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Abstract. Conventional measurement methods for large flat mirrors are
generally difficult and expensive. In most cases, comparison with a mas-
ter or a reference flat similar in size is required. Using gravity, as in
modern pendulum-type electronic levels, takes advantage of a free ref-
erence to precisely measure inclination or surface slopes. We describe
using two electronic levels to measure flatness of large mirrors. We pro-
vide measurement results on a 1.6-m-diameter flat mirror to an accuracy
of 50 nm rms of low-order Zernike aberrations. © 2008 Society of Photo-Optical
Instrumentation Engineers. �DOI: 10.1117/1.2831131�
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Introduction

raditionally, testing large flat mirrors ��1-m diameter�
an be difficult and expensive. A test that is normally per-
ormed on large flat mirrors is the Ritchey-Common �RC�
est.1 This requires a reference spherical mirror larger in
ize than the test surface; thus the test accuracy is limited to
he accuracy of the spherical mirror. The RC test is straight-
orward on a small scale; however, aligning large optical
omponents is a difficult and time-consuming process. The
ffect on schedule makes this test expensive for large op-
ics. To overcome this problem, we introduce a simple and
ost-effective slope test that uses two high-precision elec-
ronic levels to measure flatness of large mirrors.

Since the mid-1900s, techniques have been developed to
easure flatness of surfaces, namely, industrial surface

lates.2 Methods to estimate the uncertainty in the measure-
ents so as to calibrate the surface plates have also been

eveloped.2,3 The first flatness measurement instruments in-
luded an autocollimator and a sliding mirror aligned to it.
he autocollimator measured angle deviations on the sur-

ace by sliding the mirror over it along measurement lines.
eight profiles were obtained by integrating the measured

ngle deviations or slopes.
In the 1990s high-precision electronic levels were intro-

uced and became commercially available. The measuring
rinciple of electronic levels is based on a friction-free pen-
ulum suspended between two electrodes. A deflection of
he pendulum changes the capacitance between the elec-
rodes, which is detected by a transducer and translated to
n angle reading. Electronic levels have started to replace
he autocollimator and mirror for measuring flatness of sur-
aces. One benefit of electronic levels, in this case, is that
heir use does not require the skill needed to operate an
utocollimator. The angle readings can be recorded from a
igital display or a data acquisition system.

At the University of Arizona, we extended the concept
f measuring flatness of surface plates to optical surfaces. A
091-3286/2008/$25.00 © 2008 SPIE
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significant advantage of using electronic levels for surface
measurements of large mirrors during fabrication is that the
mirror can remain on the polishing supports. In contrast,
other types of test systems may require moving the test
mirror to a testing fixture. In addition to measurement effi-
ciency, their ease of use and low cost make the electronic
levels ideal for flatness measurements of large mirrors dur-
ing the early stages of manufacturing.

In Sec. 2 we introduce the concept of using single-axis
electronic levels for large flat mirror measurements. In Sec.
3 we provide the sensitivity and error analysis. Next, in
Sec. 4 we provide results of flatness measurements on a
1.6-m-diameter flat mirror and a comparison with another
slope test. Finally, in Sec. 5, we describe a conceptual
implementation of dual-axis electronic levels for flatness
measurements on large flat mirrors. We also present a simu-
lation of dual-axis electronic levels for surface measure-
ments.

2 Test Concept

2.1 Principles of Operation
A single electronic level measures the inclination of a sur-
face, �, very accurately. A schematic of a measurement of
an inclined surface is shown in Fig. 1. Two levels used
Fig. 1 Setup for measuring inclination with the electronic level.

February 2008/Vol. 47�2�1



d
p
m
m
c
m
t
l

l
n
p
t
p
b
s
t
fl
s
t
t
T
m
d
e
i
f
o
d
w

F
p

F
s

Yellowhair and Burge: Measurement of optical flatness…

O

ifferentially allow for slope measurements along the
ointing direction, where one level provides the reference
easurement, B, and the other level provides the measure-
ent A. The differential measurement, A minus B, removes

ommon surface tilt and motion. The reference level is nor-
ally fixed while level A is moved over the surface main-

aining the common pointing of both levels. The scanning
evel is placed at several positions along the scan line.

