
1 
 

ADVANCED TECHNOLOGIES FOR FABRICATION AND TESTING 

OF LARGE FLAT MIRRORS 

 

by 

Julius Eldon Yellowhair 

 

________________________ 

Copyright © Julius E. Yellowhair 2007 

 

 

 

 

A Dissertation Submitted to the Faculty of the 

COLLEGE OF OPTICAL SCIENCES (GRADUATE) 

In Partial Fulfillment of the Requirements 
For the Degree of 

DOCTOR OF PHILOSOPHY 

In the Graduate College 

THE UNIVERSITY OF ARIZONA 

 

 

2007



UMI Number: 3257373

3257373
2007

Copyright 2007  by
Yellowhair, Julius Eldon

UMI Microform
Copyright

All rights reserved. This microform edition is protected against 
    unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road

P.O. Box 1346
     Ann Arbor, MI 48106-1346 

All rights reserved.

 by ProQuest Information and Learning Company. 



2 
 

THE UNIVERISTY OF ARIZONA 

GRADUATE COLLEGE 

 

As members of the Dissertation Committee, we certify that we have read the dissertation 

prepared by      Julius Yellowhair      

entitled        Advanced Technologies for Fabrication and Testing of Large Flat Mirrors  

and recommend that it be accepted as fulfilling the dissertation requirement for the 

Degree of Doctor of Philosophy. 

 

           Date:      04/18/07  
James Burge, Faculty Advisor 

 

           Date:      04/18/07  
Jose Sasian, Member 

 

           Date:      04/18/07  
James Wyant, Member 

 

           Date:     
 

 

           Date:     
 

Final approval and acceptance of this dissertation is contingent upon the candidate’s 
submission of the final copies of the dissertation to the Graduate College. 
 
I hereby certify that I have read this dissertation prepared under my direction and 
recommend that it be accepted as fulfilling the dissertation requirement. 
 

           Date:      05/01/07  
Dissertation Director:  James Burge 



3 
 

STATEMENT BY AUTHOR 
 
 
 This dissertation has been submitted in partial fulfillment of requirements for an 
advanced degree at The University of Arizona and is deposited in the University Library 
to be made available to borrowers under the rules of the Library. 
 
 Brief quotations from this dissertation are allowable without special permission, 
provided that accurate acknowledgement of source is made.  Requests for permission for 
extended quotation from or reproduction of this manuscript in whole or in part may be 
granted by the copyright holder. 
 
 
 
 
     SIGNED:   Julius Eldon Yellowhair  
 

 



4 
 

ACKNOWLEDGEMENTS 

 

 

This work was made possible by a tremendous team effort.  I acknowledge these 

particular individuals – Mr. Norman Schenck who provided the daily extensive polishing 

runs, Dr. Jim Burge who provided the technical expertise and guidance, and Mr. Martin 

Valente who managed the entire project flawlessly and gave me the opportunity to get 

exposed to state of the art optical manufacturing.  Others that have contributed 

tremendously, technically or otherwise, to this work are Robert Crawford, Thomas Peck, 

Dr. Jose Sasian, Dr. Brian Cuerden, Dr. Robert Stone, Dr. Chunyu Zhao, David Hill, 

Scott Benjamin, Marco Favela, Daniel Caywood, and numerous enthusiastic 

undergraduate and graduate students, in particular, Peng Su, Robert Sprowl, and Proteep 

Mallik.  Without this team this dissertation would not have been possible. 

I also thank my committee, Dr. Jim Burge (my advisor), Dr. Jim Wyant, and Dr. 

Jose Sasian, for providing guidance and feedback on my manuscript, and Dr. Matthew 

Novak and Mr. Dae Wook Kim (Dan) for painstakingly reviewing my manuscript and 

providing timely feedback.  I thank my extremely talented and knowledgeable advisor, 

Dr. Burge, once more for bailing me out numerous times on challenging problems 

(personal, academic and technical). 

Lastly I thank my wife, Valencia, who kept my life in balance for the past seven 

years, my mother, and the rest of the Yellowhair family for their tremendous love and 

support during my entire academic career.  With their unbelievable support, failing was 

not an option.  In particular, my mother (not a single day spent in school) is the driving 

force behind my success.  Thank you, Mom! 

  



5 
 

DEDICATION 

 

 

This dissertation is dedicated to my late father, Jimmie, and late brother, Nicholas.  Your 

prayers are finally answered. 

 

  



6 
 

TABLE OF CONTENTS 
 
 
 
 
LIST OF FIGURES ………………………………………………………………… 10 
LIST OF TABLES …………………………………………………………………… 19 
ABSTRACT ………………………………………………………………………… 21 
INTRODUCTION …………………………………………………………………… 23 
 
CHAPTER 1 – INTRODUCTION TO LARGE FLAT MIRROR FABRICATION … 27 
 1.1. Introduction ……………………………………………………………… 27 
 1.2. Current state of the art for flat fabrication ……………………………… 29 
 1.3. Conventional optical testing of large flats ……………………………… 30 
  1.3.1. Fizeau interferometer …………………………………………… 30 
  1.3.2. Ritchey-Common test …………………………………………… 31 
  1.3.3. Skip flat test ……………………………………………………… 33 
 
SECTION I – ADVANCED TESTING TECHNOLOGIES ………………………… 35 
 
CHAPTER 2 – OPTICAL FLATNESS MEASUREMENTS USING ELECTRONIC 

LEVELS ………………………………………………………………………… 37 
 2.1. Introduction ……………………………………………………………… 37 
 2.2. Test concept ……………………………………………………………… 39 
  2.2.1. High precision electronic levels measurement system …………… 39 
  2.2.2. Principles of operation …………………………………………… 41 
  2.2.3. Fit using Zernike polynomials……………………………………… 43 
 2.3. Analysis …………………………………………………………………… 45 
  2.3.1. Sensitivity analysis: sampling for low order Zernike aberrations … 45 
  2.3.2. Error analysis …………………………………………………… 48 
  2.3.3. Other scanning arrangements for uni-axis electronic levels ……… 55 
 2.4. Measurement of a 1.6 meter flat mirror ………………………………… 56 
  2.4.1. Single line scan …………………………………………………… 56 
  2.4.2. Three line scans …………………………………………………… 57 
 2.5. Comparison of the electronic levels and scanning pentaprism test  ……… 59 
 2.6. Implementation with dual axis electronic levels ………………………… 62 
 2.7. Conclusion ……………………………………………………………… 64 
 
CHAPTER 3 – ANALYSIS OF A SCANNING PENTAPRISM SYSTEM FOR 

MEASUREMENTS OF LARGE FLAT MIRRORS ………………………… 66 
 3.1. Introduction ……………………………………………………………… 67 
  3.1.1. Systems with pentaprisms ………………………………………… 68 
 3.2. System design and development ………………………………………… 69 
  3.2.1. Test concept ……………………………………………………… 69 



7 
 

TABLE OF CONTENTS – Continued 
 
  3.2.2. System hardware ………………………………………………… 75 
  3.2.3. System integration ……………………………………………… 79 
  3.2.4. System alignment ………………………………………………… 80 
 3.3. System performance ……………………………………………………… 83 
  3.3.1. Diagonal line scans: scanning mode ……………………………… 83 
  3.3.2. Circumferential scans: staring mode …………………………… 87 
 3.4. Error analysis …………………………………………………………… 89 
  3.4.1. Errors to line of sight beam motion ……………………………… 89 
  3.4.2. Errors from angular motions of the pentaprisms, autocollimator 

and test surface …………………………………………………… 90 
  3.4.3. Mapping error …………………………………………………… 91 
  3.4.4. Thermal errors …………………………………………………… 91 
  3.4.5. Combined random errors ………………………………………… 92 
  3.4.6. Errors from coupling lateral motion of the pentaprism …………. 93 
  3.4.7. Analysis of errors due to beam divergence ………………………. 94 
  3.4.8. Monte Carlo analysis of system performance …………………… 95 
  3.4.9. Monte Carlo analysis of sensitivity to noise and number of 

measurement points scan …………………………………………. 96 
  3.4.10. Monte Carlo analysis of noise coupling into mid order Zernike 

aberrations for number of line scans and number measurement 
points per scan …………………………………………………… 101 

  3.4.11. Effect of sampling spacing and noise on measurement error …… 107 
  3.4.12. Limitation of Zernike basis set …………………………………… 108 
 3.5. Conclusion and future work ……………………………………………… 108 
 
CHAPTER 4 – DEVELOPMENT OF A 1 METER VIBRATION INSENSITIVE 

FIZEAU INTERFEROMETER ………………………………………………… 110 
 4.1. Introduction ……………………………………………………………… 110 
  4.1.1. Testing large flat mirrors ………………………………………… 111 
  4.1.2. Instantaneous interferometry ……………………………………… 112 
 4.2. Design and analysis of the 1 meter Fizeau interferometer ……………… 114 
  4.2.1. Test concept ……………………………………………………… 114 
  4.2.2. Test tower design ………………………………………………… 116 
  4.2.3. Collimation OAP design ………………………………………… 117 
  4.2.4. Field effect errors ………………………………………………… 119 
  4.2.5. Wedge in the test plate …………………………………………… 120 
  4.2.6. Distortion correction ……………………………………………… 120 
 4.3. System integration ……………………………………………………… 122 
  4.3.1. Reference flat and its mounting support ………………………… 122 
  4.3.2. System alignment ………………………………………………… 124 
 4.4. System calibration ……………………………………………………… 125 
  4.4.1. Calibration of reference surface irregularity ……………………… 126 



8 
 

TABLE OF CONTENTS – Continued 
 
  4.4.2. Comparison to finite element analysis model …………………… 129 
  4.4.3. Calibration of reference surface power …………………………… 130 
 4.5. Error analysis …………………………………………………………… 131 
  4.5.1. Test error budget from combined error sources ………………… 131 
 4.6. Measurements on a 1.6 meter flat mirror ………………………………… 132 
 4.7. Conclusion ………………………………………………………………… 132 
 
SECTION II – ADVANCED FABRICATION TECHNOLOGIES ………………… 133 
 
CHAPTER 5 – METHODOLOGY FOR FABRICATING AND TESTING LARGE 

HIGH PERFORMANCE FLAT MIRRORS …………………………………… 134 
 
 5.1. Introduction ……………………………………………………………… 134 
 5.2. Fabrication technologies ………………………………………………… 136 
  5.2.1. Conventional polishing ………………………………………… 136 
  5.2.2. Computer controlled polishing …………………………………… 137 
 5.3. Testing technologies ……………………………………………… 137 
  5.3.1. Surface measurements using electronic levels …………………… 138 
  5.3.2. Scanning pentaprism testing ……………………………………… 138 
  5.3.3. Vibration insensitive Fizeau testing ……………………………… 138 
 5.4. Manufacture and testing of a 1.6 meter flat mirror ……………………… 139 
  5.4.1. Introduction ……………………………………………………… 139 
  5.4.2. Mirror geometry ………………………………………………… 140 
  5.4.3. Mirror support design …………………………………………… 140 
  5.4.4. Overview of manufacturing sequence …………………………… 142 
  5.4.5. Large tool polishing ……………………………………………… 143 
   5.4.5.1 Efficient metrology ……………………………………… 144 
  5.4.6. Surface finishing with small tools ………………………………… 145 
   5.4.6.1. Computer controlled polishing ………………………… 146 
   5.4.6.2. Scanning pentaprism measurements for power ………… 153 
   5.4.6.3. Fizeau measurements for surface irregularity…………… 155 
  5.4.7. Demonstration of the flat mirror with 11 nm rms power and 6 nm 

rms surface irregularity ……………………………………… 156 
 5.5. Manufacture and test plan for a 4 meter flat mirror ……………………… 158 
  5.5.1. Mirror geometry ………………………………………………… 158 
  5.5.2. Mirror support …………………………………………………… 158 
  5.5.3. Overview of manufacturing sequence …………………………… 159 
  5.5.4. Limitations and risks …………………………………………… 161 
 5.6. Conclusion ……………………………………………………………… 165 
 
CONCLUSION ……………………………………………………………………… 167 
 



9 
 

TABLE OF CONTENTS – Continued 
 
APPENDIX A EDGE SLOPES FROM SURFACE CURVATURE ……………… 170 
 
APPENDIX B SCANNING PENTAPRISM TEST MONTE CARLO ANALYSIS 

OF NOISE COUPLING INTO MID ORDER ZERNIKE 
ABERRATIONS FOR NUMBER OF LINE SCANS, NUMBER 
OF MEASUREMENT POINTS AND LINE SCAN OFFSETS …… 171 

 
REFERENCES ……………………………………………………………………… 209 



10 
 

LIST OF FIGURES 
 
 
 
FIGURE 1.1. Top view diagram of the continuous polishing machine.  The mirror 

parts continuously pass over the lap to get uniform wear on the surface ……… 30 

FIGURE 1.2. Set Schematic of an optical test using a Fizeau interferometer.  Using 
a commercial Fizeau interferometer to test large flats requires many 
subaperture measurements and stitching to combine them …………………… 31 

FIGURE 1.3. Schematic of a Ritchey-Common optical test.  The Ritchey-Common 
test uses a large spherical reference surface and is typically performed on large 
flats  ……………………………………………………………………… 32 

FIGURE 1.4. Schematic of a skip flat optical test.  The skip flat test is performed 
on large flats …………………………………………………………………… 34 

FIGURE 2.1. Schematic of the set up for measuring surface inclination with the 
electronic level ………………………………………………………………… 40 

FIGURE 2.2. A Wyler Leveltronic NT electronic level with a custom aluminum 
three-point base plate for stable positioning …………………………………… 41 

FIGURE 2.3. Top view of the electronic levels measurement set up for flatness 
measurements.  A fiberglass guide rail secured to the mirror maintains the 
pointing of the electronic levels ………………………………………………… 41 

FIGURE 2.4. Schematic of differential slope measurements on an optical surface 
using two electronic levels ……………………………………………………… 42 

FIGURE 2.5. Coordinate system for defining the Zernike polynomials (ρ is the 
normalized radial coordinate and θ is the measurement direction) ……………. 44 

FIGURE 2.6. Sampling requirements for measuring low order Zernike aberrations.  
The dashed lines represent electronic level scan lines …………………………. 45 

FIGURE 2.7. Simulated three line scans (separated by 120°) for low order surface 
errors described by single Zernike polynomial terms terms (power, 
astigmatism, and spherical aberrtaion) ………………………………………… 47 

FIGURE 2.8. Simulated three line scans (separated by 120°) for low order surface 
errors described by single Zernike polynomial terms (coma and trefoil) ……… 48 

FIGURE 2.9. Measured noise in the electronic levels after removing linear drift 
(1σ = 0.15 μrad).  Sample period = 3.3 Hz (full rate) ………………………… 49 

FIGURE 2.10. Measured drift and noise over 60 minutes.  The amount of drift is 
about 1.75 μrad over 60 min (30 nrad/min) …………………………………… 50 

 



11 
 

LIST OF FIGURES – CONTINUED 
 

FIGURE 2.11. Simulated changes in pendulum angle due to force of attraction 
between the pendulum and nearby large objects ……………………………… 53 

FIGURE 2.12. Orthogonal scans with up-down (a) and left-right (b) pointing 
directions using uni-axis electronic levels ……………………………………… 55 

FIGURE 2.13. (a) Low order symmetrical Zernike aberrations fitted to measured 
slope data.  (b) Surface profile of the fitted surface map.  (c) The corresponding 
two dimensional fitted surface map with 680 nm PV and 160 nm rms ………… 56 

FIGURE 2.14. (a) Fit to measured surface slopes along three line separated by 120°.  
(b) The resulting surface map of the three line scan (295 nm rms) …………… 58 

FIGURE 2.15. Measurements on the 1.6 m flat with electronic levels.  (a) Slope 
measurements and fit to the slope data.  (b) A fitted surface map after 
determining the Zernike coefficients through a least squares fit ……………… 60 

FIGURE 2.16. Measurements on the 1.6 m flat with the scanning pentaprism test. 
(a) Slope measurements and fit to the slope data.  (b) A fitted surface map after 
determining the Zernike coefficients through a least squares fit ……………… 60 

FIGURE 2.17. Schematic of performing simultaneous orthogonal measurements 
with dual-axis levels.  The advantage of dual axis levels over uni-axis levels is 
measurement efficiency ………………………………………………………… 63 

FIGURE 2.18. Potential sampling arrangement with the dual axis levels (nine 
measurement points on a square grid) ………………………………………… 63 

FIGURE 2.19. A simulation result of dual axis levels measurement on a 3 × 3 (a) 
and 5 × 5 (b) square grids assuming the same level of measurement uncertainty 
as for the uni-axis levels ………………………………………………………… 64 

FIGURE 3.1. Schematic of the scanning pentaprism test system.  The system used 
two electronic autocollimators (measurement and alignment) and two 
pentaprisms aligned to the measurement autocollimator ……………………… 69 

FIGURE 3.2. Coordinate system and definition of the degrees of freedom for the 
autocollimator, scanning pentaprism and the test surface ……………………… 71 

FIGURE 3.3. (a) Pentaprism yaw and roll scans.  (b) Linear dependence of the 
angle measured with the autocollimator on the yaw angle of the prism.  (c) 
Quadratic dependence of the angle measured with the autocollimator on the 
roll angle of the prism ………………………………………………………… 73 

FIGURE 3.4. Solid model of the scanning pentaprism rail system showing the 
mounting platforms and the three point kinematic base ……………………… 76 

 



12 
 

LIST OF FIGURES – CONTINUED 
 

FIGURE 3.5. Pentaprism assemblies integrated into the system.  Electronically 
controlled shutters are located at the exit face of each prism.  The 
autocollimator system (not shown) is mounted to the left …………………… 78 

FIGURE 3.6. A fully integrated and operational scanning pentaprism test system.  
The vertical post next to the Elcomat was used to mount a He-Ne laser for the 
initial alignment of the system.  Cabling attached to the pentaprism assemblies 
are used to control the Pico-motors™ through active feedback.  The UDT beam 
is folded with a 50 mm mirror to the feedback mirror ………………………… 80 

FIGURE 3.7. Schematic showing the initial alignment of the pentaprisms in yaw.  
The laser was reflected off the front faces of the prisms ……………………… 81 

FIGURE 3.8. Schematic showing three line scans with the scanning pentaprism.  
This example shows the mirror being rotated in 120° steps for each scan …… 84 

FIGURE 3.9. Surface slope measurements with the scanning pentaprism system 
and a low order polynomial fit.  A linear component of the polynomial fit on 
the slope data gives information on power in the surface (11 nm rms) ………… 85 

FIGURE 3.10. Comparison of the scanning pentaprism data and the interferometer 
data.  The interferometer data was first diffentiated to get surface slope ……… 86 

FIGURE 3.11. Fizeau interferometer measurement on the 1.6 m flat mirror ……… 86 

FIGURE 3.12. Circumferential scans, where both prisms were fixed and the mirror 
was continuously rotated, measured astigmatism and other θ dependent 
aberrations in the mirror surface ……………………………………………… 87 

FIGURE 3.13. Circumferential scans at the center and edge of the large flat mirror 
(a), and difference in the scans and fit (b).  The error bars in the scans indicate 
good stability of the rotary air bearing table …………………………………… 88 

FIGURE 3.14. Schematic showing the test set up to measure the effect of beam 
divergence on lateral prism motion …………………………………………… 94 

FIGURE 3.15. Power (Z4) and spherical aberration (Z9) sensitivity to noise and 
number of measurement points per scan.  Three line scans (separated by 120˚) 
on a 2 m flat mirror and 1 µrad rms noise were assumed.  A = 110 for power 
and A = 56 for spherical aberration …………………………………………… 98 

FIGURE 3.16. Astigmatism (Z5, Z6) sensitivity to noise and number of 
measurement points per scan.  Three line scans (separated by 120˚) on a 2 m 
flat mirror and 1 µrad rms noise were assumed.  A = 185 for cos astigmatism 
and A = 180 for sin astigmatism ……………………………………………… 99 

 

 



13 
 

LIST OF FIGURES – CONTINUED 
 

FIGURE 3.17. Coma (Z7, Z8) sensitivity to noise and number of measurement 
points per scan.  Three line scans (separated by 120˚) on a 2 m flat mirror and 1 
µrad rms noise were assumed.  A = 84 for both components of coma……………100 

FIGURE 3.18. Measurement noise normalized to 1 µrad rms coupling into 
secondary astigmatism (Z12, Z13) for number of line scans and number of 
measurement points over a 2 m flat.  A = 115 for both components of 
astigmatism …………………………………………………………………… 104 

FIGURE 3.19. Measurement noise normalized to 1 µrad rms coupling into 
secondary coma (Z14, Z15) for number of line scans and number of 
measurement points over a 2 m flat.  A = 40 for both components of coma …… 105 

FIGURE 3.20. Measurement noise normalized to 1 µrad rms coupling into 
secondary and tertiary spherical (Z16, Z25) for number of line scans and 
number of measurement points over a 2 m flat.  A = 35 and 25 for secondary 
and tertiary spherical, respectively ……………………………………………… 106 

FIGURE 3.21. Sampling for secondary spherical aberration (Z16) with two different 
five equally spaced sample points (sample points are showing noise variation)  107 

FIGURE 4.1. Schematic showing a Fizeau interferometer simultaneous phase 
shifting concept using polarizing element and orthogonal polarizations ……… 113 

FIGURE 4.2. Schematic of the 1 m Fizeau interferometer with an OAP for beam 
collimation and an external 1 m reference ……………………………………… 115 

FIGURE 4.3. Solid (a) and FEA dynamic (b) models of the Fizeau test tower …… 117 

FIGURE 4.4. OAP mounted in an 18 point whiffletree and band support.  The 
mount provided tip and tilt adjustments ……………………………………… 118 

FIGURE 4.5. FEA model of the mounted collimating OAP optical performance (5 
nm rms)  ……………………………………………………………………… 118 

FIGURE 4.6. The 1 m Fizeau interferometer with polarization B as the reference 
beam (left), polarization A as the reference beam (center), and the average of 
the two measurements (right) to eliminate field errors ………………………… 120 

FIGURE 4.7. Oblique top view of the kinematic support mount for the Fizeau 
reference flat.  Cables, attached to the pucks, and a six point edge supports held 
the reference flat ……………………………………………………………… 123 

FIGURE 4.8. Sensitivity to the OAP motion - after addition of 0.5 mrad of tilt 
about x (left) and y (center), and clocking about the z-axis (right) to the OAP in 
an autocollimation test configuration …………………………………………… 125 

FIGURE 4.9. Solid model of the 1 m vibration insensitve Fizeau test system fully 
integrated and aligned ………………………………………………………… 126 



14 
 

LIST OF FIGURES – CONTINUED 
 

FIGURE 4.10. Schematic for method of estimating the reference flat by rotating the 
reference and test flats ………………………………………………………… 127 

FIGURE 4.11. The 1 m reference surface estimated by modulation of the reference 
and test surfaces and performing maximum likelihood estimation.  Multiple 
Zernikes terms were used to generate the surface (42 nm rms).  The surface 
map shows the effect of the three point cable suspension ……………………… 128 

FIGURE 4.12. Results of the FEA simulation on the mounted reference flat that 
shows the effects of the three cables suspension and edge supports …………… 130 

FIGURE 5.1. The 1.6 m Zerodur® flat mirror blank geometry …………………… 140 

FIGURE 5.2. The mechanical support system used 36 hydraulic actuators to 
support the 1.6 m flat mirror (left), and a blow up of the plumbing of the 
hydraulic support points (right).  The black cylinder (right figure) is one of six 
hard contact points; they do not contact the mirror in operation ……………… 141 

FIGURE 5.3. (a) Large (100 cm) tool with square tiles in pitch used for grinding.  
(b) Grinding/polishing with the large tool.  (c) 1.6 m flat mirror polished to a 
smooth finish with a large tool ………………………………………………… 144 

FIGURE 5.4. Schematic of the radial stroker and polishing/figuring with small 
tools. This radial stroker was attached to the Draper machine rail.  Two motors 
provide variable tool stroke and rotation ……………………………………… 146 

FIGURE 5.5. The result of Preston’s constant calibration.  In software Preston’s 
proportionality constant was adjusted until the simulated surface removal 
matched the actual removal amplitude ………………………………………… 148 

FIGURE 5.6. Example of reducing zone heights with proper design of removal 
functions assuming only zonal errors are present in the surface.  (a) Initial 
measured surface radial profile showing two zones and the removal functions 
designed for each zone.  (b) Surface after applying the removal functions …… 150 

FIGURE 5.7. Comparison of a simulated and actual surface removal on the 1.6 m 
flat while it was in production ………………………………………………… 151 

FIGURE 5.8. Flowchart diagram of the closed loop computer controlled polishing 
method  ……………………………………………………………………… 153 

