Effects of birefringence on Fizeau interferometry
that uses a polarization phase-shifting technique
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Interferometers that use different states of polarization for the reference and the test beams can modulate
the relative phase shift by using polarization optics in the imaging system. Thus the interferometer can
capture simultaneous images that have a fixed phase shift, which can be used for phase-shifting inter-
ferometry. As all measurements are made simultaneously, the interferometer is not sensitive to vibra-
tion. Fizeau interferometers of this type have an advantage compared with Twyman—Green-type systems
because they are common-path interferometers. However, a polarization Fizeau interferometer is not
strictly common path when both wavefronts are transmitted by an optic that suffers from birefringence.
The two polarized beams see different phases owing to birefringence; as a result, an error can be
introduced in the measurement. We study the effect of birefringence on measurement accuracy when
different polarization techniques are used in Fizeau interferometers. We demonstrate that measurement
error is reduced dramatically and can be eliminated if the reference and test beams are circularly

polarized rather than linearly polarized. © 2005 Optical Society of America
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1. Introduction

In a common-path interferometer, e.g., a Fizeau in-
terferometer, both the reference and the test beams
go through the same optics up to the reference sur-
face; therefore, any defect in the common path affects
the phases of reference and test beams equally and
has no effect on the measurement accuracy.! How-
ever, when the reference and test beams have differ-
ent polarization states, if a component in the common
path has residual birefringence, the reference and
test beams will see different phases and an error will
be introduced in the measurement. In this case the
interferometer is no longer strictly common path,
though physically it still is. There now exist commer-
cial phase-shifting Fizeau interferometers that use
this polarization technique to take multiple frames
simultaneously to freeze vibration.23 Birefringence is
a concern because it is always present, especially for
big and thick optics. For example, Schott Glass spec-
ifies the residual birefringence of specially annealed
glass at <6 nm/cm.4 If a test plate is 10 cm thick, the
birefringence is ~60 nm, which is significant if the

The authors are with the College of Optical Sciences, the Uni-
versity of Arizona, 1630 East University Boulevard, Tucson, Ari-
zona 85721. C. Zhao’s e-mail address is czhao@optics.arizona.edu.

Received 13 May 2005; accepted 21 July 2005.

0003-6935/05/357548-06$15.00/0

© 2005 Optical Society of America

7548 APPLIED OPTICS / Vol. 44, No. 35 / 10 December 2005

120.3180, 260.5430, 260.1440.

required measurement accuracy is high. But, by us-
ing circularly polarized light instead of linearly po-
larized light, one can dramatically reduce and even
eliminate the measurement error caused by the re-
sidual birefringence. In Section 2 we give the maxi-
mum measurement error when the reference and test
beams are linearly polarized. In Section 3, first we set
up a model with which to study the effect of birefrin-
gence when circularly polarized beams are used for
the reference and test beams, and then we show an-
alytically that the combined beam before phase shift-
ing is elliptically polarized rather than linearly
polarized. In Subsection 3.B we study the beam in-
tensities after a general elliptically polarized beam
passes the linear polarizer. We show that the ob-
served intensity is sinusoidal, but a phase retarda-
tion is introduced and fringe contrast is reduced. We
use this result in Subsection 3.C to analyze the phase
measurement error that is due to birefringence. We
present the simulation result in Subsection 3.D.

2. Linear Polarization

To analyze the effect of birefringence we assume a
Fizeau interferometer as shown in Fig. 1. As in all
Fizeau interferometers, the reference surface is the
last surface in the system, so all the transmissive
optics are common path. If some optics have residual
birefringence, we model the combined birefringence
as a wave plate whose fast axis and retardation vary
from point to point in the pupil. The light reflected
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Fig. 1. Simultaneous phase-shifting polarization Fizeau inter-
ferometer. Ref. Surf, Test Surf, reference and test surfaces; R, T,
reference and test beams, respectively.

from the reference surface creates the reference
wavefront, and light transmitted through this sur-
face and then reflected from the surface under test
creates the test wavefront. The interference between
the two is used to determine the error in the surface
under test. Phase-shift interferometry is convention-
ally performed by moving the reference surface to
cause a phase shift and capturing successive inter-
ferograms. Recently Fizeau interferometers that si-
multaneously capture all the different phase shifts
were developed. These systems are configured such
that the reference wavefront and the test wavefront
have orthogonal polarization states. Through clever
use of geometry or coherence, the system can be con-
figured such that only the desired polarization states
are measured.

