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ABSTRACT 
In this paper, simple relationships are presented to determine the amount of focal shift that will result from the axial 
motion of a single element or group of elements in a system.  These equations can simplify first-order optomechanical 
analysis of a system.  Examples of how these equations are applied are shown for lenses, mirrors, and groups of optical 
elements.  Limitations of these relationships are discussed and the accuracy is shown in relation to modeled systems.   
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1. INTRODUCTION 
When designing and tolerancing an optical system, typically a full computer model of the system is created and a 
complete tolerance analysis is done.  It is good practice to understand what the expected outcome of a simulation is 
before dedicating time to the endeavor.  First order calculations, estimations, rules of thumb, and experience can all 
provide means with which to determine an expected outcome1-2.   
  
The equations presented in this paper provide a simple way to estimate the amount of focal shift that will occur from the 
axial motion of an optical element, or group of elements, in a system based on the cone of light entering and exiting the 
element(s).  Related equations exist for determining the amount of image motion due to the decenter and tilt of an optical 
element3.  These equations can be used to estimate the tolerances needed on the axial position of an optical element or 
the expected amount of focal shift from a given axial motion.  They can also be used to determine which element in a 
system will affect focus the most. 
 
1.1  Sign Convention 
All calculations and formulas in this paper follow the sign convention as presented in Field Guide to Geometrical 
Optics4.  All angles are defined relative to a reference line, where counterclockwise angles are positive and clockwise 
angles are negative.  The reference line in this case is the optical axis (by convention, the z-axis). 

 

Figure 1: Sign convention for defining angles 

All distances are defined relative to a reference point or plane, where distances (arrows) to the right and above the 
reference point are positive and distances (arrows) to the left and below the reference point are negative. 



 

 

 
Figure 2: Sign convention for defining distances 

 
2. IMAGE MOTION EQUATIONS 

 
2.1   Image motion for refractive surfaces in terms of magnification 
Consider a biconvex lens at finite conjugates that is shifted in the ẑ+ direction by an amount, LzΔ .  As a result, the 

focus will shift a given amount, fzΔ .   

 

Figure 3: Shifting an optical element by an amount, LzΔ , will cause the focus to shift by fzΔ . 

Using the geometry of the system above, the following relationships can be defined: 

Lzoo Δ+='      Equation 1 

fL zzii Δ+Δ−='           Equation 2 

Rearranging these two equations yields:  

Lzooo Δ−=−=Δ '             Equation 3  



 

 

fL zziii Δ−Δ=−=Δ '                   Equation 4 

 
From the imaging equation, 
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where f  is the focal length of the lens, we can differentiate to obtain, 
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When i∂  and o∂ are small, we can make the estimation that ii Δ≈∂  and oo Δ≈∂ .  Rearranging Equation 6 we find, 
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where m is the magnification of the lens.  Inserting Equations 3 and 4 from above and rearranging we find the 
expression: 

( )21 mzz Lf −Δ=Δ           Equation 8 

This derivation can then be extended to a system with two lenses by knowing the shift in the image of the first lens 
( 1fzΔ ) serves as the shift in the object for the second lens ( 2LzΔ ).  The resulting relationship is found to be: 
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where 1m  is the magnification of the first lens and 2m  is the magnification of the second lens.  Again, this expression 
can be extended to a system with N lenses where element x undergoes an axial shift.  The expression is simply multiplied 
by the magnification of the individual lenses following the shifted element.  Lenses before the shifted element will not be 
affected. 
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2.2   Image motion for refractive surfaces in terms of numerical aperture 
The magnification of an element can be defined in terms of the paraxial marginal ray angle, u , and the index of 
refraction, n , surrounding the lens.  The angles are defined as they occur at the element in a system, not at infinite 
conjugates. 
 

 

Figure 4:  The marginal ray angles at a specific element       
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The numerical aperture (NA) defines the cone of light entering or exiting an optic in terms of the real marginal ray angle, 
U, and can be approximated using the marginal ray angle.  This approximation is valid for slow systems (small ray 
angles) and systems that have little or no pupil aberrations. 
 

 nuUnNA ≈= sin                   Equation 12 

The magnification can then be written in terms of NA: 

AN
NAm

′
=      Equation 13 

We can substitute this expression for magnification into Equation 10 to find: 
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where imNA  is the numerical aperture at the image plane. The light exiting each element will enter the following element 

at the same angle, meaning that 1' += xx NANA , 2)'1( ++ = xx NANA , etc.  The equation then reduces to: 
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2.3   Image motion for refractive surfaces in terms of lens focal length and beam diameter 
The angle of light exiting a lens can be expressed in terms of the angle of the incoming light and the lens focal length and 
beam diameter incident on the optic by the paraxial raytrace equation: 

f
ynuun −=''                   Equation 16 

f = focal length of lens 
 y = height of light incident on the optic (marginal ray height) 
 

Again using the approximation for NA in Equation 12 and inserting this expression into Equation 15, we can derive 
another equation for focal shift based on the properties of the lens: 
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However, after comparing the results of the expression above to the actual results from a ray trace model, it was found 
that this equation has very large error in comparison to the prior two equations presented.  It is included here to provide 
insight as to the sensitivity of a given optic based on the focal length, height of the beam on the optic, and angle of light 
entering the optic.  This equation behaves differently for three different regions – where xNAfy 2>> , 



 

 

xNAfy 2<< , or xNAfy 2≈ . The plots below show the ratio of focal shift to element shift as the ratio of yf 2  

increases (i.e. increasing f/#) for the different regions.  When xNAfy 2≈ , the ratio is approximately zero. 