FIGURE 5.9. Measured slope data on the finished mirror with the scanning 
pentaprism along a single line and low order polynomial fit to the slope data. 
The linear component of the polynomial fit gives power in the surface (11 nm 
rms)  ……………………………………………………………………… 154 

 

 



15 
 

LIST OF FIGURES – CONTINUED 
 

FIGURE 5.10. Result of the 1 m Fizeau measurement on the finished mirror.  24 
subaperture measurements were acquired and combined with the maximum 
likelihood estimation (6 nm rms surface irregularity after removing power and 
astigmatism) …………………………………………………………………… 155 

FIGURE 5.11. The final surface map showing combined power with surface 
irregularity from the scanning pentaprism and 1 m Fizeau tests on the finished 
mirror  ……………………………………………………………………… 156 

FIGURE 5.12. Power trend in the 1.6 meter flat (over about three months) as 
measured with the scanning pentaprism system.  The power trend shows rapid 
convergence after implementing the polishing software aided computer 
controlled polishing …………………………………………………………… 157 

FIGURE 5.13. Solid Zerodur® 4 m flat mirror geometry …………………………… 158 

FIGURE 5.14. A five ring support design for a 4 m mirror.  This design will 
maintain the mirror deflection to about 12 nm rms …………………………… 159 

FIGURE 5.15.  Potential manufacturing sequence for large high performance flat 
mirrors ………………………………………………………………… 160 

FIGURE 5.16. (a) 1 m subaperture (dashed circular outlines) sampling on the 1.6 m 
flat mirror, and (b) on a 4 m flat mirror.  Multiple subaperture sampling 
provides full coverage of the large mirror.  Combining the subaperture 
measurements produces a full synthetic map …………………………………… 165 

FIGURE B.1. Measurement noise normalized to 1 µrad coupling into cos trefoil 
(Z10) for the number of line scans and number of measurement points over a 2 
m flat  ……………………………………………………………………… 173 

FIGURE B.2. Measurement noise normalized to 1 µrad coupling into sin trefoil 
(Z11) for the number of line scans and number of measurement points over a 2 
m flat  ……………………………………………………………………… 174 

FIGURE B.3. Measurement noise normalized to 1 µrad coupling into cos 
secondary astigmatism (Z12) for the number of line scans and number of 
measurement points over a 2 m flat …………………………………………… 175 

FIGURE B.4. Measurement noise normalized to 1 µrad coupling into sin secondary 
astigmatism (Z13) for the number of line scans and number of measurement 
points over a 2 m flat …………………………………………………………… 176 

FIGURE B.5. Measurement noise normalized to 1 µrad coupling into cos 
secondary coma (Z14) for the number of line scans and number of 
measurement points over a 2 m flat …………………………………………… 177 

 



16 
 

LIST OF FIGURES – CONTINUED 
 

FIGURE B.6. Measurement noise normalized to 1 µrad coupling into sin secondary 
coma (Z15) for the number of line scans and number of measurement points 
over a 2 m flat …………………………………………………………………... 178 

FIGURE B.7. Measurement noise normalized to 1 µrad coupling into cos pentafoil 
(Z17) for the number of line scans and number of measurement points over a 2 
m flat  ……………………………………………………………………… 179 

FIGURE B.8. Measurement noise normalized to 1 µrad coupling into sin pentafoil 
(Z18) for the number of line scans and number of measurement points over a 2 
m flat  ……………………………………………………………………… 180 

FIGURE B.9. Measurement noise normalized to 1 µrad coupling into secondary 
spherical (Z16) for the number of line scans and number of measurement 
points over a 2 m flat …………………………………………………………… 181 

FIGURE B.10. Measurement noise normalized to 1 µrad coupling into tertiary 
spherical (Z25) for the number of line scans and number of measurement 
points over a 2 m flat …………………………………………………………… 182 

FIGURE B.11. Scanning pentaprism test examples – line scans (three, four, five, and 
six) are offset from the center of a 2 m mirror by 250 mm.  The line scans are 
spaced in angle such that the scans are symmetrical around the mirror ……… 184 

FIGURE B.12. Measurement noise normalized to 1 μrad rms coupling into trefoil 
(Z10, Z11) for number of line scans, number of measurement points, and d = 
250 mm  ……………………………………………………………………… 185 

FIGURE B.13. Measurement noise normalized to 1 μrad rms coupling into 
secondary astigmatism (Z12, Z13) for number of line scans, number of 
measurement points, and d = 250 mm ………………………………………… 186 

FIGURE B.14. Measurement noise normalized to 1 μrad rms coupling into 
secondary coma (Z14, Z15) for number of line scans, number of measurement 
points, and d = 250 mm ………………………………………………………… 187 

FIGURE B.15. Measurement noise normalized to 1 μrad rms coupling into pentafoil 
or 4θ (Z17, Z18) for number of line scans, number of measurement points, and 
d = 250 mm …………………………………………………………………… 188 

FIGURE B.16. Measurement noise normalized to 1 μrad rms coupling into 
secondary and tertiary spherical (Z16, Z25) for number of line scans, number 
of measurement points, and d = 250 mm ……………………………………… 189 

FIGURE B.17. Scanning pentaprism test examples – line scans (three, four, five, and 
six) are offset from the center of a 2 m mirror by 250 mm.  The line scans are 
spaced in angle such that scans are symmetrical around the mirror …………… 191 



17 
 

LIST OF FIGURES – CONTINUED 
 

FIGURE B.18. Measurement noise normalized to 1 μrad rms coupling into trefoil 
(Z10, Z11) for number of line scans, number of measurement points, and d = 
500 mm  ……………………………………………………………………… 192 

FIGURE B.19. Measurement noise normalized to 1 μrad rms coupling into 
secondary astigmatism (Z12, Z13) for number of line scans, number of 
measurement points, and d = 500 mm …………………………………… 193 

FIGURE B.20. Measurement noise normalized to 1 μrad rms coupling into 
secondary coma (Z14, Z15) for number of line scans, number of measurement 
points, and d = 500 mm ………………………………………………………… 194 

FIGURE B.21. Measurement noise normalized to 1 μrad rms coupling into pentafoil 
or 4θ (Z17, Z18) for number of line scans, number of measurement points, and 
d = 500 mm …………………………………………………………………… 195 

FIGURE B.22. Measurement noise normalized to 1 μrad rms coupling into 
secondary and tertiary spherical (Z16, Z25) for number of line scans, number 
of measurement points, and d = 500 mm ……………………………………… 196 

FIGURE B.23. Measurement noise normalized to 1 μrad rms coupling into trefoil 
(Z10, Z11) for number of line scans and 64 measurement points ……………… 198 

FIGURE B.24. Measurement noise normalized to 1 μrad rms coupling into 
secondary astigmatism (Z12, Z13) for number of line scans and 64 
measurement points …………………………………………………………… 199 

FIGURE B.25. Measurement noise normalized to 1 μrad rms coupling into 
secondary coma (Z14, Z15) for number of line scans and 64 measurement 
points  ……………………………………………………………………… 200 

FIGURE B.26. Measurement noise normalized to 1 μrad rms coupling into pentafoil 
or 4θ (Z17, Z18) for number of line scans and 64 measurement points ……… 201 

FIGURE B.27. Measurement noise normalized to 1 μrad rms coupling into 
secondary and tertiary spherical (Z16, Z25) for number of line scans and 64 
measurement point per scan …………………………………………………… 202 

FIGURE B.28. Measurement noise normalized to 1 µrad rms coupling into trefoil 
(Z10, Z11) for number of line scans and 64 measurement points per scan …… 204 

FIGURE B.29. Measurement noise normalized to 1 µrad rms coupling into 
secondary astigmatism (Z12, Z13) for number of line scans and 64 
measurement points per scan …………………………………………………… 205 

 

 



18 
 

LIST OF FIGURES – CONTINUED 
 

FIGURE B.30. Measurement noise normalized to 1 µrad rms coupling into 
secondary coma (Z14, Z15) for number of line scans and 64 measurement 
points per scan ………………………………………………………………… 206 

FIGURE B.31. Measurement noise normalized to 1 µrad rms coupling into pentafoil 
or 4θ (Z17, Z18) for number of line scans and 64 measurement points per scan . 207 

FIGURE B.32. Measurement noise normalized to 1 µrad rms coupling into 
secondary and tertiary spherical (Z16, Z25) for number of line scans and 64 
measurement points per scan …………………………………………………… 208 

 

 
  



19 
 

LIST OF TABLES 
 
 
 
TABLE 2.1. List of the low order Zernike (UofA) polynomials and their gradients . 44 

TABLE 2.2. Sources of error for slope measurements that are assumed 
uncorrelated (for a single level) ………………………………………………… 53 

TABLE 2.3. Measurement uncertainty for the low order Zernike aberrations with 
the uni-axis level ……………………………………………………………… 54 

TABLE 2.4. Values of the low order Zernike coefficients after fit to surface slopes  58 

TABLE 2.5. Zernike coefficients for power (Z4) and spherical aberration (Z9) 
after fits to the slope data ……………………………………………………… 61 

TABLE 2.6. Difference in the Zernike coefficients for power (Z4) and spherical 
aberration (Z9), and the overall surface ………………………………………… 61 

TABLE 3.1. Complete list of the line of sight alignment errors.  Only the second 
order errors contribute to the in-scan slope error ……………………………… 72 

TABLE 3.2. Aberrations with θ dependence measured with circumferential scans, 
fit coefficients and equivalent low order surface error ………………………… 89 

TABLE 3.3. Budget for alignment errors for the scanning pentaprism system …… 90 

TABLE 3.4. Misalignment and perturbation influences on the in-scan line of sight . 91 

TABLE 3.5. Pentaprism test system independent measurement errors assumed to 
be uncorrelated ………………………………………………………………… 93 

TABLE 3.6. Scanning pentaprism measurement uncertainty for the low order 
Zernike aberrations assuming 0.3 µrad rms noise for a single differential 
measurement, three line scans, and 42 measurement points per scan ………… 96 

TABLE 3.7. Summary of the values of the sensitivity to noise for the proceeding 
plots (Figures 15 through 17) …………………………………………………… 97 

TABLE 3.8. Definition of mid order Zernike (UofA) polynomials.  The angle, θ, is 
measured counter clockwise from the x-axis, and the radial coordinate is the 
normalized dimensionless parameter, ρ ………………………………………… 101 

TABLE 3.9. Table of the values of the sensitivity to noise, A, and number of 
minimum measurement points required for full sampling of mid order Zernike 
aberrations ……………………………………………………………………… 103 

TABLE 3.10. Values of the sensitivity to noise coefficient using the scaling law.  
The new values are for the 1.6 m flat with 0.3 μrad rms measurement noise … 103 

TABLE 4.1. Fizeau test tower frequency modes ………………………………… 116 



20 
 

LIST OF TABLES – CONTINUED 
 

TABLE 4.2. Measurement algorithm for obtaining the unbiased estimates of the 
reference and test surfaces ……………………………………………………… 127 

TABLE 4.3. The reference flat support parameters for the FEA model and 
simulation ……………………………………………………………………… 129 

TABLE 4.4. Combined error sources and the error budget for the subaperture test . 131 

TABLE 5.1. Parameters for the 1.6 m Zerodur® flat mirror blank ………………… 140 

TABLE 5.2. Accuracy in measuring the low order Zernike aberrations on a 4 m 
flat mirror ……………………………………………………………………… 163 

TABLE B.1. Values of the A coefficient for the mid order Zernike aberrations for 
the case of the line scans with no offset ……………………………………… 172 

TABLE B.2. Values of the A coefficient for the mid order Zernike aberrations for 
the case of the line scans with 250 mm offsets ………………………………… 183 

TABLE B.3. Values of the A coefficient for the mid order Zernike aberrations for 
the case of the line scans with 500 mm offsets ………………………………… 190 

 

  



21 
 

ABSTRACT 

 

 

Classical fabrication methods alone do not enable manufacturing of large flat mirrors that 

are much larger than 1 meter.  This dissertation presents the development of enabling 

technologies for manufacturing large high performance flat mirrors and lays the 

foundation for manufacturing very large flat mirrors.  The enabling fabrication and 

testing methods were developed during the manufacture of a 1.6 meter flat.  The key 

advantage over classical methods is that our method is scalable to larger flat mirrors up to 

8 m in diameter. 

 Large tools were used during surface grinding and coarse polishing of the 1.6 m 

flat.  During this stage, electronic levels provided efficient measurements on global 

surface changes in the mirror.  The electronic levels measure surface inclination or slope 

very accurately.  They measured slope changes across the mirror surface.  From the slope 

information, we can obtain surface information.  Over 2 m, the electronic levels can 

measure to 50 nm rms of low order aberrations that include power and astigmatism.  The 

use of electronic levels for flatness measurements is analyzed in detail. 

 Surface figuring was performed with smaller tools (size ranging from 15 cm to 40 

cm in diameter).  A radial stroker was developed and used to drive the smaller tools; the 

radial stroker provided variable tool stroke and rotation (up to 8 revolutions per minute).  

Polishing software, initially developed for stressed laps, enabled computer controlled 

polishing and was used to generate simulated removal profiles by optimizing tool stroke 
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and dwell to reduce the high zones on the mirror surface.  The resulting simulations from 

the polishing software were then applied to the real mirror.  The scanning pentaprism and 

the 1 meter vibration insensitive Fizeau interferometer provided accurate and efficient 

surface testing to guide the remaining fabrication.  The scanning pentaprism, another 

slope test, measured power to 9 nm rms over 2 meters.  The Fizeau interferometer 

measured 1 meter subapertures and measured the 1.6 meter flat to 3 nm rms; the 1 meter 

reference flat was also calibrated to 3 nm rms.  Both test systems are analyzed in detail.  

During surface figuring, the fabrication and testing were operated in a closed loop.  The 

closed loop operation resulted in a rapid convergence of the mirror surface (11 nm rms 

power, and 6 nm rms surface irregularity).  At present, the surface figure for the finished 

1.6 m flat is state of the art for 2 meter class flat mirrors. 
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INTRODUCTION 

 

 

There is a recent push for larger optical systems such as telescopes for space, thus there is 

increasing demand for large high performance flat mirrors (as references) to do 

component and/or full aperture system testing.  Other uses of large flats include turning 

mirrors for ground based telescopes, which eliminate the need to point the telescope, and 

multipurpose shop use for component testing and periodic calibration of precision optical 

and mechanical metrology tools. 

The need for large flats is evident, however, the manufacture of large flats (> 1 

meter) is challenging for three reasons:  1) lack of techniques for precise and controllable 

polishing, 2) lack of accurate and efficient metrology, and 3) manufacturing takes a very 

long time to complete (months or even years). 

Although technologies exist for manufacturing moderately sized flat mirrors (≤ 1 

m), enabling technologies for making larger flat mirrors are limited or have not been 

developed.  The cut-off is around 1 m diameter:  flat mirrors that are 1 m or less in 

diameter can be manufactured efficiently and accurately; the cost of manufacturing, 

however, increases dramatically for flats larger than 1 m due to current inefficient 

fabrication and testing methods. 

Flats require accurate surface testing.  The requirement on surface power is on the 

same order of magnitude as surface irregularity.  Conventional testing of flats requires 

comparison to another flat that is larger in size and has a much better surface quality.  
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However, large reference flats are almost non-existent, thus testing large flats in this 

manner is difficult.  Due to fabrication and testing limitations, manufacturing large flat 

mirrors may take years, and thus, dramatically increasing cost. 

This dissertation addresses the challenges listed above and describes the 

development and application of enabling technologies for fabricating and testing large 

high performance flat mirrors.  Chapter one provides a background on flat mirror 

fabrication and conventional optical testing for large flats.  The dissertation is then 

divided into two sections:  Section one contains Chapters two through four and describes 

the development of accurate and efficient metrology used to guide the manufacture and 

qualify the final surface figure; Section two contains Chapter five and describes the 

development of precise and controllable polishing techniques that used small to moderate 

sized tools for figuring and polishing simulations for optimizing tool dwells and stroke 

enabling computer controlled polishing.   

Some aspects of this dissertation have been published and presented.  Other 

aspects still remain to be published in peer-reviewed journals. 

My role on the manufacture of the 1.6 m flat was as the lead systems engineer.  In 

addition to overseeing the testing and fabrication, I developed the electronic levels test, 

performed extensive analysis on the electronic levels and scanning pentaprism tests, 

which improved their accuracies, designed polishing runs using polishing simulation 

software and measured data, and, finally, integrating the metrology and fabrication into a 

closed loop manufacturing operation that eventually led to a rapid convergence of the 1.6 

m flat surface errors.  However, the work on this project was a lot more than one person 
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can handle.  Below is a list of other people that directly contributed solutions to the many 

technical challenges that were present in this project: 
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software support for the scanning pentaprism test 

Mr. Norman Schenck – daily polishing runs and electronic levels measurements 

Mr. Peng Su – maximum likelihood estimation software development for the reference 

and test surface determination in the Fizeau test and data analysis 

Mr. Robert Sprowl – Fizeau system alignment and routine testing, and subaperture 

stitching and use of Park’s method for test surface determination in the Fizeau test 
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CHAPTER 1 

INTRODUCTION TO LARGE FLAT MIRROR FABRICATION 
 

 

1.1. Introduction 

There is a recent push for larger optical systems such as telescopes for space [8-9].  That 

comes with an increasing demand for large high performance flat mirrors to do 

component and/or full aperture system testing.  Large flat mirrors can also be used as 

turning mirrors for ground based telescopes, which eliminate the need to point the 

telescope.  Furthermore, having a large (reference) flat mirror for multipurpose shop use 

is helpful for component testing and calibration of precision optical and mechanical 

metrology tools. 

The need for large high performance flats is evident, however, manufacturing 

large flat mirrors that are much larger than 1 meter diameter is challenging [1-2].  For flat 

mirrors the tolerance on the radius of the surface is the same magnitude as the tolerance 

on surface irregularity; that is, power in the surface is considered an error that must be 

removed through careful polishing. 

Current fabrication and testing technologies, although well established for 

moderately sized optics (≤ 1 m), do not enable the manufacture of high performance flat 

mirrors much larger than 1 m.  Large flat mirror fabrication poses significant challenges 
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in three areas:  1) techniques for precise and controllable polishing, 2) accurate and 

efficient metrology for surface testing, and 3) schedule and economic considerations. 

The natural tendency of continuously rubbing two surfaces together (e.g. a 

polishing tool on glass) is for the two surfaces to shape themselves into spherical 

surfaces.  This tendency makes spherical or near-spherical surfaces much easier to make.  

For flats, however, careful control of the polishing tool and parameters during polishing 

is required to make and keep the glass surface flat.  We found during the manufacture of 

a 1.6 m flat that precise and controllable polishing is difficult using classical polishing 

methods alone.  Furthermore, high precision flat surfaces require accurate metrology.  

Interferometeric testing of flat surfaces requires comparison to another flat surface that is 

larger in size and of significantly better surface quality.  But large reference flats are 

virtually non-existent.  Using liquids as reference flats have been proposed.  The 

advantages of using liquid surfaces are they provide excellent reference surfaces [3-7] 

and large (> 1 m) liquid reference surfaces can be achieved.  Large liquid surfaces are 

limited only by sag due to the radius of the earth.  However, stability and contamination 

have been major issues, and the long settling times (hours) of liquid surfaces and test 

geometries make efficient testing impractical.  Finally, large mirrors take a long time to 

make (years), and developing metrology for full surface testing can be cost prohibitive; 

thus, the manufacturing process may become very expensive (hundreds of thousands or 

even millions of dollars). 
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1.2. Current State of the Art for Flat Fabrication 

The current state of the art for flat mirror fabrcation uses continuous polisher (CP) 

machines, which can produce flat surfaces that are 30 nm rms [10-14].  The CP uses a 

large annular lap that is at least three times the size of the part being polished and turns 

continuously.  A top view diagram of a CP machine is shown in Figure 1.1.  The parts to 

be polished are placed front surface down on the lap in holders that are fixed in place on 

the annulus and are driven so they turn in synchronous motion with the lap.  Because the 

part is in synchronous motion with the lap, the part always remains in full contact with 

the lap, so the wear on the part will be uniform.  The uniform contact and wear allows the 

surface to become flat rapidly.  A conditioner that is as large as the radius of the lap helps 

keep the lap flat through the long polishing operation. 

There are two advantages of using CP machines:  1) they can produce multiple 

flat mirrors simultaneously, making this type of a machine very cost-effective, and 2) 

they can polish smoothly out to the mirror edges because of the uniform contact between 

the mirror and the lap.  The disadvantage, however, is that mirrors polished on a CP 

machine can be no larger than about a third of the diameter of the lap.  CP machines with 

4 m diameter laps are known to exist [13].  These particular CP machines can only 

accommodate up to 1.3 m flat mirrors.  Any mirror bigger than 1.3 m has to be made with 

conventional methods. 
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FIGURE 1.1.  Top view diagram of the continuous polishing machine.  The mirror parts 
continuously pass over the lap to get uniform wear on the surface. 
 

1.3. Conventional Optical Testing of Large Flats 

An interferometer is generally used to measure optical surface flatness.  The type of 

interferometer depends on the size and shape of the surface being measured and the test 

geometry.  In this section we describe three tests that are typically performed to measure 

flatness in large surfaces.  The three tests have their advantages.  But their disadvantages 

make them less accurate and efficient for testing large flats. 

1.3.1. Fizeau interferometer 

The simplest interferometer used to measure flat surfaces is the Fizeau interferometer 

[15-16].  The Fizeau interferometer uses a reference flat for comparison.  Any surface 
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height differences is then attributed to the surface under test.  Figure 1.2 shows a 

schematic of using a Fizeau interferometer to test a large flat.  To make sure the reference 

and test surfaces are flat, a third flat surface is introduced to verify all surfaces are flat; 

this is the well known three flat absolute test [15].   

Due to the limited aperture sizes of commercial Fizeau interferometers (10-15 

cm), this test requires subaperture sampling and stitching to combine the subaperture 

measurements [17-20].  One major disadvantage of subaperture stitching is that the test 

accuracy and efficiency degrade as the test aperture becomes much smaller than the flat 

mirror under measurement. 

 

 

FIGURE 1.2.  Schematic of an optical test using a Fizeau interferometer.  Using a 
commercial Fizeau interferometer to test large flats requires many subaperture 
measurements and stitching to combine them. 
 

1.3.2. Ritchey-Common test 

The Ritchey-Common test places the flat mirror between the interferometer and a 

concave spherical mirror, as shown in Figure 1.3.  With the Ritchey-Common test, full 

Large 
f lat

Fizeau
interferometer



32 
 

surface testing of the large flat is possible.  The test measures concavity (or convexity) 

accurately in the large flat mirror under test by measuring astigmatism in the surface [16, 

21].  Surface irregularity, however, is more difficult to measure because the wavefront 

falls off with the cosine of the angle of incidence. 

 ( )θδ cos4=W  (1.1) 

where δ is the surface error height.  The beam is reflected off the flat surface twice so 

there is a factor of four in the measured wavefront.  The difficulty comes from the angle, 

θ, changing across the flat surface.  In addition, the sensitivity to surface irregularity 

decreases as the angle is increased. 

 

 

FIGURE 1.3.  Schematic of a Ritchey-Common optical test.  The Ritchey-Common test 
uses a large spherical reference surface and is typically performed on large flats. 
 

The advantage of the Ritchey-Common test over the Fizeau test is that it does not 

require a reference flat surface for comparison.  The disadvantage is, although easy to 
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make, the spherical mirror must be larger than the flat mirror under test.  Moving large 

optics around the shop, mounting them, and aligning them are not easy tasks.  Therefore, 

the Ritchey-Common test is difficult and time consuming for very large mirrors. 

1.3.3. Skip flat test 

A less documented and relatively unknown test of large flat mirrors is the skip flat test 

[22, 30].  This test uses an interferometer with a collimated output that is much smaller 

than the test surface.  The collimated beam is reflected from the test surface at an oblique 

angle.  The beam is returned with a flat mirror to provide a narrow profile of the mirror.  

A schematic of the test geometry is shown in Figure 1.4.  There is an anamorphic 

magnification between the long and short axes of the beam footprint at the test surface.  

Multiple measurements taken in different directions can be performed to determine the 

figure of the test surface.  The skip flat test is similar to the Ritchey-Common test; the 

measured wavefront is multiplied by a factor of four due to the double reflection and falls 

off as the cosine of the angle of incidence (Equation 1.1), where the cosine of the angle of 

incidence in the skip flat test is the ratio of the diameters of the return flat and the large 

test flat. 