We procured two high-precision single-axis electronic
evels �Leveltronic, made by Wyler AG� along with the
ecessary hardware and electronics. Single-axis, as op-
osed to dual-axis, levels can only measure inclination in
he pointing direction. We replaced the standard steel base
lates with custom aluminum plates and three tungsten car-
ide half spheres as shown in Fig. 2. The half spheres made
table point contacts with the optical surface. Maintaining
he pointing of both levels is important when measuring the
atness of a surface as shown in Fig. 3. To ensure line
cans, a fiberglass guide rail was fabricated that fitted over
he flat mirror. The guide rail ensured consistent pointing of
he levels and repeatability of the measurement locations.
ypically, we sampled the 1.6-m-diameter mirror with 12
easurement points across it, with a higher measurement

ensity near the edges. The purpose of concentrating on the
dges was to monitor them during grinding and coarse pol-
shing of the mirror. A LabVIEW program was developed
or data acquisition. The slope data, measurement positions
n the mirror, and other measurement parameters �mirror
iameter, scan offset from the center of the mirror, etc.�
ere saved into a text file. The text file was then read in by

ig. 2 Electronic level with a custom aluminum three-point base
late.

ig. 3 Schematic of differential slope measurement on an optical

urface using two electronic levels.

ptical Engineering 023604-
the analysis software, which reduced the slope data to low-
order Zernike aberrations through a least-squares calcula-
tion.

2.2 Zernike Polynomials Fitted to Slope Data
Since the electronic levels measured slope change, we per-
formed the analysis using a basis set of slope functions
derived from the Zernike polynomials. If the surface error
is described by

S�x,y� = � aiZi�x,y� �1�

and measurements are made in a direction defined by

ı̂ cos � + ¤̂ sin � , �2�

then the slope data can be expressed as

��x,y,�� = � ai�Zi�x,y� � �ı̂ cos � + ¤̂ sin �� , �3�

where � is the gradient operator, Zi are the Zernike poly-
nomials, and ai are the coefficients. The analysis software
created a matrix of low-order slopes and a vector of mea-
sured surface slopes. Through a least-squares calculation,
the Zernike coefficients were determined by

�a� = ��� \ �z�� , �4�

where �z�� is a matrix of low-order slopes derived from the
Zernike polynomials projected in the measurement direc-
tion, and ��� is a vector of measured slope variations across
the mirror surface. The \ operator was used in MATLAB4

for the least-squares fit. After the coefficients were deter-
mined, the Zernike polynomials were used to reconstruct
the surface topology map of the flat mirror.

3 Analysis

3.1 Sensitivity Analysis: Sampling for Low-Order
Zernike Aberrations

A single line scan across the mirror does not sample all the
low-order Zernike aberrations shown in Table 1. Figure 4

Fig. 4 Coordinate system for defining the Zernike polynomials �� is
the normalized radial coordinate, and � is the measurement
direction�.
shows the geometry for defining the Zernike aberrations.

February 2008/Vol. 47�2�2
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he non-rotationally-symmetric aberrations have orthogo-
al components, cosine and sine. Measuring for both com-
onents of astigmatism, for example, requires three line
cans in different directions �e.g., three line scans separated
y 120 deg as shown in Fig. 5�c��. Three scans also allow
veraging for power. Figure 5 shows other types of sam-
ling arrangements to measure the low-order aberrations.
cans through the center of the mirror are not required. The
cans can be offset from center; the aberrations measured
till hold for the number of line scans made. The mirror
urface should be well sampled along each scan line to
void aliasing of the surface modes.

