. Zou13 presented a non-contact on-

machine measurement using the chromatic confocal sensing

method, which is capable of reconstructing the surface flat,

spherical, and aspheric surfaces. This system shows the overall

measurement uncertainty of 83.77 nm in standard deviation. Li14

developed an integrated system for interferometric on-machine

surface measurement. The system configuration and calibration

scheme are described, and various scanning strategies are used for

consistent measuring performance. In previous reviews, the most

challenging part of on-machine measurement is calibration of

measurement system to improve the measuring accuracy. The

measurement calibration is required because of the vibration from

the machining device during the machining process. It has also

limitations to using various measuring devices, such as 3D optical

profilometer and other interferometers to measure surface figure

and roughness. Off-machine measurement requires a precise

alignment of the specimen for high reproducibility during

machining and measurement for the error compensation process.

In this case, well-made reference blocks or optomechanical

structures are normally used.15,16 The recent study shows that

reproducibility can be improved when using a jig on the specimen

and the measuring instrument.17,18

In this paper, we introduce the error compensation method and

the Error Compensation Software (ECS) for fabricating an

aluminum freeform mirror with single point diamond turning

(SPDT) machining. We have tested the ECS using a freeform

aluminum mirror that is designed for the confocal off-axis

system.19-21 Section 2 describes the error compensation process for

high precision freeform mirror fabrications using SPDT. Software

architecture and graphical user interface (GUI) of ECS are

introduced in Section 3. Section 4 explores the application of ECS

to the freeform mirror of the confocal off-axis system. We

summarize and discuss the development and application of ECS in

Section 5.

2. Error Compensation Process

In the error compensation algorithm, we iterate the fabrication

and measurement of a spaceman to reduce the LFE of the

fabricated freeform surface. It follows the process described in Fig.

1. This error compensation algorithm has an advantage as it can be

applied to the three-dimensional measurement data without

distinction of coaxial and axial asymmetry optics.

The first step of the compensation process is to get a surface

model of the mirror. The surface of the freeform mirrors is

designed to the decic polynomial with 66 coefficients which is

expressed as,

Z(x,y) = a0 + a1x + a2y + a3x
2 + a4xy + a5y

2 + a6x
3 +

a7x
2y + a8xy2 + a9y

3 + ... + a65y
10 (1)

where ai is designed polynomial coefficients for freeform surfaces.

A rough cutting using CNC and MC machining is performed

within 5-10 μm root mean square (RMS) surface figure error

before fabricating the surface with SPDT. The Nanotech 450 UPL

(Moore Nanotechnology Systems, LLC., USA) is selected for

ultra-precision machining (Fig. 2), which offers the 5-axes SPDT

machining with SSS technology.22 A workpiece is directly attached

to a vacuum chuck mounted on a work spindle. As the spindle

rotates on the c-axis and its holder oscillates on the x-axis, a

diamond tool oscillates on the z-axis in a sine wave type motion to

fabricate the surface.

Fig. 1 The flow chart of error compensation algorithm for high-

precision aluminum freeform mirror fabrications
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The fabricated surface error is measured using the Ultrahigh

Accurate 3D Profilometer-5 (UA3P-5, Panasonic), which has the

measuring accuracy of 0.01-0.05 μm under 30 degrees on surface

angularity and a measurable range is 200 × 200 × 45 mm.23 UA3P-

5 has an atomic force probe that can approach by 0.01 μm to the

specimen, which measures the surface without any damages. A

three-dimensional surface measurement data is composed of x-, y-,

z-axes, and zd (z Deviation).

To ensure the reproducibility of the compensation process, both

on- and off-machine measurements were used. When positioning a

specimen for SPDT machining, the commercial self-indicator of

Nanotech 450 UPL was used to precisely align the concentricity

and angle of the specimen. A reference structure and a fixture were

designed for off-machine measurement (Fig. 3). The backside of

the mirror has a jig structure that provides references to the x- and

y-axes. The fixture is mounted on the measurement instrument and

contains two references used to align the mirror. The measurement

proceeds after mounting the mirror on the fixture along the

reference direction.

