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ABSTRACT 
Telescopes with very large diameter or with wide fields require convex secondary mirrors that may be 
many meters in diameter.  The optical surfaces for these mirrors can be manufactured to the accuracy 
limited by the surface metrology.  We have developed metrology systems that are specifically optimized 
for measuring very large convex aspheric surfaces.  Large aperture vibration insensitive sub-aperture 
Fizeau interferometer combined with stitching software give high resolution surface measurements.  The 
global shape is corroborated with a coordinate measuring machine based on the swing arm profilometer. 
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1. INTRODUCTION
Giant telescopes are being developed that require convex aspheric secondary mirrors many meters in diameter. 

Measurement techniques implemented in the last decade have allowed fabrication of secondary mirrors up to 1.7 meter 
in diameter.  Today’s new giant telescopes are considering secondary mirrors up to 4 meters in diameter.  Three of these 
are listed in Table 1.  This paper presents techniques for measuring these large mirrors to the accuracy required by the 
advanced optical telescopes. 

Table 1. Giant telescopes that have proposed to use very large convex secondary mirrors 

Telescope LSST1 TMT2 European-ELT3

Primary mirror diameter 8.4 m 30 m 42 m 
Secondary mirror diameter 3.4 m 3.1 m 6 m 
Secondary mirror radius of curvature 6.79 m 6.2 m 15.5 m 
Secondary mirror conic constant  -0.22 + aspheric terms -1.32 -2.39 
Secondary aspheric departure 17 µm ~900 µm ~1600 µm 

As with all optical surfaces, the control of the shape accuracy is determined primarily by the quality of the 
measurement system.  Mirrors with spherical surfaces may be measured accurately using the spherical symmetry – the 
curvature is the same at all places on the surface.  The measurement of aspheric surfaces is more difficult.  Large 
concave aspheric mirrors can be readily measured with an interferometer and null corrector located near the center of 
curvature of the mirror.4  The concave shape allows the optical system to be small compared to the mirror being 
measured.  Convex aspheric mirrors are more difficult.  

The classic test for convex secondary mirrors is the Hindle test, which requires an auxiliary mirror much larger 
then the mirror being measured.  A variation of this uses a Hindle shell, which is only as large as the mirror being 
measured, but has accuracy that is limited by the transmission quality of the glass.  Both tests are performed over large 
paths and are susceptible to problems from vibrations or air motion.  All of these problems are solved using a Fizeau 
interferometric test5 that uses either an aspheric reference surface or a spherical reference surface with computer 
generated hologram CGH6.  These tests have been highly successful for large secondary mirrors, up to 1.7-m in 
diameter.7

These full aperture tests are limited by the glass substrates used to provide the references.  We propose to measure 
very large secondary mirrors using sub-aperture Fizeau interferometry.  The data can be combined to provide a full 
aperture map.  The low order shape errors can be corroborated with a coordinate measuring machine based on swing arm 
profilometry.  
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This paper discusses the issues for performing sub-aperture Fizeau interferometry and for stitching the data.  We 
also present the design of an optical coordinate measuring machine that uses a swing arm profilometer with optical 
probes.  Examples of systems for measuring the LSST and TMT secondary mirrors are presented. 

2. MEASUREMENTS USING SUB-APERTURE FIZEAU INTERFEROMETRY 
 Fizeau interferometry provides accurate measurements with excellent spatial resolution.  As stated above, it is 
impractical to measure the full aperture with a single test plate.  Sub-apertures can be measured with test plates that are 
much smaller than the mirror being measured.  Data from the sub-apertures can be stitched together to provide the full 
aperture map required to guide fabrication or to qualify the finished surface. 

 We propose to use aspheric Fizeau reference plates that are ~1 m in diameter.  This size allows a balance of test 
efficiency, performance, and cost.  We use an aspheric reference rather than a CGH for two reasons: 

The non-axisymmetric CGH would be difficult to fabricate on the curved reference surface 
The aspheric test allows simultaneous phase shifting which makes the test insensitive to vibration, which relaxes 
requirements for the mechanical systems. 

 The layout for a test of a 1.7-m secondary mirror with a 1-m sub-aperture aspheric Fizeau test plate is shown in 
Figure 1.  The full surface is measured by rotating the secondary mirror under the sub-aperture test plate. 