The skip flat test has been used where conventional surface testing was difficult to 

perform (e.g. a cryogenic test of large mirrors).  Like other stitching tests, however, 

accuracy and efficiency suffer as the size of the measured subaperture decreases with 

respect to the size of the mirror under test [17, 20]. 
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FIGURE 1.4.  Schematic of a skip flat optical test.  The skip flat test is performed on 
large flats. 
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SECTION I 

ADVANCED TESTING TECHNOLOGIES 
 

 

The first section presents testing technologies that were developed, analyzed, and 

implemented during the manufacture of a 1.6 meter flat mirror.  We developed two slope 

tests, electronic levels and scanning pentaprism, and a 1 meter vibration insensitive 

interferometer based on the classical Fizeau interferometer.  The electronic levels were 

used during the early stage of fabrication to measure global surface changes in the flat.  

The scanning pentaprism and the 1 m Fizeau interferometer are highly accurate tests that 

were used to guide the remaining fabrication and qualify the final surface figure of the 

1.6 meter flat. 

 Two electronic levels, described in Chapter 2, provided an easy and efficient 

slope test to guide surface grinding and coarse polishing.  An algorithm was developed to 

reduce the measured slope data and obtain surface maps represented by Zernike 

polynomials.  With the electronic levels the surface of the 1.6 m mirror can be measured 

to 50 nm rms of low order aberrations. 

 The scanning pentaprism system, described in Chapter 3, has been used 

successfully to test paraboloidal mirrors at the University of Arizona.  By replacing the 

beam projector and position detector with a high resolution electronic autocollimator and 

carefully aligning the two pentaprisms to the autocollimator, this test system can be used 
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to test large flat surfaces to 9 nm rms power by performing diagonal line scans.  The test 

system has the option of measuring other low and mid order Zernike aberrations and only 

θ dependent aberrations, which are obtained by performing circumferential scans where 

both pentaprisms are fixed and the test mirror continuously rotates underneath.   

 The vibration insensitive Fizeau interferometer, described in Chapter 4, used 1 m 

subaperture sampling to measure surface irregularity.  By using two different techniques 

(stitching and maximum likelihood estimation) the subaperture measurements were 

combined to produce a full synthetic surface map.  This test relied on multiple 

overlapping subaperture measurements and measurement redundancy to isolate the errors 

in the reference flat and the test flat to 3 nm rms. 
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CHAPTER 2 

OPTICAL FLATNESS MEASUREMENTS USING ELECTRONIC 

LEVELS 
 

 

Conventional measurement methods for large flat mirrors are generally difficult and 

expensive.  In most cases, comparison with a master or a reference flat similar in size is 

required.  Using gravity, such as in modern pendulum-type electronic levels, takes 

advantage of a free reference to precisely measure inclination.  We describe using two 

electronic levels to measure flatness of large flat mirrors.  Using two levels differentially 

allows surface slope measurements of large flat mirrors by removing common tilt 

between the levels.  One level is fixed, while the other level is moved across the mirror 

surface.  We provide measurement results on a 1.6 meter flat mirror.  Our method of 

measurement and data reduction resulted in measurement of surface accuracy to 50 nm 

rms. 

2.1. Introduction 

Traditionally, large flat mirror testing can be difficult and expensive.  The Ritchey-

Common test (described in Chapter 1), for example, requires a reference spherical mirror 

larger in size than the test surface.  The test is straight forward on a smaller scale; 

however, aligning large optical components is a difficult and time consuming process.  
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The impact on schedule makes this test expensive for large optics.  To overcome this 

problem, we introduce a simple and cost effective slope test that uses two high precision 

electronic levels. 

Since the mid-1900’s techniques have been developed to measure flatness of 

surfaces, namely industrial surface plates [23].  Methods to estimate the uncertainty in the 

measurements to calibrate the surface plates have also been developed [23-24].  The first 

measurement instruments included an analog autocollimator with a sliding mirror aligned 

to the autocollimator.  The autocollimator measured angle deviations in the surface by 

sliding the mirror along measurement lines over the surface plate.  Height profiles were 

obtained by integrating the measured angle deviations or slopes.  In the 1990’s high 

precision electronic levels were introduced and became commercially available.  The 

measuring principle of electronic levels is based on a friction free pendulum suspended 

between two electrodes.  A deflection to the pendulum changes capacitance between the 

electrodes, which is detected by a transducer and translated to an angle reading.  Due to 

their ease of use and cost effectiveness the electronic levels replaced the autocollimator 

and mirror for measuring flatness of surfaces.  One benefit of electronic levels is that 

their use does not require the skill needed to operate an autocollimator.  Also, the angle 

readings can be recorded from a digital display or an acquisition system, which is a major 

advantage over the time consuming process of manual data recording. 

At the University of Arizona Optical Engineering and Fabrication Facility (UA-

OEFF), we extended the concept of measuring flatness of surface plates to optical 

surfaces.  A significant advantage of using electronic levels for surface measurements of 
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large mirrors during fabrication is that the mirror can remain on the polishing supports.  

In contrast, other types of test systems may require moving the test mirror to a testing 

fixture.  In addition to measurement efficiency, their ease of use and cost effectiveness 

make the electronic levels ideal for flatness measurements of large mirrors during 

manufacturing. 

The concept of using uni-axis electronic levels for large flat mirror measurements 

is first introduced in Section 2.2.  Section 2.3 provides the measurement sensitivities and 

the error analysis.  Next, Section 2.4 provides results of flatness measurements on a 1.6 m 

flat mirror.  In Section 2.5 a comparison of the electronic levels and the scanning 

pentaprism tests is performed and the results are provided.  Section 2.6 describes a 

conceptual implementation of dual-axis electronic levels for flatness measurements on 

large flat mirrors.  A Monte Carlos simulation of dual-axis electronic levels for surface 

measurements is also presented.  Finally, the concluding remarks are provided in Section 

2.7. 

2.2. Test Concept 

2.2.1. High precision electronic levels measurement system 

A single high precision electronic level measures inclination of a surface, α, very 

accurately, as shown schematically in Figure 2.1.  Two levels used differentially allows 

for surface slope measurements along the pointing direction where one level provides the 

reference measurement, B, and the other level provides measurement A.  The differential 

measurement is the difference in the angular reading of the two instruments, A – B.  The 
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reference level is normally fixed while level A is moved over the surface maintaining the 

common pointing of both levels.  Typically, this mode of measurement is used to 

measure flatness of surface plates.  In our case, we measure the flatness of large mirrors. 

 

 

FIGURE 2.1.  Schematic of the set up for measuring surface inclination with the 
electronic level. 
 

Two high precision uni-axis electronic levels (Leveltronic NT made by Wyler AG 

[25]) were procured along with the necessary hardware and electronics.  Uni-axis, as 

opposed to dual axis, levels can only measure inclination in the pointing direction.  The 

standard steel base plates were replaced with custom aluminum plates and three tungsten 

carbide half-spheres for surface contact, as shown in Figure 2.2. 

Maintaining the pointing of both levels is important when measuring flatness of 

large mirrors.  To ensure single line scans, a fiberglass guide rail was fabricated to fit 

over the flat mirror as shown in Figure 2.3.  The guide rail ensured consistent pointing of 

the levels, and also provided repeatable measurement locations. 
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FIGURE 2.2.  A Wyler Leveltronic NT electronic level with a custom aluminum three-
point base plate for stable positioning. 
 

 

FIGURE 2.3.  Top view of the electronic levels measurement set up for flatness 
measurements.  A fiberglass guide rail secured to the mirror maintained the pointing of 
the electronic levels. 
 

2.2.2. Principles of operation 

To measure surface slopes the two levels were always used differentially.  In this mode, 

the reference level remained fixed anywhere along the guide rail while the other level 
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was scanned along the guide rail across the diameter of the mirror.  The scanning level 

was placed at several positions along the guide rail ensuring that the part was well 

sampled to avoid aliasing of the surface modes of interest. 

 

 

FIGURE 2.4.  Schematic of differential slope measurement on an optical surface using 
two electronic levels. 
 

A workstation running LabVIEW was used for data acquisition.  For each 

measurement position 50 data points were acquired and averaged.  The measurement 

positions on the mirror were recorded along with the slope reading for that position.  The 

slope data, measurement positions, and other measurement parameters (e.g. mirror 

diameter, number of measurement points for each scan, number of scans, etc.) were saved 

into a text file.  The text file was then imported into the analysis software, which reduced 

the slope data into low order Zernike aberrations through a least squares calculation.  The 

outputs were the Zernike coefficients (in µm), a fitted two dimensional surface map, and 

statistics on the fitted surface map 
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2.2.3. Fit using Zernike polynomials 

Since the electronic levels measured slope change, we performed the analysis using a 

basis set of slope functions derived from the Zernike polynomials.  If the surface error is 

described by 

 ( ) ( )∑= yxZayxS ii ,,  (2.1) 

where iZ  are the Zernike polynomials in Cartesian coordinates and ia  are their 

coefficients, and measurements made in a direction is defined by 

 θθ sinĵcosî + , (2.2) 

then the slope data can be expressed as 

 ( ) ( ) ( )∑ +⋅∇= θθθα sinĵcosî,,, yxZayx ii

v
, (2.3) 

where ( )yxZi ,∇
v

 is the gradient of the Zernike polynomials and forms a dot product with 

the measurement direction.  The low order Zernike aberrations and their gradients are 

shown in Table 2.1. 

The analysis software creates a matrix of low order slopes and a vector of 

measured surface slopes.  Through a least squares calculation, the Zernike coefficients 

are determined by 

 [ ] [ ] [ ]'\ za α= , (2.4) 

where [ ]'z  is a matrix of gradients of the Zernike polynomials projected in the 

measurement direction 

 [ ]α  is a vector of measured slope variations across the mirror surface.   
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 The “\” operator is used in Matlab [26] for the least squares fit.  After the 

coefficients are determined, the Zernike polynomials are used to generate a two 

dimensional surface topology of the flat mirror. 

 

TABLE 2.1.  List of the low order Zernike (UofA) polynomials and their gradients. 
 

Aberration Zernike Gradient 

Power Z4 = 2(x2 + y2) – 1 4xî + 4yĵ 

Astigmatism 
Z5 = (x2 – y2) 2xî – 2yĵ 

Z6 = 2xy 2yî + 2xĵ 

Coma 
Z7 = 3(x3 + xy2) – 2x  (9x2 + 3y2 – 2)î + 6xyĵ 

Z8 = 3(x2y + y3) – 2y 6xyî + (3x2 + 9y2 – 2) ĵ 

Spherical Z9 = 6(x4 + y4) – 6(x2 + y2) + 1 12x(2x2 – 1)î + 12y(2y2 – 1)ĵ  

Trefoil 
Z10 = x3 – 3xy2 3(x2 + y2)î – 6xyĵ 

Z11 = 3xy2 - y3 6xyî + 3(x2 – y2)ĵ 
 

 

FIGURE 2.5.  Coordinate system for defining the Zernike polynomials (ρ is the 
normalized radial coordinate and θ is the measurement direction). 
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2.3. Analysis 

2.3.1. Sensitivity analysis:  sampling for low order Zernike aberrations 

A single line scan across the mirror does not sample all the low order Zernike aberrations 

shown in Table 2.1.  The asymmetrical aberrations have orthogonal components, sine and 

cosine.  Measuring for both components of astigmatism, for example, requires three line 

scans in different directions (e.g. three line scans separated by 120° as shown in Figure 

2.6c).  Three scans also allow averaging for power to reduce noise.  Figure 2.6 shows 

other types of sampling arrangements that measure the low order aberrations. 

 

 

FIGURE 2.6.  Sampling requirements for measuring low order Zernike aberrations.  The 
dashed lines represent electronic level scan lines. 
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Scans through the center of the mirror are not a requirement.  The scans can be 

offset from center; the aberrations measured still hold for the number of line scans made.  

The mirror surface should be well sampled along each scan line to avoid aliasing of the 

surface modes.  For example, we periodically sampled for secondary spherical aberration.  

Sampling for secondary spherical requires a minimum of five measurement points across 

the diameter of the mirror, but this leaves a large measurement uncertainty for secondary 

spherical due to noise (discussed in more detail in Chapter two).  More measurement 

points across the mirror will reduce the uncertainty. 

Figures 2.7 and 2.8 show how the slope measurements would appear for the low 

order aberrations if the three line scans (at 0°, 120°, and 240°) shown in Figure 2.6c were 

performed.  The plots are normalized by assuming the Zernike wavefront coefficients are 

1 µm.  The amount of each low order term is determined using the least squares fit to the 

measured slope data. 

The three line scans have excellent sensitivities to the low order aberrations, 

except for Zernike 11 (sin trefoil).  Trefoil is, thus, not adequately sampled with the three 

line scans.  To fix this, four line scans shown in Figure 2.6d is required.  To avoid 

aliasing, a minimum of three measurement points across the mirror diameter is required 

to measure all the low order aberrations (spherical aberration requires the most number of 

measurement points).   But as pointed out previously, the measurement uncertainty due to 

noise will be high for a small number of measurement points. 
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FIGURE 2.7.  Simulated three line scans (separated by 120°) for low order surface errors 
described by single Zernike polynomial terms (power, astigmatism, and spherical 
aberrtaion). 
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FIGURE 2.8.  Simulated three line scans (separated by 120°) for low order surface errors 
described by single Zernike polynomial terms (coma and trefoil). 
 

2.3.2. Error analysis 

Drescher [20] reported on a method for estimating uncertainty in the surface slope 

measurements of industrial surface plates.  We applied a similar analysis for measuring 

optical surfaces.  The error sources can be separated into two categories:  random and 

systematic errors.  The random errors can be controlled through data averaging.  The 
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systematic errors are fixed and cannot be eliminated, but they may be minimized after 

characterizing them. 

 

 

FIGURE 2.9.  Measured noise in the electronic levels after removing linear drift (1σ = 
0.15 μrad).  Sample period = 3.3 Hz (full rate). 
 

Random errors: 

1. There is inherent noise associated with the electronic levels.  We measured the noise 

floor of the levels to less than 0.2 µrad.   The plot in Figure 2.9 shows a typical 

continuous measurement exhibiting noise after removing the drift effect.  The continuous 

measurement was performed over one hour at the full sampling rate of the device (3.3 

Hz) in the same environment in which the optical surface slope measurements were 

performed. 
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2. There was drift observed in the measurements due to environmental effects, notably 

thermal.  The magnitude and direction of the drift seemed to be random in nature.  The 

plot in Figure 2.10 represents a typical continuous measurement that shows drift and 

noise.  The levels were placed on a flat rigid surface and allowed to settle and equilibrate 

for one hour.  Measurements were then continuously taken over another hour at the full 

sampling rate of the device. 

 

 

FIGURE 2.10.  Measured drift and noise over 60 minutes.  The amount of drift is about 
1.75 μrad over 60 min (30 nrad/min). 
 

The plot shows the level drifted about 1.75 µrad over 60 minutes or 30 nrad per 

minute.  To minimize the drift effect, a reference measurement was always acquired that 

accompanied the data point.  The reference measurement was then subtracted from the 

data.  The two measurements were acquired in rapid succession that was much less than 
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the time constant of the drift.  For example, a full measurement performed at one position 

on the mirror in three minutes introduced about 90 nrad of error. 

3. The fiberglass guide rail used to maintain the pointing of the levels was not perfectly 

straight.  The straightness was specified to less than 0.5 mm/m.  This caused an error in 

pointing and coupling of the reading between the orthogonal axes, thus the slope error in 

the x direction became 

 θαα Δ×=Δ yx , (2.5) 

where αy is the slope in y 

 Δθ is the error in pointing (0.5 mrad).   

For a ground mirror surface, the slopes can vary by no more than 4 nrad per mm.  

The contact point spacing of the electronic levels in the y direction was 64 mm, thus the 

slope in y vared by 256 nrad.  The error in the slope reading in the x direction was then 

0.13 µrad. 

4. The slope error due to placement and setting of the levels is described by 
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The fiberglass guide rail helped constrain the placement of the levels to 2 mm in 

the pointing direction x and to 0.5 mm in the y direction.  If the surface slopes varied by 4 

nrad/mm, then the placement error caused about 8 nrad in the measurement direction. 
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5. The residual error from the slope fit calculation consistently introduced an uncertainty 

of about 0.13 µrad.  This error can be reduced by including more measurement points 

across the mirror. 

Systematic errors: 

There is only one systematic error to consider. 

1. The gravity effects on the pendulum may introduce an additional angle deflection.  The 

assumption was the level pendulum always pointed in the direction of gravity for 

reference.  However, the force of attraction between the pendulum and a nearby large 

object can cause an additional deflection to the pendulum, thus changing the slope 

measurements. 

The attracting force between two objects is defined by 

 2
21

r
mmGF = , (2.7) 

where G is the gravitational constant 

 m1 and m2 are the masses of the two objects 

 r is the distance between the objects.   

The force in Equation 2.7 on the pendulum can cause an additional deflection by 

amounts shown in the plot in Figure 2.11.  The plot shows, however, that an object must 

be about 7,000 kg (8 tons) and 0.5 m away to have a noticeable effect on the slope 

measurements.  The only large object in close proximity to the mirror was the polishing 

machine which weighs about 3 tons (2,722 kg).  The force of attraction between the 
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polishing machine and the level pendulum would then cause an error of less than 0.1 

µrad. 

 

 

FIGURE 2.11.  Simulated changes in pendulum angle due to force of attraction between 
the pendulum and nearby large objects. 
 

TABLE 2.2.  Sources of error for slope measurements that are assumed uncorrelated (for 
a single level). 
 

       Error source Value (μrad) 

     Noise in the levels and calibration 0.25 

     Drift due to environment 0.10 

     Axes coupling (guide rail) 0.13 

     Levels placement and setting 0.01 

     Software residual fit error 0.13 

Root sum square 0.33 
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Table 2.2 shows a summary of the error sources and their values.  A root sum 

square (RSS) of all the error sources that are uncorrelated is about 0.33 µrad for a single 

level.  The error from gravity effects then limits the accuracy of the level to about 0.4 

µrad. 

A Monte Carlo simulation of the three line scans (shown in Figure 2.6c) on a 2 m 

flat mirror was performed to determine the sensitivities of the low order Zernike 

aberrations using an uncertainty of 0.56 µrad for a single differential measurement.  This 

analysis assumed 12 measurement points per scan.  From the result of the simulation, the 

measurement uncertainty of each of the low order aberrations can be estimated.  Table 

2.3 shows that the expected accuracy for the measurement of a 2 m flat mirror is 50 nm 

rms of low order aberrations.  

 

TABLE 2.3.  Measurement uncertainty for the low order Zernike aberrations with the 
uni-axis levels. 
 

Zernike aberration Measurement uncertainty (nm rms) 

Power 16 

Cos Astigmatism 29 

Sin Astigmatism 29 

Cos Coma 11 

Sin Coma 11 

Spherical 8 

Secondary Spherical 6 

Root sum square 50 
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2.3.3. Other scanning arrangements for uni-axis electronic levels 

There are other possible scanning arrangements for measuring surface slopes in large flat 

mirrors using uni-axis electronic levels.  Figure 2.12 shows orthogonal scans with up-

down (a) and left-right (b) pointing directions.  The data analysis remains the same for 

these scanning arrangements.  These types of scanning arrangements were not performed 

during this work. 

 

 

FIGURE 2.12.  Orthogonal scans with up-down (a) and left-right (b) pointing directions 
using uni-axis electronic levels. 
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2.4. Measurement of a 1.6 Meter Flat Mirror 

2.4.1. Single line scan 

A single line scan, as shown in Figure 2.6a, provides information only on symmetrical 

aberrations (e.g. power).  Figure 2.13 shows the result of a single line scan on the 1.6 m 

mirror while in was in production.  The top left plot (2.13a) shows the measured surface 

slopes with 12 measurement points and a fit to them using slope functions for power and 

spherical.  The bottom left plot (2.13b) shows the surface profile in microns after 

determining the Zernike coefficients.  The right plot (2.13c) shows the two dimensional 

fitted surface map and the scan made on the mirror.  All of the plots are normalized in 

radius. 

 

 

FIGURE 2.13.  (a) Low order symmetrical Zernike aberrations fitted to measured slope 
data.  (b) Surface profile of the fitted surface map.  (c) The corresponding two 
dimensional fitted surface map with 680 nm PV and 160 nm rms. 
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The results shown in Figure 2.13 yielded an overall surface error of 160 nm rms:  

127 nm rms was attributed to power and 128 nm rms to spherical.  

2.4.2. Three Line Scans 

The three line scans, as shown in Figure 2.6c, provide information on all the low order 

Zernike aberrations, except for trefoil.  Figure 2.14a shows the result of the three line 

scans on the same 1.6 m flat mirror (at an earlier time in the fabrication process) and fits 

to them using slope functions of the low order Zernike polynomials.  For this set of 

measurements we did not sample the center of the mirror. 

Figure 2.14b shows the generated two-dimensional surface map and the line scans 

after the least squares calculation of the Zernike coefficients.  The resulting surface map 

shown in Figure 2.14b yielded 295 nm rms of overall surface error.  Table 2.4 shows a 

breakdown of error contributions from the low order aberrations. 
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FIGURE 2.14.  (a) Fit to measured surface slopes along three line separated by 120°.  (b) 
The resulting surface map of the three line scan (295 nm rms). 
 

TABLE 2.4.  Values of the low order Zernike coefficients after fit to surface slopes. 
 

Zernike Aberration Value (nm rms) 

Power 280 

Cos Astigmatism -97 

Sin Astigmatism 33 

Cos Coma -65 

Sin Coma 6 

Spherical -141 
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2.5. Comparison of the Electronic Levels and Scanning Pentaprism 
Tests 

This section presents the results of the comparison of the electronic levels and the 

scanning pentaprism test.  Both test systems measured surface slopes with the scanning 

pentaprism providing higher measurement accuracy.  To validate the measurements with 

the electronic levels, the 1.6 m flat was measured with both test systems while the mirror 

was in early production.  The same direction on the mirror was measured and 10 

measurement points were acquired with both test systems.  The sampling spacing 

between the two systems differed, however. 

Figure 2.15 shows the results from the electronic levels test, and Figure 2.16 

shows the results from the scanning pentaprism test.  Table 2.5 shows (for comparison) 

the surface statistics from both tests after power and spherical aberration were fit to the 

slope data.  Table 2.6 shows the difference in the data from both tests. 
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Results from the Electronic Levels Test 

 

FIGURE 2.15.  Measurements on the 1.6 m flat with electronic levels.  (a) Slope 
measurements and fit to the slope data.  (b) A fitted surface map after determining the 
Zernike coefficients through a least squares fit. 

 

Results from the Scanning Pentaprism Test 

 

FIGURE 2.16.  Measurements on the 1.6 m flat with the scanning pentaprism test. (a) 
Slope measurements and fit to the slope data.  (b) A fitted surface map after determining 
the Zernike coefficients through a least squares fit. 
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TABLE 2.5.  Zernike coefficients for power (Z4) and spherical aberration (Z9) after fits 
to the slope data. 
 
 Electronic levels  Scanning pentaprism 

 rms (nm) peak-valley (nm)  rms (nm) peak-valley (nm) 

Power 261 903  248 859 

Spherical -101 -339  -125 -420 

Surface 245 941  243 959 
 
 
TABLE 2.6.  Difference in the Zernike coefficients for power (Z4) and spherical 
aberration (Z9), and the overall surface. 
 
 Difference 

 rms (nm) peak-valley (nm) 

Power 13 44 

Spherical 24 81 

Surface 2 18 
 

In addition to the different sampling spacing, the measurements between the electronic 

levels and the scanning pentaprism differed for two reasons: 

1. The measurement accuracy of the electronic levels is 16 nm rms for power and 8 nm 

rms for spherical aberration (provided in Section 2.3.2).  The measurement accuracy 

of the scanning pentaprism is 9 nm rms for power and 2 nm rms for spherical 

aberration (provided in Section 3.4.8). 

2. The measurement sampling is about 40 mm for the scanning pentaprism (spot size on 

the test mirror), and about 140 mm for the electronic levels (contact points spacing).  
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This causes the same effect as averaging the surface slopes over the measurement 

sampling, but it is less of a problem for low order aberrations sampling. 

The results of the comparison show that both test systems agree to within the 

measurement accuracy of the electronic levels, thus validating the electronic levels 

measurements. 

2.6. Implementation with Dual Axis Electronic Levels 

The scanning arrangements shown in Section 2.3.3 can be accomplished more efficiently 

with dual axis electronic levels as shown in Figure 2.17.  Dual axis levels can measure 

two orthogonal axes simultaneously:  the pointing direction and the direction orthogonal 

to it.  Although we did not procure dual axis levels during the work reported here, they 

are available commercially.  In this section, we analyze the performance of such levels 

through Monte Carlo simulations assuming the same type of measurement accuracies for 

both axes as for the uni-axis levels. 