If the reference and the test beams are linearly
polarized, e.g., if the reference beam is x polarized
and the test beam is y polarized, and if the residual
birefringence is ¢ (in radians) and its fast axis is
along x, then the test beam sees an additional phase
2¢ that is due to this birefringence. That additional
phase is mistakenly attributed to the surface figure
error:

¢
Smax - %7\ (1)

This would be the maximum measurement error
caused by the residual birefringence in the common
path of the reference and the test beams.

3. Circular Polarization

When the reference and the test beams are circularly
polarized, a linear polarizer can be used as the phase
shifter, as shown in Fig. 2. Rotation of the linear
polarizer shifts the relative phase between the two
polarizations.5 4D Technologies uses the same prin-
ciple but a pixilated mask to achieve simultaneous
phase shifting.3
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Fig. 2. Phase-shifting interferometer with circularly polarized
reference and test beams uses a linear polarizer as the phase
shifter. Tran, transmission; OPD, optical path difference.

A. Combined Beam before the Phase Shifter

If, for example, the test beam is right-hand circular
and the reference beam is left-hand circular, there
always exists a coordinate system in which the ref-
erence and test beams are in phase. We define this
coordinate system as the global coordinate system
XY, (see Fig. 3). In this coordinate system, the
Jones vectors® of the test beam (denoted T;) and of
the reference beam (denoted R) are

1 1
TG:<_Z), RG:(I/)‘ (2)

As stated in Section 2, the residual birefringence is
modeled as a wave plate. Assume that its retardation
is ¢ (angle) and that its fast axis makes angle o with
the global X, axis. We choose its fast axis as the local
x axis, denoted the X axis. In the local coordinates

v A Yo
X
along the fast axis
Qa of the wave plate
:XG
Reference —_
bea Test beam

Fig. 3. Illustration of the definitions of the global coordinate sys-
tem and the wave plate’s local coordinate system. XY is the
global coordinate system, in which the incident reference and test
beams are in phase. X;~Y, is the wave plate local coordinate
system with the fast axis along the X, direction. The test and
reference beams are circularly polarized and in phase in the global
coordinate system. They have equal intensity (exaggerated in the
figure).
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X~Y, (Fig. 3), the double-pass Jones matrix of the
wave plate is

B:=[0 expize| ®)

In the wave plate’s local coordinate system, the
reference and the test beams see a phase shift:

Tr= (ii)exp(—ia), Ry= (il)exp(ia). 4)

After the light is reflected from the reference and
the test surfaces and passes the wave plate a second
time, the reference and test beams become, respec-
tively,

) 1
Ty = ByTr exp(i2y) = [—i eXp(iZL’p)}eXp[i@‘Y —a)],
(5a)

, 1 |
R =Bty <[ ooy et (5b)

where v is the single-pass phase difference between
the reference and test beams caused by the physical
separation between reference and test surfaces along
a ray.

The combined beam is

Ry + Ty = { exp[i(2y — )]+ exp(ia) }

i exp[i(2d + a)] — i exp[i(2d + 2y — a)]
) 2 cos(y — )
- exp(w)[Q sin(y — a)exp(i2d>)]' 6)

So, when there is no birefringence, i.e., when ¢
= 0, the combined beam is linearly polarized with
the electrical field vector oscillating along a direction
that makes an angle y—a with the wave plate’s local
Xy axis and angle y with the global X;; axis. When the
residual birefringence is nonzero, the combined beam
is elliptically polarized with phase difference 2¢ be-
tween the E fields in the Y, and X, directions (see
Fig. 4).