Figure 1.  Layout of Fizeau test for a 1.7-m convex asphere using a 1-m concave reference. 

Commercial polarization 
simultaneous phase 
shifting interferometer, 
modified to use external 
Fizeau cavity 

Pattern of subapertures measured 
by rotating the secondary mirror to 
12 different angles 

Tilted illumination lens 

1-m Fizeau test plate
Concave reference surface 
6 mm gap 
Convex aspheric surface of secondary mirror 
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2.1 Sensitivity of Fizeau test to errors 
 The Fizeau interferometer uses reflection from the reference surface that is held only a few mm from the surface 
being measured.  The reflection from the reference surface interferes with light reflected from the surface under test, and 
the difference between the two reflected wavefronts is used for the measurement.  Phase shifting interferometry can be 
performed by either pushing the reference plate with piezoelectric transducers or using a simultaneous phase shifting 
interferometer that uses polarization to separate the reflections.  We use the polarization simultaneous phase shifting for 
large Fizeau tests.  The details of this are discussed below. 

 It is important to understand that the Fizeau measurement compares the reference surface with the surface being 
measured.  Other optics, such as the illumination lens, do not contribute directly to the measurement error.  The 
illumination optical system, which consists of the illumination lens, the back (convex) surface of the test plate and the 
test plate glass are used to bring the rays of light so they are nominally normal to the reference surface (and thus the 
convex surface being measured.)  Departure from normal causes only a cosine effect, which is quite weak.  The 
tolerances for the illumination optics and the simulated effects on the system performance are shown in Table 2.  The 
tolerances are very loose, and yet the effect on the measurement accuracy is on 0.6 nm rms! 

Table 2.  Coupling between errors in the illumination system and the resulting errors in the SM surface measurement  
 nominal value Tolerance units mrad rms 
Fizeau Test plate     
TP S2 RoC 1960 20 mm 0.049 
TP thickness 100 3 mm 0.005 
TP S2 irregularity  0.1 mrad 0.050 
     
TP-IL spacing 24 3 mm 0.000 
     
Illumination lens     
IL x tilt 5.74 0.2 deg 0.061 
IL y tilt 0 0.2 deg 0.061 
IL clocking 0 0.5 deg 0.018 
IL dx 0 3 mm 0.029 
IL dy 0 3 mm 0.028 
     
IL thickness 108 3 mm 0.003 
IL S1 RoC 2863 24 mm 0.033 
IL S1 conic -6.48 0.4  0.076 
IL S2 RoC 3476 12 mm 0.121 
S1 irregularity  0.5 mrad 0.250 
S2 irregularity  0.2 mrad 0.100 
     
Design residual    0.087 
     
RSS wavefront slope  mrad rms 0.345 
     
Effect on surface error   nm rms 0.6 

 The primary source of error in the Fizeau test comes from uncertainty in the reference surface.  For an aspheric 
reference, we measure this concave off-axis aspheric surface with accuracy of ~3 nm rms using an interferometer with 
CGH null corrector.  An error budget for the Fizeau measurements is presented in Table 3.  
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Table 3. Error budget for Fizeau test 
Error source nm rms Comment 

Illumination optics 0.6 See Table 2 
Accuracy of aspheric reference surface map 2.9 (Further mitigation using over sampling) 

Measurement errors from CGH 2.5 Phase etched CGH, limitation for correction of 
substrate errors  

CGH Substrate calibration 1.9 0.003  rms (1% duty cycle, 2% etch variation)8

CGH distortion 1.3 0.002  rms (0.03 µm rms pattern distortion, 15 
µm pitch) 

Residual noise, interferometer calibration 1.0  
Residual from interferometer, noise 1.0  Requires careful calibration, averaging  
Distortion from mounting for test 1.0 Measure in situ,

any change is mostly astigmatism 
Mapping of reference surface errors  1.2 6 nm/cm rms slope, 2 mm mapping 
Substrate distortion for mounting in operation 1.0 Measure in situ, use over sampling to mitigate  
Noise from measurement 1.0 Low noise, average multiple maps 
RSS for sub-aperture measurement 3.5  

 The numbers reported above do not contribute directly to the measurement of the secondary mirrors because we 
over sampled by a factor of about 2 as shown in Figure 1.  The noise in the measurements is reduced by 30%.  Also, we 
isolate errors in the reference surface as those that stay fixed with the reference surface.  Nonetheless, we adopt 3 nm rms 
as our budgetary number for the sub-aperture measurement accuracy.  The overall surface accuracy is determined by the 
stitching algorithm, which is discussed below.   