The data reduction remains the same for the dual axis levels.  Slopes in 

orthogonal directions will be known for each measurement point; the common pointing 

of the levels must still be maintained.  The errors contributing to uncertainty in the 

measurement can be treated in the same manner as for the uni-axis levels.  With dual axis 

levels, measurements on a square grid can be made instead of scans through the center of 

the mirror to take advantage of the slope information in orthogonal axes (Figure 2.18). 
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FIGURE 2.17.  Schematic of performing simultaneous orthogonal measurements with 
dual axis levels.  The advantage of dual axis levels over uni-axis levels is measurement 
efficiency. 
 

 

FIGURE 2.18.  Potential sampling arrangement with the dual axis levels (nine 
measurement points on a square grid). 
 

The sampling arrangement shown in Figure 2.18 can accomplished with three line 

scans with dual axis levels.  Accomplishing the same scans with the uni-axis levels would 

require making six line scans, instead of three, demonstrating that dual axis levels can 

increase measurement efficiency. 
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Figure 2.19 shows the results of two measurement simulations with dual axis 

electronic levels.  The sampling arrangements with dual axis levels shown in Figure 2.19 

do not adequately sample astigmatism.  To fix this, additional measurements on a rotated 

measurement grid is required.   

 

 

FIGURE 2.19.  A simulation result of dual axis levels measurement on a 3 × 3 (a) and 5 × 
5 (b) square grids assuming the same level of measurement uncertainty as for the uni-axis 
levels. 
 

The advantage provided by dual axis electronic levels is efficiency, providing 

twice the information in a single measurement.  Due to this fact, UA-OEFF is interested 

in obtaining dual axis electronic levels to do flatness measurements on large flat mirrors 

in the future. 

2.7. Conclusion 

The conventional measurement methods of large flat mirrors are often difficult and 

expensive.  We provided an analysis of a high precision electronic level measurement 
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system that uses gravity as a reference and measures flatness in large flat mirrors with an 

option to measure other low order aberrations.  The sources of error that limit the 

accuracy of the system were quantified; the errors are minimized through data averaging, 

using a guide rail, and making reference measurements.  A Monte Carlo simulation of the 

system performance was performed based on the measurement uncertainty estimated 

from the error analysis.  The simulation result showed the uncertainty in the measured 

low order Zernike aberrations and measurements to 50 nm rms of low order aberrations 

are achievable for 2 m class flat mirrors.  The accuracy, efficiency, and low cost of the 

test system are ideal for testing of large flat mirrors.  This test system can be used to 

guide polishing during the early stages of manufacture.  In addition, the portability of the 

test system allows the test flat to be tested on the polishing table without moving the test 

flat to a testing fixture. 
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CHAPTER 3 

ANALYSIS OF A SCANNING PENTAPRISM SYSTEM FOR 

MEASUREMENTS OF LARGE FLAT MIRRORS 
 

 

We present an absolute test used to determine shape errors in large flat mirrors by 

measuring slope variations across the surface.  The system uses two pentaprisms aligned 

to a high resolution electronic autocollimator.  The pentaprisms deflect the collimated 

beam from the autocollimator nominally by 90° to the mirror surface, and the beam then 

returns on itself.  The collimated beam is scanned across the flat mirror using motion of 

one of the pentaprisms on a linear stage.  Any additional deflection in the return beam 

from the scanning prism provides a direct measurement of the shape error in the mirror 

surface.  Misalignments and motions in the autocollimator and prisms that occur during 

scanning introduce second order error influences to the return beam.  An active feedback 

system aids in maintaining the alignment of the prisms to minimize the error influences.  

Using this methodology, we measured 11 nm rms power in a 1.6 meter diameter flat 

mirror.  The system can be used in a scanning or non-scanning mode, which measures 

only θ dependent aberrations. 
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3.1. Introduction 

This chapter describes and analyzes a highly accurate optical slope test for very large flat 

mirrors.  The test system consisted of a high resolution electronic autocollimator and two 

pentaprisms.  A second electronic autocollimator was used as part of an active feedback 

control system to maintain the angular alignment of the scanning pentaprism during the 

scanning operation. 

In optical surface metrology, systems with pentaprism(s) are used where 

conventional interferometric testing would otherwise be difficult or limited [27-28].  Two 

commonly used methods for testing flat mirrors interferometrically are the Fizeau test 

and the Ritchey-Common test.  Both tests, described in Chapter 1, have limitations in 

terms of size for the Fizeau test and difficulty in performing the test on large mirrors for 

the Ritchey-Common test.  We have developed a slope test system that overcomes these 

limitations. 

The scanning pentaprism test system is highly accurate for measuring flatness in 

large flat mirrors.  The system performance is limited in accuracy by second order error 

influences due to coupling of misalignments and motions in the autocollimator, 

pentaprisms, and test surface, and beam and prism errors coupling into lateral motion of 

the scanning pentaprism.  The system discussed in this chapter built on a previous 

scanning system, which was designed to deflect the autocollimator beam upward to a flat 

mirror suspended above the test site and used off the shelf hardware [27-28].  In contrast, 

the new system deflected the collimated beam down to where the large test mirror rested 

on stable mechanical supports and used custom hardware.  In addition to custom 
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hardware, alignment and data analysis techniques were modified in an effort to make the 

system more stable and accurate.  The entire integrated test system, although heavy (~200 

kg), is kinematic and can be transported by a hoist. 

3.1.1. Systems with pentaprisms 

Pentaprisms are used to deflect light beams at a constant angle (nominally by 90°) 

regardless of its orientation in the line of sight direction.  Various optical test systems and 

devices involving pentaprisms make use of this unique property.  Many systems 

involving pentaprisms have been developed to measure optical surface errors by 

measuring surface slopes [27-30].  Simply integrating the slope data gives surface height 

profiles.  Through multiple measurements of the optical surface in different directions, a 

full synthetic surface map can be obtained.  Other systems with pentaprisms are used to 

aid in optical alignments or in optical recording heads.  Sensitive optical alignments and 

error corrections are made possible by the ability of the pentaprisms to project collimated 

and nominally parallel reference beams onto optical surfaces.  Efforts have been made to 

understand the error influences in pentaprism systems [31-33].   Some systems have been 

refined to make them more accurate and less sensitive to alignment and motion errors 

[31-43]. 

The scanning pentaprism system design and development is presented in Section 

3.2.  This includes the system hardware, integration and alignment.  The results and 

performance for 1.6 m flat mirror measurements are presented in Section 3.3.  Finally, an 

analysis of error sources that limit the accuracy of the system and Monte Carlo analysis 
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of the sensitivities of the Zernike aberrations to noise are presented in Section 3.4.  The 

concluding remarks are provided in Section 3.5. 

3.2. System Design and Development 

3.2.1. Test concept 

In this section we discuss the design and test concept of the scanning pentaprism system.  

A schematic diagram of the test set up is shown in Figure 3.1.  Two pentaprisms were co-

aligned to a high resolution electronic autocollimator.  Both prisms deflected the 

collimated beam from the autocollimator nominally by 90° to the mirror surface.  The 

beams reflected off the test surface and returned to the autocollimator where small angle 

deviations revealed slope errors in the mirror surface.   

 

 

FIGURE 3.1.  Schematic of the scanning pentaprism test system.  The system used two 
electronic autocollimators (measurement and alignment) and two pentaprisms aligned to 
the measurement autocollimator. 
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The system can be used in a scanning or non-scanning mode.  In the scanning 

mode, the reference prism remained fixed while the scanning prism was translated over 

the mirror surface.  Since the autocollimator can only measure one return signal at a time, 

electronic shutters were used to alternately select the reference path and the scanning 

path.  By taking a difference between the two prisms, the measurements became 

insensitive to the motion of the mirror or the autocollimator in the measurement direction 

or pitch (defined in Figure 3.2).  An integration of the slope data provided surface height 

profiles along the scanning direction.  The alternative method to integration is to fit low 

order slope functions derived from the Zernike polynomials to the slope data through a 

least squares calculation.  The description of this method was given in Chapter two.  Two 

dimensional surface topology maps were then generated from the Zernike polynomials 

after several scans at different orientations over the mirror. 

In the non-scanning mode, both prisms remained fixed and the flat mirror under 

test was rotated while data was acquired continuously.  Typically, the reference prism 

was positioned at one edge of the mirror, and the scanning prism was positioned at the 

center of the mirror.  The non-scanning mode measured only θ dependent aberrations 

such as astigmatism (2θ) and trefoil (3θ). 

The pentaprism system allowed slope determination only in the scan direction.  

We call this direction the line of sight pitch or in-scan direction.  The prism degrees of 

freedom (pitch, yaw, and roll) are defined in Figure 3.2.  Coupling between 

misalignments and motions of the prisms, autocollimator, and test surface in these 

degrees of freedom caused second order error influences to the beam line of sight.  
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Careful alignment of the scanning prism is required to minimize these errors.  A second 

autocollimator (UDT shown in Figure 3.1), aligned to a small return mirror attached to 

the scanning pentaprism, was used to maintain the scanning pentaprism in angular 

alignment through an active feedback control.  Sources of line of sight errors up to 

second order are listed in Table 3.1.  The line of sight pitch varies linearly with the 

autocollimator and test surface pitch angles, and quadratically with other angular 

parameters.  The first order effect of the autocollimator and test surface pitch motions 

were common to both the fixed and scanning prisms, so it was eliminated by performing 

differential measurements between the reference and scanning prisms. 

 

 

FIGURE 3.2.  Coordinate system and definition of the degrees of freedom for the 
autocollimator, scanning pentaprism and the test surface. 
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TABLE. 3.1.  Complete list of the line of sight alignment errors.  Only the second order 
errors contribute to the in-scan slope error. 
 

Contributions to line-of-sight pitch 
(in-scan direction) 

Contributions to line-of-sight roll 
(cross-scan direction) 

αAC βAC 

αTS
 βPP 

γPP
2 γPP 

γAC × γPP γTS 

γAC × βPP αAC × βPP 

γAC × γTS αAC × βTS 

γTS × γPP αAC × γAC 

γTS × βPP αAC × γPP 
α: pitch 
β: yaw 
γ: roll 

AC: autocollimator 
PP: pentaprism 
TS: test surface 

 

Pentaprism pitch motion sensitivity 

Small pitch motion of the pentaprism was expected.  This motion, however, had no effect 

on the beam deviation in the in-scan direction.  This is the beauty of the pentaprism:  the 

input beam is deviated at a constant (nominally) 90° angle, independent of small pitch 

errors.  We take advantage of this property.  As mentioned previously, this property 

makes the pentaprisms useful as reference beam projectors. 
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Pentaprism yaw and roll motion sensitivities 

The in-scan (vertical) and cross-scan (horizontal) angles are coupled for yaw and roll 

motions of the pentaprism.  The dependence is linear for yaw motion and quadratic for 

roll motion [31-33].   
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(b)      (c) 

FIGURE 3.3.  (a) Pentaprism yaw and roll scans.  (b) Linear dependence of the angle 
measured with the autocollimator on the yaw angle of the prism.  (c) Quadratic 
dependence of the angle measured with the autocollimator on the roll angle of the prism. 
 

Any misalignments in yaw and roll couple with autocollimator, pentaprism, and 

test surface motions to cause second order errors.  If the pentaprism is aligned, however, 

then the spot motion is the same for pentaprism roll and yaw motions.  The in-scan 
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measurement is then perpendicular to the spot motion caused by motions in pentaprism 

roll and yaw.  The noise over the amount of motions in roll and yaw gives the accuracy of 

the alignment.  For example, if the yaw and roll alignments of the pentaprism are 

maintained to 50 µrad, the line of sight pitch will vary by less than 10 nrad (shown in 

Section 3.4.2). 

Information from pentaprism yaw motion can be used to align both the 

autocollimator roll and the prism roll (Section 3.2.4).  Geckeler [31-33] derives the slope 

of the autocollimator angle readings (vertical versus horizontal) from the yaw scan as 

 ACTS
yaw
scan αα −=M , (3.1) 

which reveals information on the difference of the roll angles of the autocollimator and 

the test surface.  The autocollimator roll is aligned relative to the test surface when the 

slope, M, becomes zero.  In addition, Geckeler [31-33] derives the minimum of the 

parabola from the pentaprism roll scan (vertical versus horizontal) as 

 
yaw
scanACPP

roll
scan 5.0 MH +−= ββ , (3.2) 

which depends on the  pentaprism yaw, autocollimator yaw, and the result of the 

pentaprism yaw scan.  Both Equations 3.1 and 3.2 have dependence on pentaprism yaw, 

thus prism yaw can be used to align autocollimator roll (from Equation 3.1) and prism 

roll (from Equation 3.2). 

Beam collimation errors and alignment to the prism motion 

The errors in the autocollimator collimated beam couple with lateral pentaprism motion 

to cause second order slope errors.  We estimated that this effect caused 280 nrad slope 



75 
 

change per 1 mm of lateral prism motion.  This linear motion was aligned to less than 0.5 

mm along the beam, so the effect was limited to 140 nrad surface slope variation 

(discussed in Section 3.4.7). 

3.2.2. System hardware 

In this section, we describe the major components of the system.  This includes the 

mechanical and optical hardware and measurement units. 

Optical rails 

A major improvement in stability over the previous system was in the mechanical stage 

used for the scanning operation.  The current and new rail system consisted of two 2.5 m 

heavy duty steel rails spaced 20 cm apart and bridged by the pentaprism and 

autocollimator platforms, as shown in Figure 3.4.  The straightness of the rail system was 

measured with a laser tracker to better than 0.05 mm/m, a significant improvement over 

the previous rail system.  The advantage of the new rail system was that it limited the 

lateral and angular motion of the scanning pentaprism, resulting in less reliance on the 

active feedback control system.  In addition, the new rail system was less susceptible to 

vibrations and warping, which were notable drawbacks of the previous system.  The new 

rails and the feedback control system maintained the alignment of the pentaprisms to 

within 50 µrad in roll and yaw.  The rail system rested on a three point kinematic base, 

which allowed the test system to be removed and stowed when not in use. 
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FIGURE 3.4.  Solid model of the scanning pentaprism rail system showing the mounting 
platforms and the three point kinematic base. 
 

Autocollimators 

We used two electronic autocollimators.  The first was a high resolution autocollimator 

(Elcomat 2000 made by Moller-Wedel [44]) used for the surface slope measurements.  

The Elcomat 2000 provided a 40 mm collimated beam, which was projected onto the 

mirror surface using the two pentaprisms (as described previously).  The reflected beam 

was detected by the Elcomat and angle deviations caused by slope variations in the mirror 

surface were measured.  The Elcomat also functioned as part of the active feedback 

control system that monitored cross-scan motion due to prism roll and yaw motions. 

The second autocollimator had less angular resolution (model 3700 made by 

United Detector Technologies [45]).  The UDT 3700 autocollimator was aligned to a 

return flat mirror that was attached to the scanning pentaprism assembly (see Figure 3.1 
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or 3.5).  The UDT autocollimator was the main component of the active feedback control 

used to monitor the yaw motions of the scanning pentaprism.  The UDT autocollimator 

was insensitive to roll motion of the pentaprism, but the Elcomat sensed the line of sight 

roll, which was caused by the combination of the prism roll and yaw motions.  The prism 

roll was determined as the difference between the line of sight roll and the prism yaw.  

The UDT helped decouple the motions for the Elcomat.  The feedback control then 

maintained both the roll and yaw alignment of the scanning pentaprism to better than 50 

µrad (see Section 3.4.2). 

Pentaprisms and pentaprism mounts 

The first (reference) pentaprism had a coupling wedge that allowed about 50% 

transmission of the beam to the second (scanning) pentaprism, as shown schematically in 

Figure 3.1.  We estimated measuring through the reference prism with the wedge caused 

about 50 nrad rms measurement error in the scanning mode (see Section 3.5.2). 

The pentaprism holders provided secure mounts and remote adjustment of prism 

yaw and roll through Pico-motor™ linear actuators (see Figure 3.5).  The Pico-motor™ 

actuators were controlled through the feedback control system; any misalignments of 

prisms were fixed with sending commands to the Pico-motors™ to drive the prisms back 

into alignment.  The prism assemblies were mounted on rail cars, which moved on the 

two parallel steel rails. 
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FIGURE 3.5.  Pentaprism assemblies integrated into the system.  Electronically 
controlled shutters are located at the exit face of each prism.  The autocollimator system 
(not shown) is mounted to the left. 
 

Shutters 

We used two electronically controlled shutters.  The shutters were mounted between the 

prisms and the test mirror, as shown in Figure 3.5.  The shutters allowed alternating 

measurements between the prisms.  Shutter A was open and shutter B was closed when 

measuring though the reference prism occurred.  The shutter states were reversed when 

measuring through the scanning prism occurred.  A delay of a few seconds between 

shutter operation and data acquisition allowed vibrations caused by the shutters to damp 

out. 
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Wedge plate for pentaprism apex angle error compensation 

The reference pentaprism had a noticeable apex angle error.  The beam deviation of this 

pentaprism was 90° +ϕ, where ϕ is the additional beam deflection caused by the error in 

the prism apex angle.  A wedge plate was inserted at the output of the reference prism to 

compensate for the additional beam deflection.  We assumed the wedge plate introduced 

negligible errors to the measurement. 

3.2.3. System integration 

The system can be thought of as an assembly of subsystems.  The subsystems included 

1. Autocollimator system, 

2. Reference pentaprism assembly, 

3. Scanning pentaprism assembly, and 

4. Electronics including the workstation and software for the active feedback control. 

The rail system is the foundation upon which these subsystems were integrated 

(see Figure 3.5).  Subsystems one through three were mounted on separate carriage 

platforms.  The platforms can slide on the rail tracks.  Subsystems one and two were 

locked into position at one end of the rails.  The scanning pentaprism assembly, or 

subsystem three, was allowed to translate over the rails.  The electronics and cabling for 

feedback control were housed in a breakout box and mounted underneath the 

autocollimator system platform (not visible in Figure 3.6). 

The fully integrated system is shown in Figure 3.6.  The entire system can be 

lifted with a hoist and positioned kinematically over the large mirror. 
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FIGURE 3.6.  A fully integrated and operational scanning pentaprism test system.  The 
vertical post next to the Elcomat was used to mount a He-Ne laser for the initial 
alignment of the system.  Cabling attached to the pentaprism assemblies are used to 
control the Pico-motors™ through active feedback.  The UDT beam is folded with a 50 
mm mirror to the feedback mirror. 
 

3.2.4. System alignment 

The accurate alignment of the system, especially of the pentaprisms, is essential to slope 

measurement accuracy [27-40].  The system alignment was performed in several steps 

described below. 

1) The large flat mirror rested on stable mechanical supports and a high performance 

rotary air bearing table, which was initially leveled to gravity.  The pentaprism rails were 

also initially leveled to gravity, thus tilt between the test surface and the rails was 

minimized from the beginning. 

2) A standard He-Ne laser was mounted in place of the measuring autocollimator.  The 

laser was aligned to the rails by placing a crosshair target on the scanning pentaprism 

assembly, then pointing the laser at the crosshair while sliding the penataprism assembly 
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back and forth along the rails (shown schematically in Figure 3.7).  After the laser was 

well aligned to the rails (less than 0.25 mm/m), the scanning pentaprism was parked at 

the furthest point on the rails opposite the reference pentaprism. 

 

 

FIGURE 3.7.  Schematic showing the initial alignment of the pentaprisms in yaw.  The 
laser was reflected off the front faces of the prisms. 
 

3) The crosshair target was removed, and both prisms were aligned in yaw by walking the 

laser return spots (from the prism faces) through a pinhole placed after the laser (see 

Figure 3.7).  This procedure allowed the initial alignment of the scanning pentaprism in 

yaw to better than 120 µrad.   

4) The roll motion of the reference pentaprism was aligned by opening one shutter, 

reflecting the laser beam off the test mirror, and adjusting the roll of the pentaprism until 

the reflected laser spot returned through the pinhole.  The procedure was repeated for the 

scanning prism.  At this point the initial alignment of the scanning prism roll was also 

better than 120 µrad. 

5) Next, a return flat mirror (50 mm diameter) was placed in the path of the laser beam 

just before the scanning pentaprism.  The return mirror was secured and adjusted until the 
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reflected laser beam returned through the pinhole.  The laser and the pinhole were 

removed, and the measuring autocollimator was put in place.  The autocollimator was 

aligned to the return mirror in both the horizontal and vertical axes.  At this point the 

autocollimator was aligned to the rails and the pentaprisms to better than 120 µrad. 

6) The fine alignment was performed iteratively using the read-out of the autocollimator.  

While the test surface remained fixed, adjustments were made to the autocollimator and 

the pentaprisms.  Table 3.1 lists the angular motions that affected the beam line of sight 

pointing (pentaprism yaw and roll and autocollimator roll).  These are the motions that 

required alignment.  First, the reference pentaprism was scanned in yaw by 

approximately ±250 µrad, and the autocollimator horizontal and vertical angle readings 

were observed.  The behavior of this motion is linear on the angle readings (vertical 

versus horizontal angle) [31-33].  A finite slope in the angle readings indicated a 

misalignment between the autocollimator and test surface in roll [33].  With the test 

surface fixed, adjustment was made to the autocollimator to minimize this misalignment.  

After adjusting the roll of the autocollimator, the prism was re-scanned in yaw.  Roll of 

the autocollimator was aligned when the angle readings were no longer coupled for the 

prism yaw scan.  The procedure was repeated for the scanning prism.  The autocollimator 

roll was now aligned to better than 50 µrad. 

7) Next, the reference prism was scanned in roll by approximately ±250 µrad, and the 

autocollimator horizontal and vertical angle readings were observed.  The behavior of 

this motion is quadratic on the angle readings (vertical versus horizontal angle) [31-33].  

Any coupled readings indicated a misalignment of the prism in yaw.  Yaw of the prism 
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was adjusted, and the prism was then re-scanned in roll.  The prism yaw was aligned 

when no noticeable coupling remained between the angle readings during the roll scans.  

At this point, the roll motion was constrained to the vicinity of the quadratic minimum 

[33].  This procedure was repeated for the scanning prism.  Yaw and roll for both prisms 

were now aligned to better than 50 µrad.  At this point, the system was aligned and ready 

to use. 

3.3. System Performance 

The scanning pentaprism system can be used in two modes:  scanning and staring (non-

scanning).  Diagonal surface scans were performed in the scanning mode (see Figure 

3.8).  In the staring mode, circumferential scans were performed where both prisms 

remained fixed and the test flat rotated continuously while data was acquired (see Figure 

3.12). 

3.3.1. Diagonal line scans:  scanning mode 

In the scanning mode, the reference prism remained fixed and the scanning prism was 

scanned across the diameter of the mirror.  A diagram of three scan paths is shown in 

Figure 3.8.  This was achieved by rotating the test flat to two other positions after the first 

scan.  Using these three scans measured most of the low order aberrations [46].  The 

results of three line scans are not presented here, but a similar measurement with 

electronic levels was given and analyzed in Chapter two. 
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FIGURE 3.8.  Schematic showing three line scans with the scanning pentaprism.  This 
example shows the mirror being rotated in 120° steps for each scan. 
 

A single diagonal scan measures only rotationally symmetric aberrations, as 

presented in Chapter two.  Figure 3.9 shows the result of a single diagonal scan on the 

finished 1.6 m flat mirror.  The results from the interferometer measurements showed that 

the surface contained mainly symmetric errors (see Figure 3.11).  Power was the main 

surface error of interest, so only a single line scan was performed.  Forward and 

backward scans were performed for the same diagonal line, and the data were averaged.  

Only the slope functions derived from the symmetric Zernike polynomials were fit to the 

slope data.  The linear component of the polynomial fit to the slope data then revealed 

power in the flat mirror surface.  This measurement yielded 11 nm rms in power. 
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FIGURE 3.9.  Surface slope measurements with the scanning pentaprism system and a 
low order polynomial fit.  A linear component of the polynomial fit to the slope data 
gives information on power in the surface (11 nm rms). 
 

Comparison to interferometric data 

A radially normalized plot showing the scanning pentaprism slope data in comparison to 

the Fizeau interferometer data for the 1.6 m test flat is shown in Figure 3.10.  The figure 

shows that the scanning pentaprism data and interferometer data, first differentiated to 

obtain the surface slope, have no significant differences, except at the very edge where 

high slopes were observed.  The rms difference is about 160 nrad after removing the edge 

point, which is within the accuracy (given in Section 3.4) of the scanning pentaprism test 

in the scanning mode.  The large Fizeau interferometer cannot measure power, so the 

interferometer data was adjusted for power before the comparison.  The description of the 

large Fizeau interferometer is given in Chapter four. 
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FIGURE 3.10.  Comparison of the scanning pentaprism and the interferometer data.  The 
interferometer data was first diffentiated to get surface slope. 
 