B. Intensity after an Elliptically Polarized Beam Passes
the Phase Shifter

The reference and test beams both pass a linear polarizer
before reaching the CCD. The polarizer combines the
reference and test beams to obtain interference. It also
serves as a phase shifter: When it rotates an angle of w,
the phase difference between the reference and the
test beams will increase by 2w.5 The interferometer
can make simultaneous measurements with different
phase shifts by creating multiple images of the pupil
and viewing them through polarizers set at different
angles.3

When a general elliptically polarized beam passes
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Fig. 4. Tlustration of the combined beam’s polarization. The
dashed—dotted line illustrates the ideal linearly polarized beam
when no birefringence exists; the solid ellipsis illustrates the el-
liptically polarized beam when birefringence exists.

through a linear polarizer, the transmitted beam’s
intensity is a function of the incident beam’s param-
eters and the angle of the linear polarizer’s transmis-
sion axis.

The Jones vector for general elliptically polarized
light is

E, A,
E= (E): [Ay exp(iS)]' (7)

The electrical field vector at any point forms an ellip-
sis described by?

[f;j? " (2)2 B Z(it)(fj)cos(ﬁ) =sin’(3). (8)

Define an angle 6 such that
tan(0) =A,/A,. 9)

Then the axis of the ellipsis forms an angle {s with the
x axis, as shown in Fig. 5, where

tan(2V) = tan(26)cos(d). (10)

Assume that the elliptically polarized beam passes
through a linear polarizer whose transmission axis
makes an angle o with the x axis. The Jones matrix
for the polarizer is

( cos? w

€oS w Sin w
" \cos w sin

sin?

After the linear polarizer, the transmitted E field is

p— Ax
Etrans - P|:Ay eXp(lB):|

cos ®
=[A,cosw+A, sinw exp(iS)](

). (11)

sin o
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Fig. 5. Illustration of definitions of the angles 6 and ¥ associated
with elliptically polarized light. Also shown is a linear polarizer
with a transmission axis that forms angle o with the x axis.

The intensity of the beam is

I=|Epans|? = 1/2(A2 + A7) + 1/2[A* +24A 0
X c0s(28) + A,*]"? cos(2w — 2V), (12)

where again tan(2W) = tan(26) cos(d).

Equation (12) demonstrates that we can measure
¥, which is a characteristic of the incident ellipti-
cally polarized beam, by phase-shifting interferom-
etry with a linear polarizer as a phase shifter. When
the incident beam is linearly polarized, i.e., when
d = 0, then ¥ = 6. When the beam is elliptically
polarized compared to the linear polarization case,
the beam intensity as a function of w sees a phase
shift:

24 =2(0 — V). (13)

From Eq. (12) we also obtain the fringe contrast

[A*+24,°A) cos(28) + A, *]"*
€= AZTA) -4y
x y

With the definition of 6, the fringe contrast can be
rewritten as

C =[1 - sin*(20)sin® §]">. (15)
Figure 6 plots the transmitted beam intensity as a

function of w for a linearly polarized beam and an
elliptically polarized beam.

C. Analysis

In Subsection 3.A we showed that, when birefrin-
gence exists, the combined beam from reference and
test surfaces is elliptically polarized [Eq. (6)]. In Sub-
section 3.B we showed that we still measure a phase
by using phase-shifting interferometry but with an
error [Egs. (12) and (13)]. The error depends on the

0 150 300 ®
Fig. 6. Transmitted light intensity as a function of the linear
polarizer’s rotation angle after the wave plate converts circular to
linear polarization. Dashed curve, no error and linearly polarized
light. Solid curve, birefringence has caused the light to be ellipti-
cally polarized. Note that the intensity has a phase shift and less
contrast when the incident beam is elliptically polarized than
when it is linearly polarized.

characteristic of the elliptically polarized beam. From
Eqgs. (6), (10), and (13) we get

2 tan[2(y — ) ]sin® ¢
1+ tan’[2(y — o) ]cos 24
(16)

tan(2A) = tan(20 — 2¥) =

which indicates that surface measurement error A is
a function of retardation ¢, birefringence angle «, and
actual phase vy. Because this error is a function of
phase v, it will vary when this phase is changed by
making slight adjustments to the system.