2.2 Simultaneous phase shifting Fizeau test interferometer 

 Phase shifting interferometry PSI is used to obtain high resolution, accurate surface data from the interferograms.  
Tradition PSI uses sequential frames that are measured as the relative phase is shifted, nominally 90° per frame.  This 
method has been very successful, but it suffers from sensitivity to vibrations.  A measurement error occurs if the 
interferogram vibrates so that the frames are not 90° apart.  This is solved using simultaneous phase shifting 
interferometry where the phase shifted frames are taken at the same time.  Commercial Fizeau interferometers that use a 
combination of tilt and polarization for simultaneous phase shifting are now available from 4D Technologies and ESDI.  
Although these machines are made to operate with an attached Fizeau reference, we can modify them to function with 
our reference. 

 The simultaneous phase shifting interferometer uses two beams with orthogonal polarization with some tilt 
difference.  These two are each reflected from the reference surface and from the surface under test.  By setting the 
relative tilts for the optics, one can select the reference and test beam with appropriate orthogonal polarizations.  Then 
the phase shifting is performed using polarization optics to create 3 or 4 interferograms that have 90° relative phase shift 
and can be read out simultaneously.  The wavefront phase is then calculated from the set of interferograms.   

 As long as the physical separation is small, then the effects of imperfect wavefronts due to limitations in the 
illumination optics and the test plate glass do not significantly affect the measurement.  A general analysis for such errors 
is given by Burge9.  Also, the effect of birefringence in the test plate has been shown to have negligible effect for the 
simultaneous phase shifting interferometers as long as circular polarization is used.10

 The use of a commercial vibration insensitive Fizeau interferometer with the remote test plate was demonstrated 
for 1-m aperture measurements.11  This system used the H-1000 instantaneous Fizeau system from ESDI and included an 
off-axis parabola for illumination.  Measurements achieve a noise level of 3 nm rms over the 1-m aperture.  
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Figure 2. Layout of Fizeau test for sub-aperture interferometric measurement of a flat mirror.  Two wavefronts with 
different tilt and polarization are emitted by the interferometer.  The reference and test are aligned so that the reference 
beam with polarization state B coincides with the test wavefront with polarization A.  Polarization optics are then used to 
create multiple images with different relative phase shift between them. 

2.3 Stitching sub-aperture data 

Measurements with ~2 nm accuracy have been performed with a vibration insensitive 1-m aperture Fizeau 
simultaneous phase shift interferometer12 of the type described above.  The second development required for the large 
secondary mirror measurements is the ability to stitch sub-aperture data.  We have developed software for performing 
this analysis using two methods: 

Modal solution13 : We define the measured surface, the reference surface, and the alignment as a number 
of modes.  We use the least squares method to solve for the modes that provide optimal consistency with 
the data.  We use singular value decomposition to define the modes that we consider.  This has the 
advantage of solving for errors in the reference surface as well as the surface being measured.   

Stitching14
,
15 : We maintain the full resolution data and use least squares to solve for the alignment 

degrees of freedom (tip/tilt and piston for a flat, additional terms for the aspheres).  This has the 
advantage of creating a complete map that maintains measurement resolution. 

A 1.6-m mirror was measured using a 1-m sub-aperture vibration insensitive Fizeau system.  Figure 3 shows the 
geometry used for these measurements as well as the reconstructed reference surface figure determined from the modal 
solution.  Figure 4 compares the modal solution of the 1.6-m flat mirror with the solution from stitching.  The difference 
between the two appears only as high order variations that were not included in the modal solution.  

1.6 m test flat

1 m (8) 
subapertures1

         
184 nm PV

42 nm RMS

Reference Flat Surface Estimation by MLE (nm)

Figure 3.  The 1.6-m mirror was measured using 8 sub-aperture measurements with a 1-m Fizeau test plate with 
polarization simultaneous phase shifting.  The modal solution (maximum likelihood estimate) provided the shape of the 
reference surface, shown here as 42 nm rms.  This shape was expected from the support error and from the polishing 
residual. 
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Figure 4.  Sub-aperture data for a 1.6 m mirror that were reduced two different ways, modally where Zernike coefficients 
are optimized to provide consistency with the data, and by direct stitching where the individual maps are used directly, 
with adjustments in tilt and piston.  