After initial surface fabrication and measurement, we decide

whether additional error compensation is needed or not. If the

surface errors are not satisfied their requirements, the

compensation process is delivered. The compensation surface is

obtained by the subtraction of an error from the design surface,

whose error is given by the deviation between the design and

measurement surfaces. Since there is a limitation to measure the

three-dimensional coordinates over the whole surface, the grid date

of the measured surface (Zm) is precisely fitted using a non-linear

fitting algorithm,

Zm(x,y) = b0 + b1x + b2y + b3x
2 + b4xy + b5y

2 + b6x
3 +

b7x
2y + b8xy2 + b9y

3 + ... + b65y
10 (2)

where bi is measured polynomial coefficients. Finally, the error sur-

face (Ze) and the compensation surface (Zc) is calculated by,

Z  Zm = Ze (3)

Zc(x,y) = Z  Ze (4)

Zc(x,y) = c0 + c1x + c2y + c3x
2 + c4xy + c5y

2 + c6x
3 +

c7x
2y + c8xy2 + c9y

3 + ... + c65y
10 (5)

where ci is polynomial coefficients for compensation surface.

The toolpath for SPDT machining consists of c-, x-, and z-axis

coordinates. The new toolpath from the compensation surface is

calculated as following steps,

C = 0o + Cincrement (clockwise)

or C = 180o
 Cincrement (counterclockwise) (6)

(x,y) = (rcosθ, rsinθ) (7)

where C is rotation angle of work spindle in degree, which the ini-

tial angle depends on the rotation direction (Eq. (6)). Cincrement  rep-

resents angle increment of work spindle. In the Eq. (7), θ [Radian] is

derived from the unit conversion of C [Degree], and r  is given by,

r = roptics  (xincrement × Cincrement × N ÷ 360o) (8)

where xincrement is increment of x coordinate, roptics is radius of the

spaceman, and N is the cumulative number of the Cincrement during

the rotation cycle of work spindle. From this, the z coordinate of the

toolpath is calculated by the compensation surface Eq. (5). The cut-

ting depth is adjusted by adding the offset from Zc.

Fig. 2 Nanotech 450 UPL (Left) and SPDT machining of an aluminum

mirror (Right)

Fig. 3 Concept design of a mirror (a) and measurement jig (b) for

off-machine measurement
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3. Error Compensation Software (ECS)

The customized error compensation software is required to

effectively handle and calculate data from the algorithm described

in Section 2. The ECS is designed with integration software based

on a GUI that offers convenient management of the produced data.

The ECS is written in Visual C++ and runs on the Windows

operating system.

3.1 Software Architecture

The software architecture of the ECS is described in Fig. 4. In

this Fig. 4, the yellow boxes are functions connected to the button

components on the user interface. An engineer directly controls

them for running actions such as loading the measurement data,

making a toolpath, etc.

The red box is a function for creating the two-dimensional

surface distribution plots. This function has two sub-functions.

(1) Generating the designed surface using Eq. (1). In this case,

66 coefficients of the decic polynomial function are input

parameters. 

(2) Making a surface distribution of a fabricated mirror. It is

required to use the measurement dataset from UA3P. The number

of sampling points of the fabricated surface depends on the

measurement option in UA3P, which generally obtains > 100,000

samples.

The blue and green boxes represent the outputs and global

variables, respectively. The gray box sets parameters that are

inputted by an engineer. It is used for plotting a surface distribution

and generating a toolpath. The toolpath is generated based on the

calculation of the compensated coefficient described in Section 2. 

The ECS applies the Levenberg-Marquardt fitting algorithm,

which is a standard nonlinear least-squares routine,24 to fit the

measured surface. The fitting performance with three sample

mirrors showed the fitting errors on average 0.95 ± 0.30 μm peak

to valley (P-V) and 0.06 ± 0.04 μm RMS.

The toolpath consists of a dataset including the c-axis of rotating

angle in degree, x- and z-axes in millimeter. These are adjusted by

input parameters: diameter of the mirror, the increment for x-axis,

offset for z-axis, a step angle, and a rotational direction for the

spindle.