 

FIGURE 3.11.  Fizeau interferometer measurement on the 1.6 m flat mirror. 
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The Fizeau interferometer used a 1 m custom reference flat and subaperture 

testing to measure the 1.6 m flat mirror [47].  The surface map, shown in Figure 3.11, is 

on the finished mirror after combining the subaperture measurements. 

3.3.2. Circumferential scans:  staring mode 

The circumferential scans provided information on aberrations that have θ dependence 

such as astigmatism (2θ) and trefoil (3θ).  Tilt between the autocollimator and the test 

surface has a 1θ dependence.  The main aberration measured in this mode was 

astigmatism. 

In the circumferential scans, both pentaprisms were fixed and the flat mirror was 

continuously rotated (see Figure 3.12).  The slope data were continuously acquired for 

several full rotations of the flat mirror.  The data were then averaged. 

 

 

FIGURE 3.12.  Circumferential scans, where both prisms were fixed and the mirror was 
continuously rotated, measured astigmatism and other θ dependent aberrations in the 
mirror surface. 
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For the scans shown in Figure 3.13a, the reference pentaprism (B) was parked 

near the edge of the large flat mirror, and the scanning pentaprism (A) was parked at the 

center of the mirror.  These measurements were performed while the mirror was in 

production.  The difference between the scans (Figure 3.13b) reveals the amount of 

contributions of low order aberrations with θ dependence (dominated by tilt). 

 

 

FIGURE 3.13.  Circumferential scans at the center and edge of the large flat mirror (a), 
and difference in the scans and fit (b).  The error bars in the scans indicate good stability 
of the rotary air bearing table. 
 

A least squares fit of the difference data was performed using a fitting function of 

the form 

 ( ) ( ) ( ) ( )θθθθ 2cos2sincossin 22110 babaaf ++++=  (3.3) 

( ) ( )θθ 3cos3sin 33 ba ++ . 
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Table 3.2 lists the aberrations with θ dependence and their coefficient values after 

the fit.  The last column shows the equivalent surface error for each θ dependent 

aberration. 

 

TABLE 3.2.  Aberrations with θ dependence measured with circumferential scans, fit 
coefficients and equivalent low order surface error. 
 

Aberration term Fit function term(s) 
Fit coefficients 

(μrad) 

Equivalent low 
order surface 

error 

Piston 0a  0.0294 --- 

Tilt ( ) ( )θθ cossin 11 ba +  0.6328, -1.2888 359 nm rms 

Astigmatism ( ) ( )θθ 2cos2sin 22 ba +  0.0366, -0.0043 15 nm rms 

Trefoil ( ) ( )θθ 3cos3sin 33 ba +  0.0993, -0.0283 18 nm rms 
 

3.4. Error Analysis 

3.4.1. Errors to line of sight beam motion 

There were several error sources that contributed to the line of sight beam pitch (or in-

scan) motion.  Below we describe the sources and quantify their effect on the beam line 

of sight. 
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3.4.2. Errors from angular motions of the pentaprisms, autocollimator and test 
surface 

Taking the second order terms listed in Table 3.1, an expression for the change in the in-

scan line of sight due to misalignments and angular motions of the pentaprism, 

autocollimator, and test surface can be derived as: 

 ( ) ( )TSPPPPACTSPPPPACPPPPLOS 2 γβγγγβγγγγα Δ+Δ+Δ+++Δ+Δ⋅=Δ  (3.4) 

 ( ) ( )PPPPTSPPPPTS βγγβγγ Δ+Δ++Δ+ , 

where each Δ term indicates the variation in prism, autocollimator, and test surface 

motion for that angle.  Equation 3.4 shows motions of the three components coupling 

with misalignments to cause second order errors.  Table 3.3 shows a summary of the 

error terms that coupled into the measurement in the in-scan direction, and Table 3.4 

shows the amount of contribution from each error term in Equation 3.4. 

 

TABLE 3.3.  Budget for alignment errors for the scanning pentaprism system. 
 

Parameter Description Tolerance 

γPP Initial misalignment of the prism roll < 0.13 mrad 

ΔγPP Variation in prism roll < 0.05 mrad rms 

γAC Misalignment of the autocollimator roll relative to 
direction of motion < 0.10 mrad 

ΔγAC Variation in autocollimator roll < 0.05 mrad rms 

βPP Initial misalignment of the prism yaw < 0.13 mrad 

ΔβPP Variation in prism yaw < 0.05 mrad rms 

γTS Misalignment of the test surface roll relative to the 
direction of motion < 0.10 mrad 

ΔγTS Variation in test surface roll < 0.01 mrad rms 
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TABLE 3.4.  Misalignment and perturbation influences on the in-scan line of sight. 
 

Contribution (terms from 
Eq. 3.4) 

Amount of line of sight deviation 
(nrad rms) 

2γPP × ΔγPP 13 

ΔγAC × γPP 7 

ΔγAC × βPP 7 

ΔγAC × γTS 5 

γAC × ΔγPP 5 

γAC × ΔβPP 5 

γAC × ΔγTS 1 

ΔγTS × γPP 1 

ΔγTS × βPP 1 

γTS × ΔγPP 5 

γTS × ΔβPP 5 

Root sum square 20 

 

3.4.3. Mapping error 

The slope errors in the polished test surface were expected to be less than 2 nrad/mm rms.  

The position of the scanning prism (or the beam) on the test surface was known to better 

than 2 mm.  The error due to the scanning prism position, thus, contributed about 4 nrad 

rms to the total error. 

3.4.4. Thermal errors 

The pentaprisms were made from BK7, which is fairly sensitive to temperature gradients 

(7.1 x 10-6/°C).  A linear temperature gradient in the prisms changes the index gradient 

and prism geometry.  The thermal analysis showed that a temperature gradient of 
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0.01°C/meter in the pentaprisms would cause an additional beam deflection in the line of 

sight direction of 17 nrad [48].  The test system was used in scanning and staring modes 

(see Section 3.3).  The time scale for the modes of operation was relatively short 

compared to the pentaprism’s thermal time constant.  In the scanning mode we estimated 

a single scan took one hour.  For a full measurement, three scans were performed that 

required about three hours to complete.  In the staring mode, a measurement typically 

took 10 to 15 minutes.  Only the variation in temperature gradients during the 3 hour scan 

in scanning mode and 10 to 15 minute scan in staring mode contributed to the line of 

sight errors.  The top level error budget allowed for change in the thermal gradient of 

±0.04°C/meter for the scanning case and ±0.02°C/meter for the staring case.  We then 

expected a line of sight error of up to 34 nrad rms and 17 nrad rms for scanning and 

staring cases, respectively. 

3.4.5. Combined random errors 

Table 3.5 shows the random errors for the pentaprism staring and scanning modes 

separately.  There was an additional error in acquiring the measurements from the 

scanning pentaprism through the fixed pentaprism.  This effect is included directly in 

Table 3.5. 
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TABLE 3.5.  Pentaprism test system independent measurement errors assumed to be 
uncorrelated. 
 

Error description 
Staring mode (nrad 

rms) 
Scanning mode (nrad 

rms) 

Autocollimator measurement 
uncertainty (range dependent)a 140 160 

Prism and beam angle variation 20 20 

Mapping error 4 4 

Thermal effects 17 34 

Effect of reference prism error 25 50 

Coupling of lateral motion -- 80 

Root sum square 145 190 
a manufacturer’s specification. 
 

3.4.6. Errors from coupling lateral motion of the pentaprisms 

Phase or amplitude variations in the collimated beam did not affect the system 

performance to first order, because these effects were common to both pentaprisms.  

These variations, however, were coupled with lateral motion of the scanning prism 

relative to the collimated beam.  Similarly, beam errors coupled with lateral motion of the 

scanning prism to cause second order errors.  Coupling of phase errors, diffraction 

effects, beam non-uniformity, and prism errors with lateral motion of the pentaprisms for 

the scanning system was analyzed by Mallik et al [27-28].  This analysis for our system is 

not repeated here; our system had better control of the lateral motion of the pentaprisms.  

The lateral motion of the scanning prism in our system was aligned and maintained to 0.5 

mm.  The combined effect of these errors was then estimated to be 80 nrad rms. 
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3.4.7. Analysis of errors due to beam divergence 

There was an additional error to consider that coupled into lateral motion of the 

pentaprism.  For typical uses of electronic autocollimators, a collimated output beam is 

assumed.  If the beam is slightly diverging, however, the angle readings are shifted by 

some amount proportional to the divergence angle.  In the scanning pentaprism system, 

the effect of the beam divergence can couple into lateral motion of the pentaprism 

causing a second order error.  To quantify this effect, a simple test was devised.  A 13 

mm circular aperture was placed at the output port of the measuring autocollimator.  The 

aperture was shifted up and down (in the line of sight direction) by about 18 mm from the 

top edge of the beam to the bottom edge as shown in Figure 3.14, and the change in the 

vertical (y-axis) angle reading was recorded for the two aperture positions. 

 

 

FIGURE 3.14.  Schematic showing the test set up to measure the effect of beam 
divergence on lateral prism motion. 
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For the case when the scanning pentaprism was close to the reference prism (1), 

the change in the autocollimator y-axis angle reading was about 10 µrad.  The scanning 

prism was then moved to the far edge of the flat mirror (2), and performed the aperture 

shifts.  For this case, the change in the y-axis angle reading was about 15 µrad.  From 

these measurements we can estimate that this effect caused 280 nrad slope change per 1 

mm of lateral motion.  The pentaprism linear motion was aligned to less than 0.5 mm 

along the beam, so the effect is limited to 140 nrad surface slope variation.  This 

systematic slope variation of ±70 nrad corresponds to surface power of less than 8 nm 

rms. 

3.4.8. Monte Carlo analysis of system performance 

A Monte Carlo simulation on the three diagonal surface scans separated by 120° was 

performed to determine the uncertainty distributions of the low order Zernike aberrations 

using a noise of 0.3 µrad rms for a single differential measurement.  This analysis 

assumed 42 measurement points per scan.  From the simulation the measurement 

uncertainty of each of the low order aberrations can be estimated as shown in Table 3.6.  

The simulation result in Table 3.6 shows that a 2 m flat mirror can be measured to 14 nm 

rms of low order aberrations with the scanning pentaprism system after careful system 

alignment.  The measurement of power has 8 nm rms due to the systematic effect listed 

above, limiting the surface power measurement to 9 nm rms. 
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TABLE 3.6.  Scanning pentaprism measurement uncertainty for the low order Zernike 
aberrations assuming 0.3 µrad rms noise for a single differential measurement, three line 
scans, and 42 measurement points per scan. 
 

Zernike aberration 
Measurement accuracy 

(nm rms) 

Power 9 

Cos Astigmatism 8 

Sin Astigmatism 8 

Cos Coma 4 

Sin Coma 4 

Spherical 2 

Secondary Spherical 2 

Root sum square 16 

 

3.4.9. Monte Carlo analysis of sensitivity to noise and number of measurement 
points per scan 

Figures 3.15 through 3.17 show additional results of Monte Carlo simulations of the 

sensitivities of the low order Zernike aberrations to noise and the number of 

measurements points per scan.  The analysis assumes three diagonal line scans (separated 

by 120°) across a 2 m flat mirror and measurement noise normalized to 1 µrad rms.  The 

measurement spacing was varied for each number of measurement points to get a 

distribution of the measurement uncertainty.   

The sensitivities should get better as 
N
1 , where N is the number of measurement 

points per scan.  An equation of the form 

 2/1−= ANε  (3.5) 
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was, therefore, fitted to the data points, where ε is the measurement uncertainty and A is 

the sensitivity to noise.  The coefficient A was determined that allowed that best fit 

through the data points.  In addition to verifying the 
N
1  effect on the measurement 

uncertainty, the analysis also shows that the sensitivities of the aberrations depend on the 

how the measurement points are distributed across the mirror diameter.  For example, 

varying the sample spacing of the five measurement point across the mirror gives a 

distribution of the uncertainty values, as seen in the proceeding plots. 

 

TABLE 3.7.  Summary of the values of the sensitivity to noise for the proceeding plots 
(Figures 15 through 17). 
 

 

Power (Z4) 

Cos 
Astigmatism 

(Z5) 

Sin 
Astigmatism 

(Z6) 
Cos Coma 

(Z7) 
Sin Coma 

(Z8) 
Spherical 

(Z9) 

A 110 185 180 84 84 56 
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FIGURE 3.15.  Power (Z4) and spherical aberration (Z9) sensitivity to noise and number 
of measurement points per scan.  Three line scans (separated by 120˚) on a 2 m flat 
mirror and 1 µrad rms noise were assumed.  A = 110 for power and A = 56 for spherical 
aberration. 
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FIGURE 3.16.  Astigmatism (Z5, Z6) sensitivity to noise and number of measurement 
points per scan.  Three line scans (separated by 120˚) on a 2 m flat mirror and 1 µrad rms 
noise were assumed.  A = 185 for cos astigmatism and A = 180 for sin astigmatism. 
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FIGURE 3.17.  Coma (Z7, Z8) sensitivity to noise and number of measurement points 
per scan.  Three line scans (separated by 120˚) on a 2 m flat mirror and 1 µrad rms noise 
were assumed.  A = 84 for both components of coma. 
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TABLE 3.8.  Definition of mid order Zernike (UofA) polynomials.  The angle, θ, is 
measured counter clockwise from the x-axis, and the radial coordinate is the normalized 
dimensionless parameter, ρ. 
 

Zernike term Polynomial, Z(ρ,θ) rms 

Z10 – cos trefoil 8 ρ3 cos 3θ

Z11 – sin trefoil 8 ρ3 sin 3θ

Z12 – cos secondary astigmatism 10 (4ρ2 – 3)ρ2 cos 2θ 

Z13 – sin secondary astigmatism 10  (4ρ2 – 3)ρ2 sin 2θ 

Z14 – cos secondary coma 12  (10ρ4 – 12ρ2 + 3)ρ cos θ 

Z15 – sin secondary coma 12  (10ρ4 – 12ρ2 + 3)ρ sin θ 

Z16 – secondary spherical 7 (20ρ6 – 30ρ4 + 12ρ2 – 1) 

Z17 – cos pentafoil 10 ρ4 cos 4θ 

Z18 – sin pentafoil 10 ρ4 sin 4θ 

Z25 – tertiary spherical 9 70ρ8 – 140ρ6 + 90ρ4 – 20ρ2 + 1 
 

3.4.10. Monte Carlo analysis of noise coupling into mid order Zernike aberrations 
for number of line scans and number of measurement points per scan  

The analysis in this section looks at measurement noise normalized to 1 µrad rms 

coupling into mid order Zernike aberrations (defined in Table 3.8) for the number of line 

scans and number of measurement points per scan on a 2 m diameter flat mirror.  The line 

scans are equally spaced in angle (as shown in Figure 2.6) and the measurement points 

per scan are equally spaced across the diameter of the mirror.  The proceeding plots 

shown are for the case of three line scans separated by 120° going through the center of 

the mirror.  More plots are available in the appendix for line scans that are offset from the 

center of the mirror. 
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Summary of the proceeding plots (Figures 18 through 20): 

1. The analysis assumes measurement noise normalized to 1 μrad rms coupling into mid 

order Zernike aberrations for a 2 m flat. 

2. The sensitivity to trefoil requires four line scans, and the sensitivity to pentafoil (4θ) 

requires five line scans.  The proceeding plots are for the case of three line scans only, 

so trefoil and pentafoil are omitted.  The results for more lines scans are provided in 

the appendix. 

3. The effect of increasing the number of measurement points generally reduces the 

measurement coupling into mid order Zernike aberrations by mAN − , where A would 

be the sensitivity to noise and a constant, N is the number of measurement points, and 

m is the power with an ideal value of 0.5. 

4. The plots were fitted with the function 5.0−AN .  The coefficient A was chosen that 

allowed a best fit to the distribution of data points.  The distribution of the data for 

each number of measurement points comes from varying the sampling spacing.  For 

small N, the plots deviated from the fitting function due to under sampling of the 

aberration.  The points where the deviations occur are labeled Nmin, a transition point 

for under sampling to full sampling. 
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TABLE 3.9.  Table of the values of the sensitivity to noise, A, and number of minimum 
measurement points required for full sampling of mid order Zernike aberrations. 
 

 Mid order Zernike aberrations 

 Z12 Z13 Z14 Z15 Z16 Z17 Z18 Z25 

Nmin < 5 < 5 11 11 8 -- -- 8 

A 115 115 40 40 35 -- -- 25 
 

Scaling law example 

The values of the coefficient A shown in Table 3.9 are for a 2 m flat with noise 

normalized to 1 μrad rms.  The values can be scaled to any size mirror assuming the 

measurement noise is known by the following scaling law: 

 ( ) ( ) 2/1
2
1 μradm −×Δ×= AND θε  (3.6) 

For example, the sensitivities of the mid order Zernike aberrations can be scaled for the 

1.6 m flat with 0.3 μrad rms.  Using the scaling law, we can estimate the values of the A 

coefficient as shown in Table 3.10. 

 

TABLE 3.10.  Values of the sensitivity to noise coefficient using the scaling law.  The 
new values are for the 1.6 m flat with 0.3 μrad rms measurement noise. 
 
 Mid order Zernike aberrations 

 Z12 Z13 Z14 Z15 Z16 Z17 Z18 Z25 

A 17.3 17.3 6 6 5.3 -- -- 3.8 
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FIGURE 3.18.  Measurement noise normalized to 1 µrad rms coupling into secondary 
astigmatism (Z12, Z13) for number of line scans and number of measurement points over 
a 2 m flat.  A = 115 for both components of astigmatism. 
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FIGURE 3.19.  Measurement noise normalized to 1 µrad rms coupling into secondary 
coma (Z14, Z15) for number of line scans and number of measurement points over a 2 m 
flat.  A = 40 for both components of coma. 
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FIGURE 3.20.  Measurement noise normalized to 1 µrad rms coupling into secondary 
and tertiary spherical (Z16, Z25) for number of line scans and number of measurement 
points over a 2 m flat.  A = 35 and 25 for secondary and tertiary spherical, respectively. 
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3.4.11. Effect of sampling spacing and noise on measurement error 

The measurement sampling arrangement and noise affects the measurement uncertainty, 

especially for higher order Zernike aberrations.  The previous set of plots showed a 

distribution of data points for each number of measurement points per scan.  This can be 

explained by varying the sampling spacing.  In Figure 3.21 we show two different 

sampling arrangements for five measurement points across the mirror and a fit to the 

point using the slope function for secondary spherical.  The five measurement points, 

showing some noise variation, in both cases are distributed evenly across the mirror (the 

plot is normalized in radius).  In one case (square markers) the edges of the mirror are 

sampled.  In the other case (triangle markers) the edges are not sampled, but the sample 

spacing is smaller. 
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FIGURE 3.21.  Sampling for secondary spherical aberration (Z16) with two different five 
equally spaced sample points (sample points are showing noise variation). 
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 In the case of sampling at the edges the measurement error is better controlled, 

because the edge points alone limit the amount of variation in the fit.  For the other case 

there is no constraint at the edges, so the measurement error is not well controlled and has 

more variation.  The latter case then is not a recommended sampling arrangement due to 

larger measurement error, especially for higher order Zernike aberrations. 

3.4.12. Limitation of the Zernike basis set 

 The fits to the slope data were performed using a Zernike basis.  The results of the 

Monte Carlo analysis and the example given in Section 3.4.11 showed the polynomials 

with this basis seemed to become unbalanced in slope space, because in slope space the 

gradients of the Zernike polynomials were used for the least squares fitting.  More weight 

is given to the higher polynomial orders; therefore, behavior at the edges varies more 

rapidly than around the center of the mirror.  Perhaps it would be better to develop and 

use another orthogonal basis set of polynomials that is more balanced in slope space to 

perform the least squares fitting.  After the surface has been reconstructed with the new 

orthogonal polynomials, the surface can then be related back to Zernike polynomials. 

3.5. Conclusion and Future Work 

We provided an analysis of the scanning pentaprism system that measured flatness in 

large flat mirrors with an option to measure other low to mid order aberrations and only θ 

dependent aberrations.  The system alignment was discussed in detail.  The measurement 

accuracy was limited by second order influences from misalignments and autocollimator, 

pentaprism, and test surface motions, which were minimized through careful system 
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alignment and active pentaprism motion control.  A Monte Carlo simulation of the 

system performance was performed based on the measurement uncertainty estimated 

from the error analysis.  The simulation result showed the uncertainty in the measured 

low order Zernike aberrations and measurements to about 15 nm rms of low-order 

aberrations are achievable for 2 m class flat mirrors.  Additional Monte Carlo analysis 

was performed that studied the effect of measurement noise coupling into mid order 

Zernike aberrations for the number of line scans and number of measurement points per 

scan over a 2 m flat mirror. 

The high accuracy of the test system makes it ideal for absolute testing of 

arbitrarily large flat mirrors.  This test can be used as a final test on the surface figure or 

to guide polishing during fabrication.  The kinematic base allows the test system to be 

moved to the polishing table without moving the test flat to a testing fixture and stowed 

when not in use or during polishing. 

The results were obtained using the Zernike basis for polynomials.  These 

polynomials seemed to become unbalanced in slope space.  A different orthogonal basis 

set of polynomials might work better for the least squares fitting in slope space.  This 

investigation is left open for future work. 

Absolute calibration of the system was not performed.  This can be accomplished 

using liquid reference surfaces over very long test paths (~4 m), where the liquid surfaces 

are only limited by the curvature of the earth (sag/power = 0.31 µm peak to valley over 4 

m).  The result will be excellent characterization of the system performance.  This task 

was left open for future work. 
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CHAPTER 4 

DEVELOPMENT OF A 1 METER VIBRATION INSENSITIVE 

FIZEAU INTERFEROMETER 
 

 

We developed a 1 meter aperture vibration insensitive Fizeau interferometer to test 2 m 

and larger flat mirrors through subaperture sampling.  The subaperture measurements can 

then be combined by stitching to obtain a full surface map.  The 1 m interferometer was 

constructed using a 10 cm aperture commercial instantaneous Fizeau interferometer 

combined with custom 1 m reference and collimating optics.  Multiple surface 

measurements made by rotating the reference flat and a 1.6 m test flat and post 

processing of the subaperture measurements allowed for absolute characterization of the 

two surfaces to 3 nm rms in surface irregularity.  In this chapter, we describe the system 

design, calibration of the reference flat, and data analysis including the correction for 

field errors and mapping distortion. 

4.1. Introduction 

At the University of Arizona Optical Engineering and Fabrication Facility (UA-OEFF), 

we have implemented precise and controllable polishing techniques for manufacturing 

large flat mirrors (> 1 m) [49].  However, metrology has been a major obstacle for testing 

large mirrors accurately and efficiently.  The two main problems are:  1) limited aperture 
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sizes of commercial interferometers, and 2) stitching is required but limits the 

measurement accuracy and efficiency. 

To enable surface testing of 2 m class and larger flat mirrors, we scaled up a 10 

cm aperture instantaneous Fizeau interferometer to 1 m and performed subaperture 

testing.  We accomplished this by expanding the 10 cm beam to 1 m and inserting a 1 m 

custom reference flat.  The collimating optics were arranged such that the test was 

performed vertically.  The reference flat was held in a kinematic mount.  The mount has a 

three point base for mechanical stability and placement repeatability, and allowed six 

equally spaced rotations of the reference flat.  After multiple measurements and 

measurement redundancy through rotations of the reference and the test flats, the 

nonsymmetrical surface errors in the reference flat can be isolated from the test surface.  

Power in the reference flat was calibrated using an auxiliary test system that measured 

surface slopes very accurately [50].  The reference flat surface errors were then stored in 

a reference data file, which was used to correct each of the subaperture measurements 

before combining them. 

4.1.1. Testing large flat mirrors 

The most efficient and accurate method of measuring flat surfaces uses a Fizeau 

interferometer with a flat reference surface.  Most commercially available interferometers 

are limited to 10 to 15 cm apertures, although 30 cm [51-52] and 60 cm [53] aperture 

interferometers have been demonstrated.  Large flat surfaces can be measured with small 

aperture interferometers, but stitching subaperture data is required [17-20].  As the 
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subaperture becomes smaller compared to the size of the test mirror, the accuracy and 

efficiency of the measurement diminishes. 

 Due to size limitations of commercial interferometers for direct measurements, 

large flat mirrors are normally tested in a Ritchey-Common configuration [16, 21].  The 

Ritchey-Common test, however, is limited in other areas as discussed in Chapter one. 