3. FIZEAU TEST OF GIANT SECONDARY MIRRORS 

3.1 LSST secondary mirror 
The 3.4-m diameter secondary mirror for LSST can be readily measured with the Fizeau method.  The mirror 

itself is 3.4 meters in diameter, but because of its large central hole, it can easily be measured with a single Fizeau test 
plate.  Since only one test plate is needed, this test can be performed using much of the existing equipment at the 
University of Arizona from the 1.6-m test.  The layout for LSST testing is shown in Figure 5. 

Figure 5.  Layout for LSST secondary mirror test in the Optical Sciences shop at University of Arizona 

Test plate 
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3.2 TMT secondary mirror 
The 3.1-m secondary for the TMT is more interesting.  As this does not have a large central hole, two different 

test plates are required.  We use one meter sub-apertures, located with their centers 45 and 115 cm from the center of the 
secondary mirror as shown in Figure 6.  The convex secondary mirror is highly aspheric, so the Fizeau reference plates 
must be made with matching concave aspheric surfaces.  These can be individually manufactured as off-axis aspheres 
and can be measured from center of curvature using an interferometer with computer generated hologram.  The hologram 
itself can be used for the alignment of the test.16  The aspheric departure for the concave test plates are shown in Figure 
6.

Distribution of sub-aperture measurements 
for SM. There are total 18 measurements 
in two rings. 

Test plate 1.  1-m diameter 
45 cm off center TMT secondary mirror 
191 µm P-V aspheric departure 
(34 µm rms) 

Test plate 2.  1-m diameter 
115 cm off center TMT secondary mirror 
766 µm P-V aspheric departure 
(155 µm rms) 

Figure 6.  Layout and aspheric departure for the test plates for the Fizeau test of the TMT secondary mirror. 

Stitching of TMT interferometry data 
 A complete simulation was performed for the measurement of the TMT secondary mirror using 18 sub-apertures.  
The tip, tilt, piston, and power for the sub-apertures must be fit.  In addition, there are two alignment modes per 
measurement that must be fit – radial motion of the test plate and clocking of the test plate about its local axis.  The 
effects of these degrees of freedom are shown below in Table 4.  In this analysis, the alignment errors for radial position 
and clocking are assumed to be constant for the test – i.e. they have the same value for all measurements.  The tip, tilt, 
piston, and power are assumed to be independent for all 18 sub-aperture measurements.   

Table 4. The apparent wavefront errors when the reference mirrors have alignment errors relative to SM. 
 Radial shift 1mm Clocking 0.05 degree 

Test
plate 1 

Zernike standard 
coefficients  
(rms nm): 
Z4 (power): -173 
Z6 (0  astigmatism): 122 
Z7 (90  coma): 38 

Zernike standard 
coefficients  
(rms nm): 
Z5 (45  astigmatism): -
48
Z8 (0  coma): 15 

Test
plate 2 

Zernike standard 
coefficients  
(rms nm): 
Z4 (power): -407 
Z6 (0  astigmatism): 278 
Z7 (90  coma): 28 

Zernike standard 
coefficients  
(rms nm): 
Z5 (45  astigmatism): -
298
Z8 (0  coma): 36 

TP1

TP2
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 The complete stitching algorithm was developed for TMT and demonstrated using two simulations.  The first 
simulation shows the ability of the stitching to reconstruct a particular figure error.  Synthetic data were created for the 
secondary mirror and random alignment errors were included for the sub-aperture (SA) measurements.  For this case, in 
the absence of noise, the stitching is perfect, as shown in Table 5.  This was repeated for each of the Zernike terms. The 
second simulation was a Monte Carlo type simulation that demonstrates the ability of the algorithm to reject noise. 