Figure 6 demonstrates how the slope measurements
ould appear for the low-order aberrations if three line

cans �at 0, 120, and 240 deg� shown in Fig. 5�c� were
erformed. The plots are normalized by assuming the
ernike wavefront coefficients are 1 �m. The amount of
ach low-order term is determined using the least-squares
t to the measured slope data. The three line scans have
xcellent sensitivities to the low-order aberrations, except
or Zernike 11. Trefoil is thus not adequately sampled with
he three line scans. However, the four line scans shown in
ig. 5�d� remedy this.

.2 Error Analysis
rescher2 reported on a method for estimating uncertainty

n the surface slope measurements of industrial surface
lates. We applied a similar analysis. The error sources can
e separated into two categories: random and systematic
rrors. The random errors can be controlled through data
veraging. The systematic errors are fixed.

.2.1 Random errors

. In addition to inherent noise associated with the elec-
ronic levels, there was also a drift effect due to the envi-
onment, notably thermal. The magnitude and direction of
he drift depended on the temperature gradient at the base
lates of the levels. Figure 7 represents a continuous mea-

Table 1 List of the low-order Zernike polynomials �UofA�.

berration Zernike polynomial Gradient

ower Z4=2�x2+y2�−1 4xı̂+4y¤̂

stigmatism Z5= �x2−y2� 2xı̂−2y¤̂

Z6=2xy 2yı̂+2x¤̂

oma Z7=3�x3+xy2�−2x �9x2+3y2−2�ı̂+6xy¤̂

Z8=3�x2y+y3�−2y 6xyı̂+ �3x2+9y2−2�¤̂

pherical Z9=6�x4+y4�
−6�x2+y2�+1

12x�2x2−1�ıˆ

+12y�2y2−1�¤̂

refoil Z10=x3−3xy2
3�x2+y2�ı̂−6xy¤̂

Z11=3xy2−y3
6xyı̂+3�x2−y2�¤̂
urement that shows drift and noise for a positive tempera-

ptical Engineering 023604-
ture gradient at the base plate of one level. The levels were
placed on the mirror surface after rinsing the mirror of the
polishing compound with filtered tap water and allowed to
settle and equilibrate for one hour. Measurements were then
continuously taken over another hour from one level at the
full sampling rate of the device �3.3 Hz�. The other level
exhibited similar behavior. A temperature gradient �mirror
top surface to ambient room temperature, controlled to
�0.6 K� still existed even after 2 h.

The plot shows the levels drifted about 1.75 �rad over
1 h. To minimize the drift effect, a reference measurement
was made that accompanied the data point. The reference
measurement consisted of placing the scanning level next
to the fixed level and taking a measurement. The scanning
level was then moved back to the actual measurement lo-
cation, and a measurement was taken. The reference mea-
surement was then subtracted from the datum. This proce-
dure was repeated for all the acquired data points. The
reference and actual measurements were acquired in rapid
succession at intervals much less than the time constant of
the drift. For example, acquiring both measurements in
3 min introduced about 90 nrad of slope error.

2. There was inherent noise in the electronic levels. We
measured the noise floor of the levels to less than 0.2 �rad
�at 1 standard deviation�. Figure 8 shows the continuous
measurement from Fig. 7, exhibiting noise after removing
the linear drift effect.

3. The fiberglass guide rail was not perfectly straight.
The straightness was specified to 0.5 mm /m. This caused
an error in pointing and coupling of the reading between

Fig. 5 Sampling requirements for measuring low-order Zernike
aberrations.
the orthogonal axes; thus the slope error in x became

February 2008/Vol. 47�2�3
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Fig. 6 Three simulated line scans �separated by 120 deg� for low-order surface errors described by
single Zernike polynomial terms.
ptical Engineering February 2008/Vol. 47�2�023604-4
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�x = �y �� , �5�

here �y is the slope in y and �� is the error in pointing.
uring coarse polishing, we assumed the mirror surface

lopes varied by 4 nrad /mm. The contact-point spacing of
he electronic levels in the y direction was 64 mm; thus the
lope in y varied by 256 nrad. The error in the slope reading
n x was then 0.13 �rad.