In order to guide our polishing of high quality flat mirrors, the surface 

measurements must be efficient to perform and provide accuracy of a few nanometers.  It 

is optimal to measure flat mirrors in situ as they rest on our 4 m polishing table, which 

allows rapid turnaround between testing and polishing.  It is impractical to isolate the 

system from vibrations, but the test hardware must function in the shop environment, 

which had considerable vibration and air currents. 

The vibration insensitive Fizeau interferometer meets all of our requirements.  

The 1 m reference surface can be held to a few centimeters above the mirror under test as 

it rests on the polishing machine.  The short air gap and the use of polarization for 

instantaneous phase shifting give high accuracy in the presence of vibration and thermal 

effects. 

4.1.2. Instantaneous interferometry 

Vibration is a major problem in optical testing.  Industrial environments, such as optical 

fabrication and testing facilities, are prone to vibrations and air motions.  Vibrations are 

especially problematic in large scale optical testing where the large optics and the 

supporting mechanical structures are not easily isolated.  In addition, air motions over 

long test path lengths contribute to the overall fringe motion.  In the presence of 



113 
 

vibrations, the standard phase shifting interferometry through temporal phase stepping is 

inadequate for accurate optical testing.  The time scale for mechanical vibrations is 

shorter than the time between exposures.  Thus, vibrations limit the ability to collect 

accurate data.  To overcome these problems, simultaneous acquisition of the phase 

shifted frames is needed. 

 

 

FIGURE 4.1.  Schematic showing a Fizeau interferometer simultaneous phase shifting 
concept using polarizing element and orthogonal polarizations. 
 

We use the Intellium H1000 (made by Engineering Synthesis Design, Inc. [54]) 

instantaneous Fizeau interferometer.  This interferometer uses polarizing elements to 

produce three simultaneous phase shifted signals for interference.  In this method, two 

orthogonal polarizations, A and B, are emitted by the interferometer, as shown in Figure 

4.1.  The polarizations can either be linear or circular.  One polarization, B for example, 

is reflected off the reference surface, and the other polarization, A, is reflected off the test 

surface.  The return signals are combined to produce a set of interference fringes 
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simultaneously, which are then recorded by a decoding module.  The interference fringes 

are then combined to generate a phase map of the test surface. 

4.2. Design and Analysis of the 1 Meter Fizeau Interferometer 

A schematic of the 1 m Fizeau test system is shown in Figure 4.2.  The inset photos are 

the actual components of the ones shown schematically.  The Intellium H1000 

interferometer used a 30 mW laser diode at 657 nm as a source.  The source emitted two 

circularly polarized beams, as opposed to linearly polarized, to minimize birefringence 

though the 1 m reference flat [55].  A standard reference diverger and the off axis 

parabola (OAP) formed the beam expansion and collimation.  The 1 m reference flat was 

suspended over the large test surface (described in section 4.3.1). 

4.2.1. Test concept 

Fizeau interferometers require a collimated beam and a flat reference surface to test other 

flat surfaces [15-16].  The Intellium H1000 emitted a 10 cm collimated beam.  The 

reference diverger and the OAP expanded the beam to 1 m.  A 15 cm fold flat kept the 

H1000 horizontally mounted and allowed the test to be done vertically. 

In this arrangement of the interferometer, the probe beam was external to the 

Intellium H1000 interferometer, hence the external reference surface.  Interference 

occurred between the reference flat bottom surface and test flat top surface.  A small 

wedge in the reference flat isolated the reflection off the top surface of the reference flat 

from the measurements.  The air gap between the reference and test surfaces was kept to 

a few centimeters to minimize the errors from illumination.  The 1 m beam then 
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subsampled the larger flat mirror under test.  Rotating the large flat mirror underneath the 

reference flat allowed for complete coverage of the flat mirror.  The subaperture 

measurements were corrected for errors.  The corrected subaperture measurements were 

then stitched together to obtain a full surface map. 

 

 

FIGURE 4.2.  Schematic of the 1 m Fizeau interferometer with an OAP for beam 
collimation and an external 1 m reference. 
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4.2.2. Test tower design 

The test components shown in Figure 4.2 were integrated into a large test tower with base 

dimensions 7.2 m × 3.3 m and height 4.2 m.  The test tower was a four column weldment 

with diagonally braced framework as shown in Figure 4.3.  The columns were made out 

of 12 mm thick 20 cm square metal tubes.  The Intellium H1000 interferometer and the 

fold flat were mounted on a platform.  The platform was then suspended from the 

horizontal cross member in the test tower.  The test tower was braced at the top with two 

additional brace beams, which held the OAP in place.  The fully integrated structure is 

shown in Figure 4.9.  The entire structure was then moved over the polishing table.  The 

advantage of doing this was to allow the test flat to remain on the polishing table and 

perform testing in situ.  An additional horizontal cross member (not shown in the solid 

model in Figure 4.3) was used as a place to stow the kinematic reference flat during 

polishing.  The tower was designed to vibrate below 15 Hz to ensure system stability.  

Table 4.1 shows the three lowest vibration modes of the tower from the finite element 

analysis (FEA) model. 

 

TABLE 4.1.  Fizeau test tower lowest frequency modes. 
 

 Frequency (Hz) 

Mode Pinned ends Fixed ends 

1 8.69 10.75 

2 12.71 12.87 

3 13.00 13.14 
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FIGURE 4.3.  Solid (a) and FEA dynamic (b) models of the Fizeau test tower. 
 

4.2.3. Collimation OAP design 

The OAP was used as the beam collimator.  The OAP was mounted in a whiffletree type 

back support with tangential side supports as shown in Figure 4.4.  The OAP was placed 

in a downward looking orientation, tilted at 5.7° from vertical.  The support allowed tip 

and tilt adjustments for initial alignment and locking of the OAP. 
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FIGURE 4.4.  OAP mounted in an 18 point whiffletree and band support.  The mount 
provided tip and tilt adjustments. 
 

 

 

FIGURE 4.5.  FEA model of the mounted collimating OAP optical performance (5 nm 
rms). 
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Figure 4.5 shows the optical performance of the mounted OAP from the finite 

element model.  A maximum slope error of 0.1 µm/mm due to gravity and mount induced 

surface deformation was derived from the system error budget.  With this requirement, 

the analysis predicted surface errors of 5 nm rms from gravity and the mount. 

4.2.4. Field effect errors 

The Intellium H1000 interferometer used two beams with orthogonal polarizations that 

had a slight shear between them.  If polarization A was used as the reference beam, then 

polarization B must be the test beam for interference and phase shifting to occur.  The 

slight shear between the beams and using the OAP for beam collimation caused the 

beams to traverse slightly different paths through the system.  This effect of traversing 

different path lengths caused field, or retrace, errors in the measurements [55].  To fix 

this problem, measurements were taken with both polarizations as the reference beam and 

the results were averaged to obtain a phase map that was free of field errors.  Using 

polarization B as a reference beam, however, resulted in inverted surface maps.  This 

inversion was verified with a simple but unambiguous test of introducing small tilts in 

known directions and acquiring the surface data.  The surface maps were re-inverted 

before combining them with the measurements taken with polarization A as the reference 

beam. 

Figure 4.6 shows using both polarizations as reference beams to take surface 

measurements and the average of the two measurements to eliminate the field errors.  

This fix must be applied to each subaperture measurement before further data processing. 
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FIGURE 4.6.  The 1 m Fizeau interferometer with polarization B as the reference beam 
(left), polarization A as the reference beam (center), and the average of the two 
measurements (right) to eliminate field errors. 
 

The average surface map in Figure 4.6 exhibits trefoil, which is a result of the 

three cable suspension of the reference flat (see Figure 4.7). 

4.2.5. Wedge in test plate 

There was a small wedge in the reference flat.  The wedge allowed the reflection from the 

back (top) surface of the reference flat to be isolated from the measurements.  The wedge, 

however, caused the beam spots from the A and B polarizations to be rotated and 

translated at the image plane when the reference flat was rotated.  Because of this, the 

spots were tracked carefully to prevent errors in the measurements. 

4.2.6. Distortion correction 

Using the OAP to collimate the beam caused slight mapping errors.  Mapping errors, also 

known as distortion, occur when points on an object do not maintain their relative 

spacing in the image plane.  Distortion in each of the subaperture measurements must be 
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fixed before combining them to generate a full surface map.  We developed a four-step 

process to correct for distortion in each of the subaperture measurements. 

1. First, we defined and fabricated a Mylar based film fiducial mask.  A fiducial mask 

contains a regular pattern of small circular apertures or fiducials.  The mask is usually 

placed at the test surface and that typically cover 5 to 10 pixels for easy locating in 

the image plane.  The physical spacing of the small apertures must be known.  Our 

mask contained 12 mm circular apertures spaced 10 cm apart. 

2. Next, we imaged the fiducial mask through the system.  This was accomplished by 

placing the mask at the pupil, or the reference surface, and performing the normal 

data acquisition. 

3. Then, we defined fitting polynomials and determined their coefficients.  This was 

accomplished by relating the undistorted points in object space to the distorted 

digitized points in image space through polynomials of degree n. 

4. Finally, we filtered the distorted image through the fitting functions to generate an 

image that was corrected for distortion. 

The fitting polynomials were defined as 

 ∑
∑

=

=
ji

ij

ji
ij

YXvy

YXux
 (4.1) 

where x and y are the original image coordinates 

 X and Y are similar object coordinates 

 iju  and ijv  are coefficients to be determined through least squares fitting.   
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The degree of the polynomials, n = (i + j), determines the minimum number of 

fiducial points required by the following formula, 

 
( ) 1

2
3
+

+
≥

nnN . (4.2) 

For example, a fitting polynomial of degree three requires a minimum of 10 

fiducial points for correct determination of the coefficients 

During testing we controlled the mapping to 2 mm, which coupled in as surface 

error of about 1 nm rms. 

4.3. System Integration 

4.3.1. Reference flat and its mounting support 

The reference flat was a 1 m transmissive fused silica polished to 100 nm peak to valley.  

It was 11 cm thick and weighed about 195 kg.  A mechanically stable kinematic mount 

was designed to hold the reference flat, as shown in Figure 4.7.  Three counter balanced 

cables were attached to pucks carefully bonded to the top surface of the reference flat.  In 

addition, six tangential edge supports were added.  The cables and the edge supports 

offloaded about 60% of the reference flat weight (117 kg).  As stated earlier, the three 

cable suspension caused trefoil in the reference flat surface. 

The kinematic base rested on three stable points.  The three points were equally 

spaced which allowed for three equally spaced rotations.  Separately, a smaller top 

support structure also rested on three points, which were offset by 60° from the base 

points and allowed for three additional equally spaced rotations.  Combined, the entire 
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support structure provided six equally spaced rotations and good position repeatability of 

the reference flat. 

The control of the gap between the reference and the test surfaces is important.  

As the gap increases the accuracy of the test system degrades.  For example, the test flat 

may be assessed to an accuracy of 20 nm peak to valley.  The illumination error was 

expected to be less than 0.5 mrad.  For this case, the gap between the reference and test 

surfaces must be maintained to 

 2

1
100 θ
λ

≤t  ≈ 8 cm. (4.3) 

 

 

FIGURE 4.7.  Oblique top view of the kinematic support mount for the Fizeau reference 
flat.  Cables, attached to the pucks, and a six point edge supports held the reference flat. 
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4.3.2. System alignment 

To enable system alignment, each of the components in the test system required multiple 

degrees of freedom with coarse and fine adjustments.  The OAP mount provided 

adjustments in tip and tilt.  The reference flat mount provided coarse and fine adjustments 

in tip and tilt.  The fine adjustment was accomplished through three voltage driven piezo 

transducer (PZT) stacks.  The Intellium H1000 interferometer with the diverger and fold 

flat was mounted on a stage with five degrees of freedom combining coarse and fine 

adjustments.  The system was first aligned as an autocollimation of the OAP with the 

reference flat as the return flat.  In this configuration, the diverger surface was the 

reference surface and OAP surface was the test surface.  During initial alignment, a pan 

of oil was used as the return reference surface due to its natural alignment to gravity. 

In the autocollimation test configuration, the OAP position was no longer in the 

common path of the reference and the test beams, thus the OAP required adjustments to 

get a minimum wavefront slope in the interference pattern.  Most of the alignment error 

introduced astigmatism.  A combination of the OAP, H1000 interferometer and fold flat 

iterative adjustments minimized the wavefront slope.  The alignment of these components 

was not critical, because all the surfaces before the reference surface are common path in 

the Fizeau test.  However, careful alignment was still performed to minimize any high 

order effects.  After the system alignment, we required the reference flat to be stable to 3 

nm rms during testing. 

To better understand the effects of OAP motion on the system alignment, the test 

system was modeled as an autocollimation test using optical design software.  
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Perturbations in x and y tilts and clocking about z were applied to the OAP in the model.  

Figure 4.8 shows the effects of the perturbations on alignment of the system.  The 

simulation was used to aid in fine tuning the alignment of the system. 

The model showed OAP tilt about the y-axis and clocking about the z-axis gave 

the same alignment errors, but the wavefront error was more sensitive to tilt about the y-

axis. 

 

 

FIGURE 4.8.  Sensitivity to the OAP motion - after addition of 0.5 mrad of tilt about x 
(left) and y (center), and clocking about the z-axis (right) to the OAP in an 
autocollimation test configuration. 
 

4.4. System Calibration 

The conventional method of absolute calibration of flat surfaces involves comparison 

between three flat surfaces, commonly known as the three flat test [15, 56].  In our case, 

this approach is not possible because we had only one 1 m flat.  In this section we present 

an alternative approach to reference flat calibration. 
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FIGURE 4.9.  Solid model of the 1 m vibration insensitive Fizeau test system fully 
integrated and aligned. 

 

4.4.1. Calibration of reference surface irregularity 

By using overlapping subapertures along with multiple rotations of the reference and test 

flats, we can obtain unbiased estimates of both the reference and the test surfaces [57-58].  

The measurement algorithm that was used to obtain 24 subaperture measurements is 

provided in Table 4.2.  This procedure, shown schematically in Figure 4.10, helped in 

separating the errors in the reference and test surfaces.  Surface errors that moved with 

the reference flat belonged to the reference flat; the remaining errors were associated with 

the test flat.  This method of rotating surfaces with no translations, however, was immune 
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to symmetrical errors in the reference flat, thus power in the surface measurements were 

be ambiguous.  We addressed this problem by using an auxiliary test system that 

measured power and other low order aberrations in the test surface (discussed in section 

4.5.3). 

 

 

FIGURE 4.10.  Schematic for method of estimating the reference flat by rotating the 
reference and test flats. 
 

TABLE 4.2.  Measurement algorithm for obtaining the unbiased estimates of the 
reference and test surfaces. 
 
Reference flat 
angle position 

(deg) Test flat angle position (deg) 
Number of 

measurements

0 0 90 180 270 4 

60 15 105 195 285 4 

120 30 120 210 300 4 

180 45 135 225 315 4 

240 60 150 240 330 4 

300 75 165 255 345 4 

Total number of measurements 24 

 

Test f lat

Rotary air bearing table

Reference f lat in 
kinematic support
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 An algorithm was developed that combined all the measurement data and 

separated the surface errors in the reference and test surfaces using maximum likelihood 

estimation [57-58].  Figure 4.11 shows the reference surface estimated after acquiring 24 

subaperture measurements using the algorithm given in Table 4.2 and applying the 

maximum likelihood estimation to separate the errors in the reference flat from the errors 

in the test flat.  

 

 

FIGURE 4.11.  The 1 m reference surface estimated by modulation of the reference and 
test surfaces and performing maximum likelihood estimation.  Multiple Zernikes terms 
were used to generate the surface (42 nm rms).  The surface map shows the effect of the 
three point cable suspension. 
 

The surface map shows 42 nm rms after removing ambiguous rotationally 

symmetric errors.  The surface map reveals the effect of the cable suspension as trefoil.  

The positions of the three pucks bonded to the top surface are indicated by the three high 

184 nm PV
42 nm RMS

Reference Flat Surface Estimation by MLE (nm)
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spots on the surface map.  This surface map was saved as a reference data file.  The file 

was then be subtracted from each of the subaperture measurements before they are 

combined.  The error in the surface irregularity calibration was estimated to be 1 nm rms 

[58]. 

4.4.2. Comparison to finite element analysis model 

A simulation of optical performance was also performed on the finite element model of 

the suspended reference flat.  The simulation used the following parameters listed in 

Table 4.3 for the mount shown in Figure 4.7. 

 

TABLE. 4.3.  The reference flat support parameters for the FEA model and simulation.  
 

Six point edge whiffletree support Top surface cable support 

• 60° puck spacing 

• Pucks positioned at center of gravity 
plane of the reference flat 

 

• Three pucks bonded to the top surface 
positioned at 28 cm from center (56% φ) 

• 120° puck spacing 

• 45° load wire angle 

 

The result of the simulation is shown in Figure 4.12.  The simulation output gave 

29 nm rms, which is conservative compared to the result from the previous method 

described above.  The result from the simulation did not include errors such as 

interferometer noise and illumination and alignment errors.  Also the systematic errors 

were not measured, and therefore were not included in the simulation.  They were, 

however, automatically included in the measured data, thus giving a higher rms surface 

error for the reference flat shown in Figure 4.11. 
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FIGURE 4.12.  Results of the FEA simulation on the mounted reference flat that shows 
the effects of the three cables suspension and edge supports. 
 

4.4.3. Calibration of reference surface power 

Power in the reference surface can come from two things:  1) power left in the surface 

during polishing, and 2) power due to sag from gravity.  Doing the multiple rotations of 

the reference and test surfaces to obtain overlapping subapertures did not calibrate power 

in the reference surface.  An additional degree of freedom in translation of the reference 

flat was needed to calibrate the symmetrical errors in the reference surface.  This 

additional degree of freedom was not available to us.  Thus, power in the subaperture 

measurements was ambiguous. 

One method of measuring the reference surface power is to look at the cosine 

effect at the reference surface [59].  With careful measurements of the slope errors and 

the gap between the reference and test surfaces, we could quantify this effect, although 
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with some difficulty.  Instead, we used an existing auxiliary test system to calibrate 

power in the reference surface.  We developed a highly accurate slope test that measured 

power and other low order surface errors in the large flat [50].  The power measured with 

the slope test was then used to calibrate the power in the reference surface.  With this 

method the power ambiguity was removed. 

4.5. Error Analysis 

4.5.1. Test error budget from combined error sources 

Table 4.4 shows the contribution from all error sources and the total combined error from 

the test.  The combined errors set the error budget for the test.  Since the power 

calibration was performed with an auxiliary test system, this calibration was not included 

in the error budget for the 1 m Fizeau test. 

 

TABLE 4.4.  Combined error sources and the error budget for the subaperture test. 
 

Error source 
Value 

(nm rms) 

Interferometer noise 3 

Illumination/alignment 3 

Distortion (mapping) 1 

Calibration 1 

Combining the subapertures 1 

Root sum square 4.6 
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4.6. Measurements on a 1.6 Meter Flat Mirror 

Su [57-58] showed that the separation of the reference surface and test surface errors can 

be accomplished to 3 nm rms using the maximum likelihood estimation method through 

the repeatability of the subaperture measurements. 

4.7. Conclusion 

The developed 1 m vibration insensitive Fizeau interferometer has made accurate and 

efficient testing of 2 m class and larger flat mirrors possible.  The increased size in 

aperture provided more surface coverage, thus less subaperture data to get full surface 

coverage lead to less errors from stitching.  Through overlapping subaperture 

measurements and multiple rotations of the reference and test flats, errors from both 

surfaces can be isolated by maximum likelihood estimation.  An auxiliary test was used 

to calibrate power in the reference flat.  A reference data file containing errors from the 

reference flat was generated and stored.  This file was then subtracted from each 

subaperture measurement before combining them.  The results from the maximum 

likelihood estimation showed that a 2 m mirror can be measured and the reference flat 

calibrated to 3 nm rms.  This Fizeau is an in situ test and can be used as a final test on the 

surface figure or to guide polishing and figuring during fabrication.  The kinematic mount 

allows the reference flat to be moved and stowed during polishing. 
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SECTION II 

ADVANCED FABRICATION TECHNOLOGIES 
 

 

This second section contains a chapter on the methodology for manufacturing high 

performance large flat mirrors with greater emphasis on the fabrication techniques that 

we implemented.  We found classical fabrication methods alone do not enable the 

manufacture of quality large flat mirrors, because the classical methods are not scalable.  

We introduced computer controlled polishing that used simulation software combined 

with accurate and efficient metrology to achieve rapid convergence of polishing and 

produce the best 1.6 meter flat mirror in the world (11 nm rms power and 6 nm rms 

surface irregularity).  This methodology used to produce the 1.6 meter flat can be 

extended to 4 meters or larger flat mirrors, a key advantage over classical fabrication 

methods. 
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CHAPTER 5 

METHODOLOGY FOR FABRICATING AND TESTING LARGE 

HIGH PERFORMANCE FLAT MIRRORS 
 

 

In this chapter we present on the methodology and enabling technologies for fabricating 

and testing high performance flat mirrors larger than 1 meter in diameter.  Classical 

fabrication methods are combined with predictive software to allow rapid convergence of 

polishing and accurate slope and interferometric testing to guide the polishing and 

figuring of a 1.6 m flat mirror.  The developed technologies are scalable to larger flat 

mirrors (≥ 4 meter diameter).  We look at the limitations and risks of extending the 

technologies to 4 m mirrors. 

5.1. Introduction 

Large flat mirror fabrication poses significant challenges.  The requirement on the radius 

of the mirror is at the same level as the requirement on surface irregularity (i.e. a few tens 

of nanometers).  Current fabrication and testing technologies, although well established 

for moderately sized optics (≤ 1 m), do not enable the manufacture of high performance 

flat mirrors much larger than 1 m.  The standard method of characterizing flat surfaces 

uses Fizeau interferometers that require comparison to a reference surface of similar size, 

but the development of such interferometers with meter type apertures would be very 
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expensive to produce.  In addition, because large mirrors take months or even years to 

make, manufacturing becomes very costly. 

The current state of the art for flat mirror fabrication uses continuous polishing as 

discussed in Chapter one.  The advantages of using continuous polishing machines are 

they can produce multiple flat mirrors simultaneously, making this type of a machine 

very cost-effective, and they can polish smoothly out to the mirror edges.  The 

disadvantage, however, is that mirrors can be no larger than about a third of the diameter 

of the lap.  The largest continuous polishing machines known to exist have laps that are 4 

m in diameter.  These machines can make up to 1.3 m diameter flat mirrors. 

Large flat mirrors are typically tested interferometrically.  The three tests that can 

measure flat surfaces are the Fizeau, Ritchey-Common, and skip flat tests.  These tests 

were discussed in Chapter one.  Each has advantages and disadvantages.  Their 

disadvantages affect test efficiency and accuracy that is required in large flat mirror 

manufacturing. 

We provide a brief introduction on the current fabrication technologies for 

manufacturing large high quality mirrors in Section 5.2.  The testing technologies are 

discussed again, but briefly, in Section 5.3 to make this chapter complete.  They are 

described in more detail in Chapters two through four.  Section 5.4 describes the 

manufacture and testing of a 1.6 m flat mirror and provides results on the finished mirror.  

Section 5.5 covers the feasibility of extending the fabrication and testing technologies 

that we developed to 4 m flat mirrors.  The concluding remarks are provided in section 

5.6. 
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5.2. Fabrication Technologies 

Mirror fabrication techniques include a vast array of polishing methods from the tried and 

true conventional or classical polishing methods to the modern computer controlled 

polishing used to make optical surfaces of varying sizes and shapes.  The fabrication of 

large mirrors, in particular, is a time consuming process.  The optician uses multiple 

machines, polishing tools, material and compounds, and specialized skill.  This section is 

a brief introduction to conventional and computer controlled polishing currently used in 

industry. 

5.2.1. Conventional polishing 

Conventional polishing techniques make use of proven and established polishing 

methods, which have been used for many decades [10-11, 71].  Many polishing 

machines, tools, and techniques have been developed and refined over the years to 

increase efficiency and accuracy in shaping glass surfaces.  Polishing pads, formed wax, 

or formed pitch, which make contact with the glass, are typically applied to the tool work 

surface.  Various compounds are used during polishing as abrasives and wet slurry to 

help remove and smooth the glass surface.  Conventional polishing techniques rely on 

controlling the shape of the polishing lap to adjust the entire surface of an optical 

element.  These techniques can be used to make flat surfaces as well as a variety of other 

elements. 
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5.2.2. Computer controlled polishing 

In the past few decades, computer controlled polishing has come to the forefront in 

optical manufacturing as the cost of computer control has come down and the flexibility 

of the method is realized [10-11, 71].  Glass mechanics and polishing parameters are also 

now better understood; thus, repeatability and modeling of removal functions can be 

established.  Polishing strokes can be optimized by performing well controlled polishing 

runs.  Modeling and optimizing the polishing strokes allow for accurate prediction of the 

outcome of a polishing run based on the polishing parameters selected.  Important 

information related to the polishing tool dwell time and polishing hit can be then 

obtained. 