Table 5.  Simulation for stitching 18 maps together, including alignment errors, to recreate the secondary mirror surface.
Given SM full aperture 
map:

Input full aperture map: 0.747 m rms (synthetic data) 

Example SA measurements:  
Ref radial shift and clocking: 
Ref1:
0.25mm, 0.025
Ref2:
-0.25mm, -0.025
Random power of 1 m sigma 
added to each SA 
measurements 

SA measurement 1: 
0.460 m rms 

SA measurement 2: 
0.737 m rms 

SA measurement 3: 
0.604 m rms 

Stitching result: reference 
alignment error REMOVED

Stitched map: 0.747 m
rms

Fitted map:  
0.747 m rms 

Residual from Fit: 
0.001 m rms 

 To determine the effect of noise, we stitched data 
together where the data had only noise.  The resulting 
map shows the effect of noise.  The noise was modeled 
with as 3 nm rms surface error with correlation length 
equal to about1/4 the diameter of the 1-m sub-aperture.  
A typical plot of the noise is shown in Figure 7.  The 
noise for each sub-aperture measurement was 
independent.  The surface was then reconstructed from 
the sub-aperture data and evaluated.  An example from 
one of the Monte Carlo trials is shown in Figure 8.  

Figure 7. Typical noise for the 1-m sub-aperture 
measurements of 3 nm rms with correlation length 
about 0.25 meter. 
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 In the simulations, we used 100x100 pixels for each sub-aperture and 300x300 pixels for the full M2 aperture. The 
actual matrix for the full-aperture map is 400x400 pixels. We ran 50 Monte Carlo simulations of stitching sub-aperture 
measurements with 3nm correlated noise. We fitted the stitched maps to the 11 modes (equivalent to 2 Zernike 
astigmatisms, 2 trefoils, 1 focus, 2 quadfoils, 2 comas and 2 pentafoils (see Figure 9) and obtained statistics for the fitted 
coefficients of the modes.  Because the axial alignment of the reference mirrors affects the power measurement of sub-
apertures, there is uncertainty in determining the power of the stitched surface map such that the power is indeterminate.  
The real power in the surface would be measured by controlling the spacing from the test plate to the mirror for one of 
the measurements.  

Stitched map: 8.2nm rms 11-term Zernike fit to stitched map: 
6.4nm rms 

Residual from fit: rms 3nm 

Figure 8. Example for one of the Monte Carlo runs which includes the effect of 3 nm rms noise per measurement. 

Mean error: 4.6 nm rms Modes 1-11: 3.7 nm rms Residual from fit: 2.7 nm rms 

Figure 9. Results of fitting a 50 trial Monte Carlo simulation to TMT SM modes, represented as Zernikes.  Each of the 
18 measurements was simulated to have random misalignment as well as 3 nm rms random error as shown in Figure 7. 

Mode 1: 2.1 nm rms Mode 2: 2.1 nm rms Mode 3: 1.1 nm rms Mode 4: 1.1 nm rms Mode 5:
indeterminate

Mode 6: 0.7 nm rms Mode 7: 0.8 nm rms Mode 8: 0.8 nm rms Mode 9: 0.8 nm rms Mode 10: 0.4 nm rms 
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4. SWING ARM OPTICAL CMM 
 A second test for the secondary mirrors uses a coordinate measuring machine (CMM) called the swing arm 

profilometer17, which utilizes advantageous geometry for measuring the optical surface.  The swing arm profilometer 
uses a displacement probe at the end of an arm to make mechanical measurements of the optical surface.  The geometry 
for this test is shown in Figure 10. This geometry can be used to make scans across the diameter of the surface.  Multiple 
scans can be combined by using data from circumferential scans, made by rotating the substrate under the probe. 

probe and
alignm ent s tages

secondary m irror

center of cu rvature

optical axis

axis  of
rotation

probe trajec tory

rotary
s tage

arm

Figure 10.  The swing arm profilometer measures along arcs on the surface by pivoting an arm about an axis that goes 
through the center of curvature of the mirror being measured.  A probe at the end stays normal to the surface and 
measures only the aspheric departure.  This geometry works equally well for concave and convex measurements, such 
as the measurement of the 1.7-m convex mirror shown here. 

  The University of Arizona has used the swing arm profilometer to provide surface measurements with accuracy 
of ~0.05 µm rms for meter sized convex aspheres without calibrating the bearing. Figure 11 shows a comparison of a 
profilometer measurement with results from a full aperture Fizeau test with CGH.  Since these measurements were made, 
the mechanical probe has been replaced by a non-contact optical probe that provides ~2 nm resolution and higher data 
rates since the arm is swept continuously.  The mechanical probe required the machine to step and settle between sample 
points, taking ~2 seconds per point.  