4. The slope error due to placement or setting of the
evels is described by

� = ��d�x

dx
dx�2

+ �d�y

dy
dy�2	1/2

. �6�

he guide rail helped in constraining the placement of the
evels to 2 mm in the pointing �x� direction and to 0.5 mm
n the y direction. If the surface slopes varied by

nrad /mm, then the placement error caused about 8 nrad.

.2.2 Systematic errors
here are two systematic errors to consider:

ig. 7 Measured drift and noise over 60 min. The amount of drift is
bout 1.75 �rad �30 nrad/min�.

ig. 8 Measured noise in the electronic levels after removing linear

rift �	=0.15 �rad�. Sample period 3.3 Hz �full rate�.

ptical Engineering 023604-
1. The residual error from the slope fit calculation intro-
duced an uncertainty as much as 0.13 �rad.

2. Gravity effects on the pendulum may introduce an
additional angle deflection. We assumed the level
pendulum always pointed in the direction of gravity
for reference. However, the force of attraction be-
tween the pendulum and a nearby large object can
cause an additional deflection to the pendulum, thus
changing the slope measurements.

The attracting force between two objects is given by

F = G
m1m2

r2 , �7�

where G is the gravitational constant, m1 and m2 are the
masses of the two objects, and r is the distance between
them. The force in Eq. �7� on the pendulum can cause an
additional deflection by amounts shown in the plot in Fig.
9.

The plot shows, however, that an object must be about
7000 kg �8 tons� and only 0.5 m away to have a noticeable
effect on the slope measurements. The only large object in

Table 2 Sources of error for slope measurements �for a single
level�.

Error source
Value
��rad�

Noise in the levels and calibration 0.25

Drift due to environment 0.10

Axis coupling �guide rail� 0.13

Level placement and setting 0.01

Software fit error �residual� 0.13

Gravity 0.10

Total error �root sum square� 0.34

Fig. 9 Simulated changes in pendulum angle due to force of attrac-
tion between the pendulum and nearby large objects.
February 2008/Vol. 47�2�5



c
w
t
d

3
T
v
i
s
m
s
0

T
t

Z

P

c

s

c

s

S

S

R

F
i

Yellowhair and Burge: Measurement of optical flatness…

O

lose proximity to the mirror was the polishing machine,
hich weighed about 2,700 kg �3 tons�. The force of at-

raction between the polishing machine and the level pen-
ulum would then cause an error of less than 0.1 �rad.

.2.3 Monte Carlo analysis
able 2 shows a summary of the sources of errors and their
alues. After combining all the error sources, the total error
s about 0.34 �rad from a single level. A Monte Carlo
imulation of the three line scans �Fig. 5�c�� on a 2-m flat
irror was performed to determine the uncertainty in mea-

uring the low-order Zernike aberrations, using an error of
.48 �rad for a differential measurement and 12 measure-

able 3 Measurement accuracy for the low-order Zernike aberra-
ions with the uniaxial levels.

ernike aberration
Measurement

accuracy, rms �nm�

ower 16

os astigmatism 29

in astigmatism 29

os coma 11

in coma 11

pherical 8

econdary spherical 6

oot sum square 50

ig. 10 Orthogonal scans with �a� up-down and �b� left-right point-

ng directions using single-axis electronic levels.

ptical Engineering 023604-
ment points per scan. Table 3 shows the result of the simu-
lation. The expected accuracy for measuring a 2-m mirror
is about 50 nm �rms� of low-order aberrations. Separately,
power can be measured to an accuracy of about 16 nm
�rms� with this measurement method.

3.3 Other Scanning Arrangements for Single-Axis
Electronic Levels

Other scanning arrangements are possible for measuring
surface slopes in large flat mirrors using single-axis elec-
tronic levels. Figure 10 shows orthogonal scans with �a�
up-down and �b� left-right pointing directions. The analysis
remains the same for these scanning arrangements.