Assume that

then the maximum phase measurement error is

sin? ¢
tan(2A,.,) = ————. 7
ycos 2¢b
For a small ¢ approximation,
200 = b7 (18)

The maximum surface figure measurement error is
then

Amax d)z
6max_ 9 }\NE ’ (19)

which indicates that the maximum measurement er-
ror has a quadratic dependence on the amount of
birefringence.

For comparison, in Fig. 7 we plot the maximum
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Fig. 7. Maximum surface measurement error versus birefrin-
gence for both linear and circular polarization.
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Fig. 8. Simulated Fizeau measurements for a system with bire-
fringence in the common part of the system. (a) Birefringence map.
The fast-axis angle has a linear distribution along the y axis from
0° to 90° and the retardation has a linear distribution along the x
axis from 0 to 60 nm. (b) Results of simulation for an ideal system
with 25 nm rms surface irregularity. (c) Results for simulated
phase-shift interferometry for 60 nm birefringence and the spatial
distribution shown in (a). We calculated the measurement error by
subtracting the ideal surface error from the simulated measure-
ment. Note the reduction in fringe contrast as well as the phase
error for both cases.
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Fig. 9. Plot of rms surface measurement error as a function of
maximum retardation of the birefringence distribution shown in
Fig. 8(a) for both linear and circular polarization. Circles, results of
theoretical calculation by use of Eq. (16), which agree with the
interferometric simulation results for circular polarization.

surface measurement errors as a function of birefrin-
gence when the reference and test beams are linearly
and circularly polarized, respectively, for a small
amount of residual birefringence.

D. Simulation of Surface Measurements for a System
with Birefringence

The effect of birefringence is illustrated by a set of
simulations. We perform the analysis for an inter-
ferometer that has a 10 cm thick transmissive optic
with a birefringence of 6 nm/cm. A map of the bire-
fringence is shown in Fig. 8(a). We evaluate the per-
formance of this system as it measures a mirror that
has 25 nm rms surface irregularities. We also as-
sume that the measurements are made with five
fringes of tilt owing to alignment. The ideal and mea-
sured surface maps and measurement error maps are
shown in Fig. 8(b). The results verify that the mea-
surement error is significantly smaller for small re-
sidual Dbirefringence when circularly polarized
beams, rather than linearly polarized beams, are
used.

If we maintain the distribution of birefringence and
vary the magnitude of retardation, we expect to see
the measurement error increase as a function of max-
imum retardation. Figure 9 shows the rms measure-
ment error as a function of the maximum retardation
for linear and circular polarization. It is obvious that
measurement error is linear to birefringence when
linearly polarized beams are used. In contrast, the
measurement error is quadratic to birefringence
when circularly polarized beams are used instead.

There is an important distinction between the
forms of the measurement errors for the two cases.
When linear polarization is used, an error is created
that will be proportional to the birefringence and will
be constant for all interferograms. Superimposed is
an error that depends on the alignment and shows up
as ripples in the surface with two times the frequency
of the interferogram fringes. This component of the



error will change as the alignment is adjusted and
thus can be reduced by averaging, but the larger,
fixed component would remain as a real error in the
test. For circular polarization there is no fixed error,
and only the ripple type that depends on the inter-
ferogram alignment. Therefore it is possible to reduce
the effect of the birefringence for the case of circular
polarization by averaging multiple maps with differ-
ent alignments.

4. Summary

Fizeau interferometers can use polarization tech-
niques to create a phase shift between reference and
test beams. If some element in the common path
exhibits residual birefringence, it can limit measure-
ment accuracy. We model the residual birefringence
as a wave plate whose fast-axis orientation and re-
tardation vary from point to point in the pupil. If the
reference and test beams are linearly polarized and
orthogonal, the measurement phase error can be as
large as the amount of birefringence. We studied the
case when the two beams are circularly polarized and
orthogonal, and we derived a set of relations with
which to calculate the measurement error and the
fringe contrast when birefringence is present. For a
small amount of birefringence, we showed that the
error is quadratic to the amount of birefringence. So,
in the case of small birefringence, the measurement

error is significantly smaller if circular polarization
rather than linear polarization is used to differenti-
ate reference and test beams. In addition, this error is
a function of the phase difference between the refer-
ence and the test, so one can further reduce the error
by averaging multiple measurements with slight
phase shifts.
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