 Swing Arm Profilometer Data
 Full scan data

  0:03
  7-27-2007

 Magellan f5
 070621a1 - 070621aa

 scan rms: 0.0163
 figure rms: 0.018

 -1  -0.8  -0.6  -0.4  -0.2  0  0.2  0.4  0.6  0.8  1

 Normalized radial position

 -0.10

 -0.08

 -0.06

 -0.04

 -0.02

  0.00

  0.02

  0.04

  0.06

  0.08

  0.10

Su
rfa

ce
fig

ur
e

in
um

Noise in a single scan of 18 nm rms.  This is measured by 
subtracting the average of many scans from a single scan 

Figure 11.  The swing arm profilometer achieves excellent accuracy without even calibrating the air bearing.  The 
comparison between profilometer measurements and interferometry is excellent.  Noise of 18 nm rms for a single scan of 
a 1.7-m convex asphere is shown. 

Fizeau interferometer with CGH 
0 22 µm rms

Swing arm profilometer 
0 21 µm rms
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 The swing arm optical CMM (SOC) was created by adding two significant improvements to the swing arm 
profilometer: 

The touch probe was replaced by an optical probe.  This allows non-contact measurements with a continuously 
scanning arm, allowing much more rapid data collection. 

The part is rotated on a high quality rotation air bearing.  This allows accurate combination of the scans, providing 
full aperture data. 

These improvements, along with some data, are shown in Figure 12.  The machine shows arc scans with 60 nm rms 
repeatable variation that can be calibrated and 30 nm rms non-repeatable errors.  The table scans have random errors of 
30 nm rms. 

SOC measuring 1.5-m convex asphere

Swingarm scans

Repeatable errors 
of 60 nm rms
Non-repeatability 
of 30 nm rms

Table rotation

Random errors of 
30 nm rms

Data from 1.8-m sphere

Figure 12.  The Swing arm Optical CMM is shown here with a 1.5-m convex optic.  Some data from arc scans and table 
scans from a good 1.8-m sphere are also shown. 

 The accuracy of making full surface measurements for the TMT secondary was modeled for the swing arm 
profilometer assuming measurement noise of 0.1 µm rms per point.  A Matlab program was written to process the 
measurement data. The data is fit to low order Zernikes which are close to the M2’s natural modes.  
 A Monte Carlo simulation of the swing arm profilometer was performed assuming 0.1 µm uncertainty at each 
measurement point. With 6 scans (4 radial scans and 2 circumferential scans) and 200 points per scan, the average 
uncertainty in the lowest 11 modes is less than 15 nm.   We also investigated the sensitivity to the number of scans by 
direct simulation.  Figure 13 shows the dependence of the noise as functions of the number of scans/measurement and 
the number of Zernike terms in the fit.  The larger number of scans improves performance in two ways: 

The data density is higher, so the sampling is better. 
More points are measured, so the noise is reduced by averaging. 

 The performance is plotted as functions of the number of modes fit and the number of scans made in Figure 13.  
For the case of measuring all 11 modes, ten scans (8 diameters and 2 circumferential) can determine the surface to 13 nm 
rms.  These numbers are achievable for a system with performance similar to that of the University of Arizona machine.  
This was a custom built machine which could be duplicated.  Clearly the ultimate performance for any machine will 
depend on the quality of the engineering and the components.  
 It is difficult to measure the radius of curvature using the swing arm profilometer.  A misalignment of the arm 
appears as power in the scan.  The radius of curvature corroboration requires a different test.  
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Figure 13.   Monte Carlo analysis of M2 measurements with a swing arm profilometer with 0.1 µm noise per 
measurement point.  Different scan configurations are included here. 

5. CONCLUSION 
 Until recently, the possibility of a giant convex aspheric mirror that extends many meters in diameter was 
unthinkable.  The University of Arizona has developed and implemented metrology methods that are directly scalable to 
such mirrors.  This measurement capability, coupled with the proven techniques of large tool grinding and computer 
controlled polishing enable the University of Arizona to manufacture large convex aspheres as large as 8 meters with 
proven equipment. 
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