4 Measurement of a 1.6-m Flat Mirror

4.1 Single Line Scan
A single line scan, as shown in Fig. 5�a�, samples only

Fig. 11 �a� Low-order rotationally symmetric Zernike aberrations fit-
ted to measured slope data. �b� Surface profile of the fitted surface
map. �c� The corresponding two-dimensional fitted surface map with
680 nm peak to valley and 160 nm rms.
rotationally symmetric aberrations �e.g., power�. Figure 11

February 2008/Vol. 47�2�6
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hows the result of a single line scan on the 1.6-m mirror
uring fabrication. The top plot �a� shows the measured
urface slopes and a fit to them using the slope functions
erived from the Zernike polynomials for power and
pherical aberration. The middle plot �b� shows the surface
rofile after determining the Zernike coefficients through
he least-squares fit to the slope data. The bottom plot �c�
hows the reconstructed surface map and the scan made on
he mirror. All of the plots are normalized in radius. The
esults shown in Fig. 11 yielded an overall surface error
rms� of 160 nm: 127 nm power and 128 nm spherical ab-
rration.

.2 Three Line Scans
hree line scans, as shown in Fig. 5�c�, provided informa-

ion on all the low-order Zernike aberrations, except for

ig. 12 �a� Fit to measured surface slopes along three lines sepa-
ated by 120 deg. �b� The resulting surface map of the three line
cans �295 nm rms�.
refoil. Figure 12�a� shows the result of the three line scans

ptical Engineering 023604-
on the same 1.6-m flat mirror �at a different time in the
manufacturing process� and fits to them using the low-order
slope functions. Figure 12�b� shows the reconstructed sur-
face map after fits to the measured surface slopes and the
line scans made on the mirror. The map yielded 295 nm of
overall rms surface error. Table 4 shows a breakdown of
error contributions from the low-order aberrations.

4.3 Comparison with the Scanning Pentaprism Test
System

In this subsection, we provide a comparison of the test with
electronic levels and the test with scanning pentaprisms,
which used two pentaprisms coaligned with a high-
resolution electronic autocollimator. Both test systems mea-
sured surface slopes, with the scanning-pentaprism test pro-
viding higher measurement accuracy.5,6 To validate the
measurements with the electronic levels, the 1.6-m flat was
measured with both test systems while the mirror was in
early production. The same direction on the mirror was
measured, and 10 measurement points across the mirror
were acquired with both test systems. The measurement
spacing between the two systems differed, however.

Figure 13 shows the results from the electronic-level
test, and Fig. 14 shows the results from the scanning-
pentaprism test. Table 5 shows �for comparison� the rms
surface statistics from both tests after the slope functions
for power and spherical aberration were fitted to the slope
data. In addition to the different sampling spacing, the mea-
surements with the electronic levels and with the scanning
pentaprism differed for two other reasons:

1. The rms measurement accuracy of the electronic lev-
els was limited to about 16 nm for power and 8 nm
for spherical aberration �as shown in Sec. 3.2.3�. That
of the scanning pentaprism was 9 nm for power and
2 nm for spherical aberration.6

2. The measurement sampling length is about 40 mm
for the scanning pentaprism �spot size on the test mir-
ror�, and about 140 mm for the electronic levels
�contact-point spacing in the measurement direction�.
This causes the same effect as averaging the surface
slopes over the measurement sampling length, but it
is less of a problem for measuring low-order

Table 4 Values of the low-order Zernike coefficients after fit to sur-
face slopes.

Zernike aberration
Value,

rms �nm�

Power 280

cos astigmatism −97

sin astigmatism 33

cos coma −65

sin coma 6

Spherical −141
aberrations.

February 2008/Vol. 47�2�7
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The results of the comparison show that the two test
ystems agree to within the measurement accuracy of the
lectronic levels for power, thus validating the electronic-
evel measurements. The measurement for spherical aberra-
ion with the electronic levels is much smaller, due to the
veraging effect just described, and because the edge point
hat was measured with the scanning pentaprism test gave it
ore weight for the spherical aberration fit.

Implementation with Dual-Axis Electronic
Levels

he alternative scanning arrangements given in Sec. 3.3
an be accomplished more efficiently with dual-axis elec-

Fig. 13 Measurements on the 1.6-m flat with el
slope data. �b� A fitted surface map after determ
fit.