5.3. Testing Technologies 

There are many metrology techniques in use for optical surface characterization.  We 

developed three very efficient tests that allowed us to accurately measure and monitor the 

flat surface during polishing and figuring with a fairly rapid (within a day) turnaround of 

the data.  These test systems combined optical and mechanical methods and were used to 

guide the fabrication and provide measurements on the finished 1.6 m flat mirror.  The 

three tests are briefly discussed below.  A full description of the test systems were given 

in Chapters two through four. 

The ability to measure slopes on an optical surface provides an alternative to 

interferometric testing.  Integrating the slope data gives low order surface profiles.  

Below are brief descriptions of the two test systems used to measure surface slopes 
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5.3.1. Surface measurement using electronic levels 

Using differential electronic levels is a new way of measuring flat optical surfaces [46].  

The test is mechanical (contact), instead of optical (non-contact), and measures low order 

aberrations (e.g. power and astigmatism).  We used electronic levels during grinding and 

coarse polishing to guide the early fabrication of the 1.6 m flat.  This method of testing 

provided an efficient and cost effective way to measure the mirror surface to an accuracy 

of about 50 nm rms. 

5.3.2. Scanning Pentaprism Testing 

The scanning pentaprism system, which used two pentaprisms aligned to a high 

resolution electronic autocollimator, provided a more accurate optical slope test that 

operated on the same principles as the electronic levels [50].  The scanning pentaprism 

was used during the late polishing and figuring stages of the 1.6 m flat to monitor the 

surface and guide the remaining fabrication.  It was also used as an absolute test for 

power on the finished mirror.  This testing technique provided an accuracy of about 9 nm 

rms for power. 

5.3.3. Vibration Insensitive Fizeau Testing 

We developed a custom 1 m vibration insensitive Fizeau interferometer to monitor the 

higher order variations in the mirror surface and also guide the remaining fabrication 

[47].  This test system used a 1 m beam combined with multiple overlapped subsampling 

to provide a complete coverage of the 1.6 m flat.  Stitching and maximum likelihood 

estimation were used to combine the subaperture measurements and obtain a full surface 
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map.  This measurement method also provided an absolute test on the final surface 

irregularity to an accuracy of 3 nm rms. 

  Both the scanning pentaprism system and the 1 m Fizeau reference were designed 

for kinematic positioning over the flat mirror during fabrication.  The kinematic design 

allowed the flat mirror to remain fixed on the polishing table while the test systems were 

interchanged for complete surface testing. 

5.4. Manufacture and Testing of a 1.6 Meter Flat Mirror 

5.4.1. Introduction 

The manufacture of large (> 1 m) high performance flat mirrors presents challenges 

because of the lack of enabling fabrication and testing technologies that economically 

provide measurement efficiency and accuracy.  In this section, we describe the 

development of novel fabrication techniques that enabled us to manufacture a high 

performance 1.6 m flat mirror.  The testing technologies described in Section 5.3 were 

used to guide the fabrication. 

An important consideration for large mirrors is the design of proper mechanical 

supports, which must hold the large mirror to some small allowable deflection (e.g. 10 

nm rms) during polishing and testing.  We discuss the design of the mechanical supports 

for the 1.6 m flat mirror and provide an overview of the manufacturing sequence.  

Finally, we provide the measurement results on the finished mirror. 
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5.4.2. Mirror geometry 

The mirror blank glass material was solid Zerodur® (Schott, Inc.) with 1.6 m diameter 

and 20 cm thickness (8:1 aspect).  Figure 5.1 shows the mirror geometry, and Table 5.1 

lists the geometry and material parameters for the mirror blank.  The mechanical support 

design was optimized based these parameters.  The mirror was supported from the back 

surface (zenith pointing) during the entire manufacturing process. 

 

 

FIGURE 5.1.  The 1.6 m Zerodur® flat mirror blank geometry. 
 

TABLE 5.1.  Parameters for the 1.6 m Zerodur® flat mirror blank. 
 

Parameter Value 

Diameter, d 1.6 m 

Thickness, t 0.20 m 

Poisson’s ratio, υ 0.243 

Modulus, E @ 20°C 9.1 × 1010 N/m2 

Density, ρ 2530 kg/m3 

Total mass, m 1034 kg 
 

5.4.3. Mirror support design 

Mechanical polishing supports for large mirrors are an important design consideration.  

The supports must control the mirror self weight deflection to some small allowable 

1.6 m

20 cm
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amount.  Nelson et al. point out that for large (thin) mirrors, the number of support points 

and their arrangement control the mirror deflection with varying accuracy [72-73].  For 

the 1.6 m flat, Nelson’s design for a 36 support point system arranged in a circular pattern 

was used as a baseline.  This design was modeled and optimized in the finite element 

analysis (FEA) software.  The analysis showed that this support system maintained the 

mirror surface deflection to less than 3 nm rms [74] 

 

 

FIGURE 5.2.  The mechanical support system used 36 hydraulic actuators to support the 
1.6 m flat mirror (left), and a blow up of the plumbing of the hydraulic support points 
(right).  The black cylinder (right figure) is one of six hard contact points; they do not 
contact the mirror in operation. 
 

Our final polishing support design consisted of 36 hydraulic piston type actuators 

laid out on the high performance air bearing polishing table as shown in Figure 5.2.  

Aluminum plates (square and triangular) were placed between the mirror and the 

actuators to protect the mirror back surface.  Once the mirror was positioned on the 

hydraulic supports, it remained there the entire fabrication; polishing and testing were 

performed without removing the mirror.  This approach lent itself to efficient 
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manufacturing.  In addition, this approach minimized transfers of the mirrors and, thus, 

risk of damaging the mirror. 

5.4.4. Overview of the manufacturing sequence 

The manufacture of large mirrors requires four phases:  surface generation, grinding, 

polishing, and figuring [10-11, 71].  We performed the grinding, polishing, and figuring.  

After surface generation, the remaining three phases of the manufacture were carried out 

in the following sequence: 

1. First, we used a 100 cm diameter tool faced with ceramic tiles on the Draper machine 

to grind out the generating marks and subsurface damage caused by the diamond 

cutting tool.  The same 100 cm tool was used with molded soft pitch to polish the 

surface to a smooth finish and minimize power and asymmetrical surface variations.  

The mirror rested on foam pads during this step. 

2. During grinding and initial polishing, we periodically checked the global surface 

changes with electronic levels.  Polishing with the 100 cm tool continued until the 

surface was smooth (with no visible marks and subsurface damage) and the measured 

power in the mirror was 100 nm rms or better. 

3. Next, the mirror was moved to the air bearing table and onto the hydraulic polishing 

supports.  We switched to smaller tools (size ranging from 15 to 40 cm diameters) for 

polishing and figuring.  A Draper machine was retrofitted with a radial stroker 

(described in Section 4.5.8), which drove the smaller tools.  (Note:  We initially used 

a 60 cm tool for surface figuring.  After we failed to converge (Figure 5.12), we 

switched to smaller tools and the radial stroker) 
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4. We used the scanning pentaprism system and the 1 m Fizeau interferometer to 

monitor the mirror surface and guide the polishing/figuring. 

5. We used polishing simulation software (described in Section 4.5.9) to help with the 

polishing decisions.  The software provided optimized tool stroke and dwell to reduce 

the surface zones. 

5.4.5. Large tool polishing 

The grinding and coarse polishing were performed with a stiff 100 cm diameter tool on a 

Draper machine.  The tool applied about 0.3 pounds per square inch (psi) of pressure on 

the mirror.  Grinding was performed with tiles set in pitch on the work surface side of the 

tool.  For polishing, molded soft pitch in 10 cm squares was applied to the bottom of the 

tool with about 1 cm channels between the squares.  Before each polishing run, the tool 

(with pitch) was first pressed out overnight on a flat surface.  This step ensured a ‘flat’ 

tool at the beginning of a polishing run.  Barnesite [11], a popular polishing compound 

that has been used successfully at our facility, was used as the polishing compound or 

slurry.  To start polishing, the slurry was liberally applied to the mirror surface, and the 

large tool was placed on top.  The motions of the tool were adjusted based on the 

measured surface data from the electronic levels and historical behavior of the large tool 

with pitch and Barnesite.  The tool was allowed to charge for a short time, after which it 

was timed for the actual polishing run.  Charging the surface refers to the process of the 

polishing compound particles embedding themselves in pitch where they can remain 

active for a period of time and is essential for efficient polishing.  The mirror surface was 
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always kept wet with slurry throughout the polishing run.  Figure 5.3 shows the 100 cm 

polishing tool and the polishing process. 

 

(a) (b) (c) 
FIGURE 5.3.  (a) Large (100 cm) tool with square tiles in pitch used for grinding.  (b) 
Grinding/polishing with the large tool.  (c) 1.6 m flat mirror polished to a smooth finish 
with a large tool. 
 

The mirror edge is always a concern during fabrication.  Driving the tool over the 

edge of the mirror can cause unpredictable removal at and near the mirror edge [77-78] as 

the glass at the edge experiences a linear pressure gradient from the overhanging tool.  

The pressure gradient and unpredictability increases as the tool is driven further over the 

edge.  A high removal at the edge causes edge ‘roll-off.’  Because it is necessary to drive 

the tool over the edge, extra care was taken in monitoring the edge through thorough 

sampling with the electronic levels and visual inspections with a 10 cm test plate. 

5.4.5.1. Efficient metrology 

Periodic surface measurements were performed with the electronic levels to monitor the 

global surface and edge changes.  Sampling for global surface changes requires at least 

two measurements across the diameter of the mirror.  But to monitor the mirror edges, we 
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sampled more thoroughly near the edges (1 cm measurement spacing).  The electronic 

levels measured surface slopes to which we fitted slope functions derived from low order 

Zernike polynomials.  Multiple measurements at different orientations on the mirror 

generated a fitted two-dimensional surface map that showed only low order surface 

modes (e.g. power and astigmatism). 

5.4.6. Surface finishing with small tools 

Large stiff polishing tools (> 75 cm diameter) can remove more glass than small tools.  

Therefore, a large tool can easily make global surface changes without introducing much 

surface ripple.  However, large tools are not very useful in controlling the mirror surface 

shape, especially if the surface is flat.  Therefore, smaller tools with easily controlled and 

measured influence are used for surface figuring and finishing. 

Small tools with sizes ranging from 15 to 40 cm diameters at pressures 0.2 to 0.3 

psi were used for surface figuring after failing with a 60 cm tool on the Draper machine 

(as mentioned in Section 5.4.4).  Channeled square molded pitch was applied to bottom 

side of each tool.  Before a tool was used, it was pressed out on a flat surface. 

We developed a radial stroker, shown schematically in Figure 5.4, to drive the 

smaller tools.  The radial stroker was attached to the rail of the Draper polishing machine, 

which used a high quality rotary air bearing table to hold the mirror blank.  The radial 

stroker used two motors; one motor provided a variable tool stroke motion, and the other 

provided variable tool rotation.  The radial stroker provided rotation rates of the tool up to 

8 revolutions per minute (rpm).  Unlike large tools, the radial stroker with small tools 

allowed for zonal changes to the mirror surface.  Depending on the zone width and height 
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determined from the surface measurements, a proper tool size was chosen to reduce the 

zone height by 40 to 50% in a single run.  This conservative approach avoided removing 

too much glass and creating a low zone.  A low zone correction requires the entire 

surface to be brought down to that level.  The small tool was positioned over the high 

zones by moving the Draper machine rail, which normally would provide stroke for large 

polishing tools.  Polishing simulation software, used to optimize the polishing tool stroke 

and dwell, enabled computer control to correct the surface figure.  We describe our 

computer control polishing method next.  

 

 

FIGURE 5.4.  Schematic of the radial stroker and polishing/figuring with small tools. 
This radial stroker was attached to the Draper machine rail.  Two motors provide variable 
tool stroke and rotation. 
 

5.4.6.1. Computer controlled polishing 

We developed computer controlled polishing for surface figuring through the use of 

polishing simulation software.  The computer control came from the choice of polishing 

strokes based on computer simulation and optimization.  The polishing simulation 

software is based on the finite element modeling of the lap and glass mechanics and 

Motor 1 provided stroke

Motor 2 provided rotation

Large f lat mirror

Radial stroker

on rotary air bearing polishing table

Small 
tool
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assumed Preston’s relation, that glass removal rate is proportional to pressure and 

velocity between the tool and the mirror.  The software differed from most by allowing 

the use of a rotating tool with a removal function that varies significantly with position of 

the tool on the mirror [79].  The computation of the removal function at any point on the 

mirror is made by numerically integrating Preston’s relation over the tool stroke position 

and mirror rotation angle. 

The software simulated polishing given the proper polishing parameters (i.e. tool 

size, pressure and geometry, tool and mirror rotation speeds, etc.).  Parameters such as 

the tool dwell, stroke and position were then optimized for a particular surface zone.  

Each surface zone required its own data file.  Multiple zonal data files can be combined 

to simulate their combined effect on the mirror.  The design of the full polishing run was 

then given to the optician to execute on the mirror. 

In order to predict the surface removal, we first calibrated the Preston’s constant.  

Preston’s equation is related to the rate of the material removal caused by the tool 

velocity and pressure for each point on the mirror relative to the glass: 

 ( ) vpKvpR ××=, . (5.1) 

where R is the local removal rate 

 K is Preston’s proportionality constant (units µm/hr/psi/m/s) 

 p is the local tool pressure 

 v is the instantaneous linear velocity of the tool relative to the mirror surface. 

Preston’s constant accounted for other parameters such as the behavior of the 

polishing compound.  To use the software successfully, the Preston’s constant first 
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required calibration by measuring the effects of the polishing strokes and tool dwell.  The 

result of our calibration of Preston’s constant is shown in Figure 5.5.  A simple polishing 

run was designed and simulated with the software.  The simulation was then executed on 

the mirror.  The mirror surface was measured before and after this polishing run.  

Preston’s constant was adjusted in software until simulated surface removal matched the 

actual removal amplitude.  The resulting constant was then recorded and stored for future 

simulations.  A typical value for our process was 15 µm/hr/psi/m/s. 

 

 

FIGURE 5.5.  The result of Preston’s constant calibration.  In software Preston’s 
proportionality constant was adjusted until the simulated surface removal matched the 
actual removal amplitude. 
 

For a mirror with only zonal errors, the radial surface profile can be written as 

 ( ) ( )rfz ≤≤= ρρ 0, . (5.2) 
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In software, a removal profile can be generated for a measured surface zone.  

After applying the removal profile to the zone in the mirror, the new mirror surface 

profile will take the form 

 ( ) ( ) ( )ρρρ 1111 ghffz ×−== , (5.3) 

where h1 is the removal depth at ρ1 (typically 40 to 50% of the maximum zone height) 

 ( )ρ1g  is the removal profile normalized to 1 with its center peak at ρ1. 

The resulting surface profile after applying N different removal profiles (or 

equivalently polishing runs) to the mirror is then given by 

 ( ) ( ) ( )∑
=

×−==
N

i
iiNN ghffz

1
ρρρ . (5.4) 

Figure 5.6a shows an example of designing removal functions for a measured 

surface radial profile exhibiting two zonal errors.  The ideal removal profile is an inverted 

surface radial profile reduced in height.  Figure 5.6b shows the surface after applying the 

removal functions, which results in a new surface with smaller zone heights.   

Once the profiles of the ideal removal functions are established, the goal is to 

duplicate the profiles by choosing the right tool size, pressure, and rotation rates and then 

optimizing tool stroke and dwell. 
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(b) 

FIGURE 5.6.  Example of reducing zone heights with proper design of removal functions 
assuming only zonal errors are present in the surface.  (a) Initial measured surface radial 
profile showing two zones and the removal functions designed for each zone.  (b) Surface 
after applying the removal functions. 
 

Figure 5.7 shows a real example of the result of a polishing simulation, which 

consisted of multiple removal functions with varying tool sizes and dwells, and the actual 

surface removal after the computer controlled polishing was applied to the mirror.  The 

actual removal departs from the predicted for two reasons:  smoothing and non-linear 

behavior [79].  The polishing tool provides natural smoothing of the mirror surface.  In 

addition, Preston’s constant may vary with velocity and pressure, K(p,ν), resulting in 

non-linear removal effects.  Although the software has evolved to include nonlinear 
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effects, this option was not used, because the magnitude of the nonlinear effects was not 

known. 

 

 

FIGURE 5.7.  Comparison of a simulated and actual surface removal on the 1.6 m flat 
while it was in production. 
 

Computer controlled polishing procedure 

The method of computer controlled polishing was operated in a closed loop.  A summary 

of the steps for completing a computer controlled run is given next. 

1. First, the mirror surface was measured with the scanning pentaprism system and the 1 

m Fizeau interferometer, and the average radial profile of the mirror was then 

calculated. 

2. The average radial profile was imported into the polishing simulation software along 

with the expected polishing parameters. 
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3. Inside the software the surface removal function for each zone was generated and 

optimized.  The target reduction for each zone was typically 40 to 50% of the 

maximum zone height. 

4. The surface removal on the measured average radial profile was then simulated, and 

the result was evaluated. 

5. Finally, the optimized polishing design was applied to the mirror.  After the polishing 

run was complete, the process was repeated from step 1. 

Figure 5.8 shows the same closed loop sequence in a flowchart.  Typically, polishing 

runs required three to five hours to complete.  This included time to change out polishing 

tools and move the tool to other zones on the mirror.  Multiple iterations of the above 

sequence were carried out.  In the next section, we present measurements obtained after 

the final run.  The method of closed loop computer controlled polishing convergence of 

the surface figure was relatively rapid (an average of about 50 nm rms per week for 

power as shown in Figure 5.12). 
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FIGURE 5.8.  Flowchart diagram of the closed loop computer controlled polishing 
method. 
 

5.4.6.2. Scanning pentaprism measurements for power 

The result of the scanning pentaprism test on the finished mirror is shown in Figure 5.9.  

The measurement was made along a single diagonal line on the mirror.  Forward and 
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backward scans were performed and the data were averaged.  Only low order 

symmetrical Zernike polynomials were fitted to the data.  The linear component of the fit 

gives power.  This measurement resulted in 11 nm rms power with measurement 

uncertainty of 9 nm rms. 

 The large slopes due to surface irregularity were not represented well with low 

order polynomials.  Irregularity was more accurately measured interferometrically with 

the 1 m Fizeau interferometer. 

 

 

FIGURE 5.9.  Measured slope data on the finished mirror with the scanning pentaprism 
along a single line and low order polynomial fit to the slope data. The linear component 
of the polynomial fit gives power in the surface (11 nm rms). 
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FIGURE 5.10.  Result of the 1 m Fizeau measurement on the finished mirror.  24 
subaperture measurements were acquired and combined with the maximum likelihood 
estimation (6 nm rms surface irregularity after removing power and astigmatism). 
 

5.4.6.3. Fizeau measurements for surface irregularity 

The surface map, shown in Figure 5.10, is the result of the 1 m Fizeau interferometer test 

on the finished mirror.  A total of 24 overlapping subaperture measurements were 

acquired through multiple rotations of the reference and test surfaces.  The subaperture 

measurements were combined using the maximum likelihood estimation to get a full 

surface map.  Up to 188 Zernike terms were used to reconstruct the surface.  Removing 

power and astigmatism leaves surface irregularity of 6 nm rms with measurement 

uncertainty of 3 nm rms.  The results from stitching are not provided here but can be 

found elsewhere [17, 90]. 
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5.4.7. Demonstration of the flat mirror with 11 nm rms power and 6 nm rms surface 
irregularity 

Figure 5.11 demonstrates the final surface map, which is the combination of the results 

from the scanning pentaprism and Fizeau tests on the finished mirror:  11 nm rms power 

and 6 nm rms surface irregularity.  The final surface was characterized to 12.5 nm rms 

and 57 nm peak to valley. 

 

 

FIGURE 5.11.  The final surface map showing combined power with surface irregularity 
from the scanning pentaprism and 1 m Fizeau tests on the finished mirror. 
  

By continuing with the computer controlled polishing procedure described in 

section 5.4.6.1 and based on the sensitivities of the test systems [47, 50], we estimated 6 

nm (λ/100) rms power and 3 nm (λ/200) rms surface irregularity to be achievable for 2 m 
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class mirrors.  Due to time constraints this state of the art surface figure of 6 nm rms 

power and 3 nm rms irregularity was not achieved for the 1.6 m flat. 

Figure 5.12 shows the rapid convergence of surface power on the 1.6 m flat 

mirror after implementing our computer controlled polishing.  Measurements on the left 

side of the vertical dashed line were taken during classical large tool polishing before our 

computer controlled polishing.  The classical polishing method used a 60 cm polishing 

tool to make corrections to the mirror surface.  This method managed to bring the surface 

to about 60 nm rms power before reversing direction on the error.  After several more 

polishing runs with the 60 cm tool and a dramatic increase in the surface power, we 

switched to the closed loop computer controlled method. 
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FIGURE 5.12.  Power trend in the 1.6 meter flat (over about three months) as measured 
with the scanning pentaprism system.  The power trend shows rapid convergence after 
implementing the polishing software aided computer controlled polishing. 
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5.5. Manufacture and Test Plan for a 4 m Flat Mirror 

A key advantage of our manufacturing methodology described is that it is scalable to 

larger mirrors.  In this section we discuss the feasibility of extending our methodology to 

4 m class mirrors. 

5.5.1. Mirror geometry 

Zerodur® (Schott Glass, Inc.), ULE® (Corning, Inc.), and fused quartz are common low 

expansion glass materials for large mirror blanks.  Each glass type has properties that 

make it ideal for specific applications.  Zerodur®, for example, has excellent opto-

thermal properties and chemical resistance, so it is typically chosen for space programs 

and other extreme applications.  For the purpose of the analysis below, we assumed a 

solid Zerodur® mirror blank with a thickness of 10 cm shown in Figure 5.13 (40:1 aspect 

ratio).  

 

 

FIGURE 5.13.  Solid Zerodur® 4 m flat mirror geometry. 

5.5.2. Mirror support 

Using the same approach described by Nelson et al. as a baseline (see Section 4.1.2), a 

support system with 120 points, arranged on five rings, was modeled and optimized for a 

mirror geometry described above.  The support system arrangement is shown in Figure 

4 m

10 cm
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5.14.  From the FEA modeling this support arrangement will maintain the mirror surface 

deflection to about 12 nm rms after optimization [75-76]. 

 

 

FIGURE 5.14.  A five ring support design for a 4 m mirror.  This design will maintain the 
mirror deflection to about 12 nm rms. 
 

5.5.3. Overview of the manufacturing sequence 

Many of the same processes that were established during the manufacture of the 1.6 m 

flat mirror can be used in larger mirror fabrication.  After the mirror surface generation, 

the manufacturing process might proceed as follows: 

Courtesy of Brian C.
Steward Mirror Lab
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1. Use a large stiff tool (≥ 100 cm) with tiles to grind and then with pitch to polish the 

surface to a smooth finish, minimize power and asymmetrical surface variations and 

carefully monitor the edges. 

2. Use the electronic levels to make surface slope measurements, monitor global surface 

changes, and guide the initial polishing. 

3. Switch to smaller tools (40 to 80 cm diameter) for figuring after the surface obtains a 

smooth finish and power is less than 100 nm rms. 

4. Use the scanning pentaprism and 1 m Fizeau tests to monitor the surface and guide 

the remaining fabrication. 

5. Use polishing simulation software to aid with the decisions on polishing and figuring. 

Figure 5.15 shows the manufacturing sequence flowchart. 

 

 
 
FIGURE 5.15.  Potential manufacturing sequence for large high performance flat mirrors. 
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5.5.4. Limitations and risks  

Because large mirrors may take a few years to complete, safety is a major concern when 

handling mirror blanks that weigh three to five tons (4 m diameter).  Damage to the 

mirror blank is a significant risk especially during handling and transfer operations.  We 

minimize handling, however, by keeping the mirror on one table where it is well 

supported (Section 5.2).  Polishing and testing are performed without moving the mirror.  

Additionally, shop risks can be mitigated through proper training and practice. 

In this section, we look at other possible limitations and risks of our developed 

fabrication and testing methods. 

Fabrication: polishing and figuring 

Our facility is currently limited to handling 4 m mirrors.  Additional modifications to our 

polishing table are necessary to accommodate mirrors larger than 4 m. 

In addition, our large tool is limited to 100 cm in diameter.  A 230 cm diameter or 

larger tool, after characterization, can be used on a 4 m mirror for initial polishing.  In 

some cases, polishing techniques proven for smaller mirrors do not work for large 

mirrors.  As the tool size increases, so does the pressure it exerts on the mirror surface.  