The log data is saved on the path specified by the user and

automatically recorded the messages about the status of the current

action as a text file while the software runs.

3.2 GUI

We designed the GUI of the ECS so that users can intuitively

control the software (Fig. 5). The GUI of the ECS is based on the

Microsoft Foundation Class Library (MFC). It allows easy

modification when a user requires a new feature or interface. An

engineer can easily take the data file by clicking the buttons and

loading the text file that includes 66 coefficients of the designed

surface or measurement dataset from UA3P via the pop-up dialog.

A status indicator shows the messages about the working status,

and it also records a log file. The progress bar indicates the

Fig. 4 The software architecture of ECS shows the data flow between the functions and parameters. The yellow and red boxes represent the

main functions. The blue and green boxes indicate the outputs and global variables respectively (Color online)
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progress of actions such as loading a measurement dataset, making

a toolpath, etc. The designed and measured surface distributions

are displayed side-by-side under the control panel.

4. Freeform Mirror Fabrication Using ECS

We have tested the performance of the ECS with an aluminum

freeform mirror of 90 mm in diameter. It is made of Al6061-T6

aluminum alloy. The SPDT machining condition is shown in Table

1. The compensation criterion is set to P-V ≤ 2.0 μm and RMS ≤

0.3 μm. The SPDT process is sensitive to temperature changes of

the laboratory, so we precisely controlled the room temperature to

minimize the thermal variation of the specimen.

After the SPDT machining, we have measured the surface using

UA3P-5 with the measurement jig as shown in Figs. 3 and 6. The

measured surface is generated by the ECS (Fig. 5). It used the

coordinate samples of 102,525, whose fitting errors are 0.85 μm P-

V and 0.1 μm RMS. As shown in Fig. 7, the P-V and RMS values

for the LFE of the mirror before the error compensation process are

7.05 and 1.52 μm. The compensation process is performed with the

calculated coefficients from the ECS and in the same machining

conditions. After the compensation process, the LFE is reduced to

1.99 and 0.11 μm for P-V and RMS values, respectively.

Fig. 5 The ECS provides an intuitive and easy-to-use user interface. It allows an engineer to easily produce the data file

Fig. 6 Surface measurement of a freeform mirror using UA3P

Table 1 Machining conditions for the ultra-precision machining of

the aluminum freeform mirror using Nanotech 450 UPL

Parameters Cutting condition

Material Al6061-T6

RPM [rev/min] 120

Feed [μm /rev] 10

Nose radius [mm] 0.3

Depth of cut [μm] 2

Cutting fluid Mist

Number of points 1,800,000
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5. Summary and Discussion

The high LFE is a critical problem to freeform mirrors, which

contains low order aberrations, e.g., third-order coma and third-

order astigmatism, so it significantly degrades optical performance.

We have designed the error compensation algorithm to reduce

LFE. This algorithm has the advantage to fabricate high accuracy

freeform surfaces as it is capable of the three-dimensional

measurement data without distinction of coaxial and axial

asymmetry optics. The reproducibility of machining and

measurement can be realized by precise alignment using the jig

structure, fixture, and the commercial indicator of SPDT machine

without complex hardware systems. Based on the algorithm, we

have developed the ECS, which is designed with the user-friendly

interface for engineers and can make the dataset for the

compensation process. The ECS includes functions for plotting the

two-dimensional surface distribution, calculating a compensated

model, and making a toolpath for SPDT machining. Its GUI offers

an intuitive control interface that allows engineers to manage the

measured data using UA3P during the compensation process. We

have tested the performance of the ECS with the aluminum

freeform mirror of 90 mm in diameter (Fig. 8). The result shows

the P-V and RMS values of the mirror reduced from 7.05 to

1.99 μm and from 1.52 to 0.11 μm respectively. Based on these

results, we expect the ECS can improve the engineers’ convenience

and productivity in the high precision aluminum freeform mirror

fabrication.
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