Fig. 14 Measurements on the 1.6-m flat with th
fit to the slope data. �b� A fitted surface map

least-squares fit.

ptical Engineering 023604-
tronic levels as shown in Fig. 15. Dual-axis levels can mea-
sure inclination about two orthogonal axes simultaneously.
Although we did not procure dual-axis levels during the
work reported here, they are available commercially. In this
section, we analyze the performance of such levels through
Monte Carlo simulations, assuming the same type of mea-
surement accuracies for both axes as for the single-axis
levels.

The data reduction remains the same. Slopes in orthogo-
nal directions will now be known for each measurement
point; the common pointing of the levels must still be main-
tained. The errors contributing to uncertainty in the mea-
surement can be treated in the same manner as for the
single-axis levels. With dual-axis levels, measurements on

c levels. �a� Slope measurements and fit to the
he Zernike coefficients through a least-squares

ning pentaprism. �a� Slope measurements and
etermining the Zernike coefficients through a
ectroni
ining t
e scan
after d
February 2008/Vol. 47�2�8
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square grid can be made instead of scans through the
enter of the mirror, to take advantage of the slope infor-
ation with respect to orthogonal axes.
Figure 16 shows the results of two measurement simu-

ations with dual-axis electronic levels. Accomplishing the
ame scans with the single-axis levels would require mak-
ng additional line scans, demonstrating that dual-axis lev-
ls can increase measurement efficiency. Due to this fact,
e are interested in obtaining dual-axis electronic levels to
o flatness measurements on large flat mirrors in the future.

Conclusion
he conventional measurement methods for large flat mir-

ors are often difficult and expensive. We have provided an
nalysis of a high-precision electronic-level measurement
ystem that uses gravity as a free reference and measures
atness of large flat mirrors with an option to measure other

ow-order aberrations. The sources of error that limit the
ccuracy of the system were quantified; the errors were
inimized through data averaging and making reference
easurements. A Monte Carlo simulation was performed,

ased on the measurement uncertainty estimated from the
rror analysis. The simulation result showed the uncertainty
n the measured low-order Zernike aberrations, and mea-
urements to 50 nm rms of low-order aberrations are
chievable for 2-m flat mirrors. The accuracy, efficiency,

able 5 Zernike coefficients for power �Z4� and spherical aberration
Z9� after fits to the slope data from the electronic levels and scan-
ing pentaprism tests.

bberation

Electronic
levels,

rms �nm�

Scanning
pentaprism,

rms �nm�
Difference,
rms �nm�

ower 261 248 13

pherical −101 −125 24

urface 245 243 2

ig. 15 Simultaneous orthogonal measurements with dual-axis
evels.
ptical Engineering 023604-
and low cost of the test system are ideal for testing of large
flat mirrors. This test system can be used to guide polishing
during the early stages of manufacture. In addition, the
portability of the test system allowed testing of the flat
while on polishing supports instead of in a testing fixture.

References

1. J. Ojeda-Castaneda, “Foucault, wire, and phase modulation tests,” in
Optical Shop Testing, 2nd ed., D. Malacara, Ed., pp. 265–320, Wiley,
New York �1992�.

2. J. Drescher, “Analytical estimation of measurement uncertainty in
surface plate calibration by the Moody method using differential lev-
els,” Precis. Eng. 27, 323–332 �2003�.

3. B. Acko, “Calibration of electronic levels using a special sine bar,”
Precis. Eng. 29�1�, 48–55 �2004�.

4. Mathworks, “MATLAB and Simulink for technical computing,”
http://www.mathworks.com.

5. P. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-m flat
using a pentaprism scanning system,” Opt. Eng. 46, 023602 �2007�.

6. J. Yellowhair and J. H. Burge, “Analysis of a scanning pentaprism
system for measurements of large flat mirrors,” Appl. Opt. 46, 8466–
8474 �2007�.

Biographies and photographs of the authors not available.
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