This alone may change the expected polishing outcome. 

To succeed within the boundary of our capability, careful planning and design is 

essential with special attention to gaining experience with tools and their effect on 

mirrors in fabrication. 
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Surface slope testing 

For a given magnitude surface error (e.g. 20 nm rms astigmatism) the surface slope errors 

are inversely proportional to the mirror size.  Thus, slope errors for a large mirror must 

become smaller to maintain the same performance as a smaller one.  For power, the edge 

slope error is inversely proportional to the diameter of the mirror by (derived in the 

Appendix) 

 
D
s8

=Δθ , (5.5) 

where s is the peak to valley power or sag in the mirror surface 

 D is the diameter of the mirror.   

If the electronic levels, for example, are expected to measure 60 rms power in a 2 

m mirror, then the edge slopes are 1 µrad.  For the same specification on power for a 4 m 

mirror, the edge slopes become 0.5 µrad.  The sensitivities of the test systems must be 

improved as the mirrors get larger. 

We determined the measurement uncertainty in the electronic levels and the 

scanning pentaprism system [46, 50].  The results shown in Table 5.2 are of Monte Carlo 

simulations using the uncertainties in the slope test systems to estimate the accuracy in 

measuring the low order Zernike aberrations in a 4 m flat mirror assuming 0.6 µrad rms 

noise for the electronic levels test and 0.4 µrad rms noise for the scanning pentaprism 

test.  This analysis assumes three diagonal line scans and 12 measurement points per scan 

for the electronic levels and 42 measurement points per scan for the scanning pentaprism. 
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TABLE 5.2.  Accuracy in measuring the low order Zernike aberrations on a 4 m flat 
mirror. 
 

 Measurement accuracy (nm rms) 

Zernike aberration Electronic levels Scanning pentaprism 

Power 29 16 

Cos Astigmatism 50 19 

Sin Astigmatism 52 20 

Cos Coma 18 7 

Sin Coma 18 8 

Spherical 14 5 

Secondary Spherical 9 4 

Root sum square 83 34 

 

Table 5.2 shows that on a 4 m flat mirror, power can be measured to 29 nm rms 

with the electronic levels and to 16 nm rms with the scanning pentaprism system after 

including the limiting effect of the autocollimator beam divergence.  The surface can be 

measured to about 83 nm rms and 34 nm rms of low order aberrations with the electronic 

levels and the scanning pentaprism system, respectively, with no or minimal 

modifications and upgrades to the current slope test systems.  The measurement 

uncertainties can be reduced by averaging more data points and increasing the number of 

measurement points. 

With the electronic levels, there is always a risk of damaging the mirror surface 

when placing the levels since there is a metal to glass contact.  As the mirrors get larger, 

the difficulty of placing the levels closer to the center of the mirror increases, thus the 

risk level also increases.  However, measurements at and near the edges are enough to 
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measure global errors in the surface by Equation 5.2; measuring the slopes only at the 

edges will reduce the risk of placing the electronic levels. 

There is a potential limitation with the scanning pentaprism system:  the current 

system uses rails that are 2.5 m in length, so the current system may become limited in 

size for flat mirrors 4 m in diameter or larger.  Increasing the length of the rails 

overcomes this limitation, but the increase does two things:  increases the working 

distance of the electronic autocollimator and picks up more noise over the longer beam 

paths.  Both these problems may limit the test system in accuracy.  But more data 

averaging can compensate for the additional noise and random errors. 

Large Fizeau test 

In the current Fizeau test the 1 m reference flat and test mirror are fixed in lateral 

translation.  This configuration limits how large a mirror we can test by subsampling (≤ 2 

m).  To measure larger mirrors, another degree of freedom in lateral translation is needed 

for the reference flat. 

Figure 5.16a shows the current subaperture sampling arrangement to measure 2 m 

or smaller flat mirrors.  The reference flat remains fixed and the test mirror is rotated 

underneath to get full coverage.  For a 1.6 m flat mirror eight subaperture measurements 

are enough to get full coverage of the test mirror [47].  This type of sampling 

arrangement is insufficient for flat mirrors larger than 2 m.  Figure 5.16b shows an 

example of subsampling a 4 m mirror after introducing lateral translation of the 1 m 

reference flat.  In this example, the reference flat is translated to three positions and the 

test mirror is rotated underneath to acquire 25 subaperture measurements and provide full 
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coverage of the mirror.  All 25 measurements must be combined to get a full synthetic 

surface map. 

 

Current Fizeau test system - 
1 m subsampling of a 1.6 m flat mirror 

Additional degree of freedom of the reference - 
example subsampling of a 4 m flat mirror 

  
(a) (b) 

 
FIGURE 5.16.  (a) 1 m subaperture (dashed circular outlines) sampling on the 1.6 m flat 
mirror, and (b) on a 4 m flat mirror.  Multiple subaperture sampling provides full 
coverage of the large mirror.  Combining the subaperture measurements produces a full 
synthetic map. 

 

Errors in stitching the subaperture measurements increase as more subapertures 

are combined.  The increase in subaperture measurements limits the accuracy of the test 

system.  However, the quality of the test in terms of slope, power spectral density or 

structure function is not degraded.  

5.6. Conclusion 

The manufacture of large flat mirrors is challenging.  We found classical polishing alone 

does not enable the manufacture of large high performance flat mirror much larger than 1 
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m diameter.  We reported on the methodology and enabling technologies for fabricating 

and testing high performance large flat mirrors.  We developed the enabling fabrication 

and testing technologies during the manufacture of a 1.6 m flat mirror that measured 11 

nm (λ/60) rms in power and 6 nm (λ/100) rms in surface irregularity on the finished 

mirror.  The enabling technologies are scalable for manufacture of flat mirrors as large as 

8 m in diameter with proper tool design and selection.  Our discussion of limitations and 

risks showed the accurate manufacture of a 4 m flat mirror is within our current 

capability. 
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CONCLUSION 

 

 

A description of the methodology for manufacturing large high performance flat mirrors 

that are much larger then 1 m diameter and of solid (i.e. non light weighted) glass 

material has been given.  We found during the manufacture of a 1.6 meter flat mirror that 

classical fabrication methods alone do not enable fabrication of quality large flats and 

current metrology for large flats are limited in efficiency and accuracy.  To address these 

limitations, we developed computer controlled polishing that used polishing simulation 

software combined with accurate and efficient metrology.  Two slope tests, the electronic 

levels and scanning pentaprism, were developed and analyzed in detail.  A vibration 

insensitive interferometer, based on the classical Fizeau, with an external 1 meter 

reference flat was developed, characterized, and calibrated.  The Fizeau interferometer 

used subaperture sampling and stitching and maximum likelihood estimation to obtain 

synthetic surface maps over the full aperture of the flat mirror. 

The electronic levels were used during early fabrication (grinding and coarse 

polishing with large tools) to provide efficient determination of global changes in the 

mirror surface.  The scanning pentaprism and the 1 m Fizeau are highly accurate tests and 

were used during the remaining fabrication and to qualify the surface figure of the 

finished mirror.  The surface of the finished 1.6 m flat was measured to 11 nm rms (±9 

nm rms) power and 6 nm rms (±3 nm rms) surface irregularity.  At present this is the best 

large flat in the world. 
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 The analysis of the risks and limitations of the fabrication methods and metrology 

showed that manufacturing 4 m flat mirrors is within our current capabilities.  Mirrors 

larger than 4 meters will require modifying mechanics including the polishing machines, 

metrology and data analysis techniques.  Changes to the fabrication include designing 

larger stiff tools and carefully characterizing them.  Changes to the metrology include 

increasing the data averaging and introducing an additional degree of freedom in lateral 

translation for the Fizeau reference flat. 

 The manufacture of large flat mirror is challenging.  We addressed the limitations 

and laid the foundation for flat fabrication by developing enabling fabrication and testing 

technologies.  Our method of computer controlled polishing was operated in closed loop.  

The key advantage to our methodology is it is scalable to 8 meter flat mirrors.  With 

proper design of the mechanics and hardware, including polishing tools, and upgrades to 

the data analysis software, high performance 8 meter flat mirrors are possible in the 

future. 

 The amount of work it took to finish this project was a lot more than one person 

can handle.  It took a tremendous team effort to develop and implement the method of 

large flat manufacturing described in this dissertation and produce a very high 

performance 2 m class flat mirror.  In addition to my role as the lead systems engineer on 

this project, I developed the electronic levels test, performed extensive analysis on the 

electronic levels and scanning pentaprism test systems, resulting in improved accuracies, 

designed polishing runs using predictive software and measured data, and, finally, 

integrated the metrology and fabrication methods into a closed loop manufacturing 
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operation that eventually produced the world’s best 2 m class flat.  Individuals that 

directly contributed technical solutions to this project were acknowledged in the 

beginning.   
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APPENDIX A 

EDGE SLOPES FROM SURFACE CURVATURE 

 

The sag in a mirror surface is defined as 

 
R
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2

=  (A.1) 

where r is the semi-diameter of the mirror and R is the radius of curvature.  The slope in 

the radial direction is then 
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The difference between the edge slopes is now 
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where D is the diameter of the mirror.  Rearranging Equation A.4 shows slope 

measurements on opposing edges of the mirror are enough to measure the global 

curvature in the surface. 
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APPENDIX B 

SCANNING PENTAPRISM TEST MONTE CARLO ANALYSIS OF 
NOISE COUPLING INTO MID ORDER ZERNIKE ABERRATIONS 
FOR NUMBER OF LINE SCANS, NUMBER OF MEASUREMENT 

POINTS AND LINE SCAN OFFSETS 
 

This analysis is a continuation from Section 3.4.10.  The Monte Carlo analysis studied 

measurement noise normalized to 1 μrad rms coupling into mid order Zernike aberrations 

(defined in Table 3.7).  The parameters that were varied are the number of line scans 

(three to six), number of measurement points per scan, and the distance of the line scans 

from the center of the mirror (offset).  The line scans were spaced in angle such that scans 

were symmetrical around the mirror. 

 The proceeding plots are for the case when the line scans had no offsets (i.e. the 

line scans go through the center of the mirror).  The amounts of measurement error due to 

measurement noise are plotted against the number of measurement points (for each 

number of line scans).  A function of the form 2/1−AN  was then fitted to the data points, 

where the A coefficient is the sensitivity to noise and N is the number of measurement 

points.  The value of the A coefficient was chose that resulted in the best fit to the data 

points.   The function shows that the measurement error decreases as 
N
1 .  The sampling 

spacing was varied to obtain a distribution of data points for the measurement error. 

Summary of the proceeding plots (Figures B.1 through B.10): 
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1. The analysis assumes measurement noise normalized to 1 μrad rms coupling into mid 

order Zernike aberrations for a 2 m flat mirror. 

2. The line scans have no offset. 

3. Sampling of trefoil (3θ) requires a minimum of four line scans 

4. Ssampling of pentafoil (4θ) requires a minimum of five line scans.  

5. The plots generally follow 2/1−AN . 

 

TABLE B.1.  Values of the A coefficient for the mid order Zernike aberrations for the 
case of the line scans with no offset. 
 

 Trefoil 
Secondary 

astigmatism 
Secondary 

coma Pentafoil 
Higher order 

spherical 

Line 
scans Z10 Z11 Z12 Z13 Z14 Z15 Z17 Z18 Z16 Z25 

3 -- -- 115 115 40 40 -- -- 35 25 
4 190 190 58 60 35 36 -- -- 33 22 

5 165 170 53 53 33 33 97 99 29 21 

6 155 157 50 49 30 29 92 94 26 20 
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FIGURE B.1.  Measurement noise normalized to 1 µrad coupling into cos trefoil (Z10) 
for the number of line scans and number of measurement points over a 2 m flat. 
 



174 
 

1

10

100

1 10 100 1000

M
ea
su
re
m
en
t e
rr
or
 (
nm

 r
m
s)

Number of measurement points per scan

Sin trefoil (Z11) sensitivity (4 line scan)

 

1

10

100

1 10 100 1000

M
ea
su
re
m
en
t e
rr
or
 (
nm

 r
m
s)

Number of measurement points per scan

Sin trefoil (Z11) sensitivity (5 line scan)

 

1

10

100

1 10 100 1000

M
ea
su
re
m
en
t e
rr
or
 (
nm

 r
m
s)

Number of measurement points per scan

Sin trefoil (Z11) sensitivity (6 line scan)

 

FIGURE B.2.  Measurement noise normalized to 1 µrad coupling into sin trefoil (Z11) 
for the number of line scans and number of measurement points over a 2 m flat. 
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FIGURE B.3.  Measurement noise normalized to 1 µrad coupling into cos secondary 
astigmatism (Z12) for the number of line scans and number of measurement points over a 
2 m flat. 
 



176 
 

1

10

100

1 10 100 1000

M
ea
su
re
m
en
t e
rr
or
 (
nm

 r
m
s)

Number of measurement points per scan

Sin secondary astigmatism  (Z13) sensitivity (4 line scan)

 

1

10

100

1 10 100 1000

M
ea
su
re
m
en
t e
rr
or
 (
nm

 r
m
s)

Number of measurement points per scan

Sin secondary astigmatism  (Z13) sensitivity (5 line scan)

 

1

10

100

1 10 100 1000

M
ea
su
re
m
en
t e
rr
or
 (
nm

 r
m
s)

Number of measurement points per scan

Sin secondary astigmatism  (Z13) sensitivity (6 line scan)

 

FIGURE B.4.  Measurement noise normalized to 1 µrad coupling into sin secondary 
astigmatism (Z13) for the number of line scans and number of measurement points over a 
2 m flat. 
 



177 
 

1

10

100

1 10 100 1000

M
ea
su
re
m
en
t e
rr
or
 (
nm

 r
m
s)

Number of measurement points per scan

Cos secondary coma (Z14) sensitivity (4 line scan)

 

1

10

100

1 10 100 1000

M
ea
su
re
m
en
t e
rr
or
 (
nm

 r
m
s)

Number of measurement points per scan

Cos secondary coma (Z14) sensitivity (5 line scan)

 

1

10

100

1 10 100 1000

M
ea
su
re
m
en
t e
rr
or
 (
nm

 r
m
s)

Number of measurement points per scan

Cos secondary coma (Z14) sensitivity (6 line scan)

 

FIGURE B.5.  Measurement noise normalized to 1 µrad coupling into cos secondary 
coma (Z14) for the number of line scans and number of measurement points over a 2 m 
flat. 
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FIGURE B.6.  Measurement noise normalized to 1 µrad coupling into sin secondary 
coma (Z15) for the number of line scans and number of measurement points over a 2 m 
flat. 
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FIGURE B.7.  Measurement noise normalized to 1 µrad coupling into cos pentafoil (Z17) 
for the number of line scans and number of measurement points over a 2 m flat. 
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FIGURE B.8.  Measurement noise normalized to 1 µrad coupling into sin pentafoil (Z18) 
for the number of line scans and number of measurement points over a 2 m flat 
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FIGURE B.9.  Measurement noise normalized to 1 µrad coupling into secondary 
spherical (Z16) for the number of line scans and number of measurement points over a 2 
m flat. 
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FIGURE B.10.  Measurement noise normalized to 1 µrad coupling into tertiary spherical 
(Z25) for the number of line scans and number of measurement points over a 2 m flat. 
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The proceeding plots are for the case when the line scans offsets was 250 mm as shown 

in Figure B.11.  The amounts of measurement error due to measurement noise are plotted 

against the number of measurement points (for each number of line scans).  A function of 

the form 2/1−AN  was fitted to the data points, where A coefficient is the sensitivity to 

noise and N is the number of measurement points.  Only the fitted functions are plotted to 

get all the number of line scans in a single plot. 

Summary of the proceeding plots (Figures B.12 through B.16): 

1. The analysis assumes measurement noise normalized to 1 μrad rms coupling into mid 

order Zernike aberrations for a 2 m flat mirror. 

2. The line scans have 250 mm offset from the mirror center. 

3. Sampling of trefoil (3θ) requires a minimum of four line scans. 

4. Sampling of pentafoil (4θ) requires a minimum of five line scans. 

5. The plots generally follow 2/1−AN  (Note:  Except for small N due to under sampling). 

 

TABLE B.2.  Values of the A coefficient for the mid order Zernike aberrations for the 
case of the line scans with 250 mm offsets. 
 

 Trefoil 
Secondary 

astigmatism 
Secondary 

coma Pentafoil 
High order 
spherical 

Line 
scans Z10 Z11 Z12 Z13 Z14 Z15 Z17 Z18 Z16 Z25 

3 -- -- 50 49 36 36 -- -- 39 30 
4 122 125 34 52 30 29 -- -- 37 25 

5 108 110 38 39 27 27 92 90 29 22 

6 100 102 35 35 26 25 82 82 27 21 
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(a)      (b) 

 
(c)      (d) 

FIGURE B.11.  Scanning pentaprism test examples – line scans (three, four, five, and 
six) are offset from the center of a 2 m mirror by 250 mm.  The line scans are spaced in 
angle such that the scans are symmetrical around the mirror. 
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FIGURE B.12.  Measurement noise normalized to 1 μrad rms coupling into trefoil (Z10, 
Z11) for number of line scans, number of measurement points, and d = 250 mm. 
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FIGURE B.13.  Measurement noise normalized to 1 μrad rms coupling into secondary 
astigmatism (Z12, Z13) for number of line scans, number of measurement points, and d = 
250 mm. 
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FIGURE B.14.  Measurement noise normalized to 1 μrad rms coupling into secondary 
coma (Z14, Z15) for number of line scans, number of measurement points, and d = 250 
mm. 
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FIGURE B.15.  Measurement noise normalized to 1 μrad rms coupling into pentafoil or 
4θ (Z17, Z18) for number of line scans, number of measurement points, and d = 250 mm. 
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FIGURE B.16.  Measurement noise normalized to 1 μrad rms coupling into secondary 
and tertiary spherical (Z16, Z25) for number of line scans, number of measurement 
points, and d = 250 mm. 
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The proceeding plots are for the case when the line scans offsets was 500 mm as shown 

in Figure B.17.  The amounts of measurement error due to measurement noise are plotted 

against the number of measurement points (for each number of line scans).  A function of 

the form 2/1−AN  was fitted to the data points, where A coefficient is the sensitivity to 

noise and N is the number of measurement points.  Only the fitted functions are plotted to 

get all the number of line scans in a single plot. 

Summary of the proceeding plots (Figures B.18 through B.22): 

1. The analysis assumes measurement noise normalized to 1 μrad rms coupling into mid 

order Zernike aberrations for a 2 m flat mirror. 

2. The line scans have 500 mm offset from the mirror center. 

3. Sampling of trefoil (3θ) requires a minimum of four line scans. 

4. Sampling of pentafoil (4θ) requires a minimum of five line scans. 

5. The plots generally follow 2/1−AN  (Note:  Except for small N due to under sampling). 

 

TABLE B.3.  Values of the A coefficient for the mid order Zernike aberrations for the 
case of the line scans with 500 mm offsets. 
 

 Trefoil 
Secondary 

astigmatism 
Secondary 

coma Pentafoil 
Higher order 

spherical 

Line 
scans Z10 Z11 Z12 Z13 Z14 Z15 Z17 Z18 Z16 Z25 

3 -- -- 103 97 65 65 -- -- 49 38 
4 90 88 59 35 35 32 -- -- 46 32 

5 91 91 44 45 37 36 95 93 37 28 

6 128 55 50 48 28 27 100 97 32 25 
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(a)      (b) 

 
(c)      (d) 

FIGURE B.17.  Scanning pentaprism test examples – line scans (three, four, five, and 
six) are offset from the center of a 2 m mirror by 250 mm.  The line scans are spaced in 
angle such that scans are symmetrical around the mirror. 
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FIGURE B.18.  Measurement noise normalized to 1 μrad rms coupling into trefoil (Z10, 
Z11) for number of line scans, number of measurement points, and d = 500 mm. 
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FIGURE B.19.  Measurement noise normalized to 1 μrad rms coupling into secondary 
astigmatism (Z12, Z13) for number of line scans, number of measurement points, and d = 
500 mm. 
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FIGURE B.20.  Measurement noise normalized to 1 μrad rms coupling into secondary 
coma (Z14, Z15) for number of line scans, number of measurement points, and d = 500 
mm. 
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FIGURE B.21.  Measurement noise normalized to 1 μrad rms coupling into pentafoil or 
4θ (Z17, Z18) for number of line scans, number of measurement points, and d = 500 mm. 
 



196 
 

1

10

100

1 10 100

N
or
m
al
iz
ed

 m
ea
su
re
m
en
t 
er
ro
r 
(n
m
 rm

s)

Number of measurement points per scan

Secondary spherical  (Z16) sensitivity (500 mm scan offset)

Series1

Series7

Series2

Series3

1

10

100

1 10 100

N
or
m
al
iz
ed

 m
ea
su
re
m
en
t 
er
ro
r 
(n
m
 rm

s)

Number of measurement points per scan

Tertiary spherical (Z25) sensitivity (500 mm scan offset)

Series1

Series7

Series2

Series3

 

FIGURE B.22.  Measurement noise normalized to 1 μrad rms coupling into secondary 
and tertiary spherical (Z16, Z25) for number of line scans, number of measurement 
points, and d = 500 mm. 
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The next set of plots shows the same data (measurement noise normalized to 1 µrad rms 

coupling into mid order Zernike aberrations), but plotted against the line scans distance 

from the center of the mirror or offset, d.  The set of plots assumes 64 measurement 

points per line scan.  The number of measurement points is maintained for each line scan 

with offset. 

Summary of the proceeding plots (Figures B.23 through B.27): 

1. The analysis assumes measurement noise normalized to 1 μrad rms coupling into mid 

order Zernike aberrations for a 2 m flat mirror. 

2. The set of plots assumes 64 measurement points per line scan. 

3. The behaviors of the measurement errors are mixed; some aberrations get sampled 

better with increasing line scan offsets, while others do not. 

4. For some aberrations their trends are also mixed (e.g. secondary astigmatism). 

5. Due to mixed behaviors, some aberrations get sampled better with a combination of 

the number of line scans and line scan offsets.  For example, pentafoil is sampled well 

with six line scans and 250 mm line scan offset. 
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FIGURE B.23.  Measurement noise normalized to 1 μrad rms coupling into trefoil (Z10, 
Z11) for number of line scans and 64 measurement points. 
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FIGURE B.24.  Measurement noise normalized to 1 μrad rms coupling into secondary 
astigmatism (Z12, Z13) for number of line scans and 64 measurement points. 
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FIGURE B.25.  Measurement noise normalized to 1 μrad rms coupling into secondary 
coma (Z14, Z15) for number of line scans and 64 measurement points. 
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FIGURE B.26.  Measurement noise normalized to 1 μrad rms coupling into pentafoil or 
4θ (Z17, Z18) for number of line scans and 64 measurement points. 
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FIGURE B.27.  Measurement noise normalized to 1 μrad rms coupling into secondary 
and tertiary spherical (Z16, Z25) for number of line scans and 64 measurement point per 
scan. 
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The next set of plots shows the same data (measurement noise normalized to 1 µrad rms 

coupling into mid order Zernike aberrations), but plotted against the number of line 

scans.  The set of plots assumes 64 measurement points per scan.  The number of 

measurement points is maintained for the line scans with offset. 

Summary of the proceeding plots (Figures B.28 through B.32): 

1. The analysis assumes measurement noise normalized to 1 μrad rms coupling into mid 

order Zernike aberrations for a 2 m flat mirror. 

2. The set of plots assumes 64 measurement points per line scan. 

3. The behavior of the measurement errors differ between the aberrations due to the 

ability of certain line scans with certain offsets to sample aberrations better.  For 

example, secondary astigmatism and coma are sampled well with six line scans and 

500 mm line scan offset, while secondary and tertiary spherical are sampled well with 

six line scans with no offset.  
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FIGURE B.28.  Measurement noise normalized to 1 µrad rms coupling into trefoil (Z10, 
Z11) for number of line scans and 64 measurement points per scan. 
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FIGURE B.29.  Measurement noise normalized to 1 µrad rms coupling into secondary 
astigmatism (Z12, Z13) for number of line scans and 64 measurement points per scan. 
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FIGURE B.30.  Measurement noise normalized to 1 µrad rms coupling into secondary 
coma (Z14, Z15) for number of line scans and 64 measurement points per scan. 
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FIGURE B.31.  Measurement noise normalized to 1 µrad rms coupling into pentafoil or 
4θ (Z17, Z18) for number of line scans and 64 measurement points per scan. 
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FIGURE B.32.  Measurement noise normalized to 1 µrad rms coupling into secondary 
and tertiary spherical (Z16, Z25) for number of line scans and 64 measurement points per 
scan. 
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