 

 
Figure 5:  Amount of focal shift due to element shift based on the f/# of the element 

These graphs can be used to get a general idea of the amount of focal shift that will occur for a given element motion 
based on the element focal length, beam diameter, and entering NA.  The most sensitive elements of a system can then 
easily be determined.  As evident by the graph, elements with a large f/# will be very insensitive to element axial motion. 
 
2.4   Image motion for reflective surfaces 
The equations derived above can also be applied to reflective surfaces, but with a sign correction.  Due to the fact that the 
numerical aperture terms are squared, the change in direction of the light after reflection (and therefore the change in 
sign) does not affect the equation.  For reflective surfaces, the sign in Equation 10 and Equation 15 must be changed 
from subtraction to addition: 
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where MzΔ  is the axial motion of the mirror. 
 



 

 

3. ERROR ANALYSIS 
 

For small focal lengths and large incident beam diameters (i.e. fast f/# lenses), the relationships presented here have 
greater error.  As seen from Equation 15, and knowing that  

imNA
f

2
1# ≈  ,     Equation 20 

the error in these equations will be proportional to the (f/#)2 of the lens.  The wavefront error due to defocus can also be 
found.  Defocus is given by the expression4: 
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Substituting in Equations 15 and 20, we find: 
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This allows for direct calculation of the amount of defocus in the image based on the axial motion and the entering and 
exiting NA values for the given element. 
 

4. BASIC EXAMPLES 
 

A series of examples are shown below for simple systems in which the relationship between the optical element motion 
and the focal shift is already known, or can be easily determined.  For each example shown, the element motion is in the 
positive direction, so the sign of LzΔ  is taken as positive.  If the optical element motion is in the ẑ−   direction, the 

sign of LzΔ  is taken as negative. 
 
4.1   Positive Lens with Object at Infinity 
For a refractive surface with an object at infinity, the light will focus at the focal length of the lens and the magnification 
is zero.  If we move the lens axially an amount zΔ± , the image will move the same distance, in the same direction. 

 
Figure 6: Positive lens with object at infinity (m = 0) 

Using Equation 8 we find: 

( ) LLLf zzmzz Δ=−Δ=−Δ=Δ )01(1 22  

 
Using Equation 15 and knowing that light is entering the lens parallel to the optical axis ( )0=xNA and the NA in 

image space is the same as 'xNA , we find: 
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4.2   Powered Mirror with Object at Infinity 
Similar to the lens above, the magnification of a powered mirror with an object at infinity is zero.  Since light is entering 
parallel to the optical axis, xNA is zero and the NA in image space is the same as 'xNA . 

 

 
Figure 7: Concave mirror with object at infinity (m = 0) 

Using Equation 18 we find: 

( ) MMMf zzmzz Δ=+Δ=+Δ=Δ )01(1 22  

Using Equation 19 we find: 
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4.3   Plane Parallel Plate 
Inserting a plane parallel plate into a beam will displace the beam axially, but once inserted, moving it axially will not 
cause additional image motion.  The angle of light exiting the plate is the same as the angle of light entering it, so the 
magnification of the plate is 1. 

 
Figure 8:  Plane parallel plate in a converging beam (m = 1) 

Using Equation 8 we find: 

( ) 0)11(1 22 =−Δ=−Δ=Δ LLf zmzz  

Using Equation 15 we find: 
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4.4   Flat Mirror 
Inserting a flat mirror into a beam will fold the optical path, but will not add power.  The magnification of a flat mirror is 
1 and the focus will shift twice the amount that the mirror is shifted axially.  From the law of reflection we know the 
angle of the light before and after reflection will be the same ( )xx NANA =' . 

 

 

Figure 9: Flat mirror in a converging beam (m = 1) 

 
Using Equation 18 we find: 

( ) MMMf zzmzz Δ=+Δ=+Δ=Δ 2)11(1 22  

Using Equation 19 we find: 
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5. VERIFICATION OF EQUATIONS 
 

5.1   Verification of individual lens motion in a Cooke triplet 
To verify the validity of the relationships presented above, individual elements were perturbed in a Cooke triplet.  The 
sample Cooke triplet design provided with the Zemax software was used5.  The distance to the object was set to 200mm 
(instead of infinity) to demonstrate the validity of the equations for a finite conjugate system.  A summary of the relevant 
system properties is given below. 

 

Table 1:  Cooke Triplet System Data 

Parameter Value 
Effective Focal Length 50.14 mm 

Working F/# 6.5 
Entrance Pupil Diameter 10 mm 

Image Space NA 0.0762 
Lens 1 focal length 33.75 mm 
Lens 2 focal length -16.85 mm 
Lens 3 focal length 24.28 mm 

 
 



 

 

 
Figure 10:  Cooke Triplet design used to compare the actual focal shift to the predicted values for individual lenses 

Each individual lens was shifted axially in the ẑ+ direction while the other two lenses were held in a fixed position.  
The shift of the marginal ray focus was recorded for each lens shift.  The graph below compares the predicted focal shift 
from Equation 15 to the actual focal shift recorded from the Zemax simulation. 
 

 
Figure 11: Graph comparing predicted vs actual focal shift for an individual lens 



 

 

Because these equations are derived from geometrical optics principals, they are valid for small shifts and are more 
accurate for lower powered surfaces (i.e. larger incidence angles make the paraxial assumptions less valid).  This can be 
seen in the graph, where Lens 1 has less power (longer focal length) than Lens 2 or Lens 3.   

 
5.2   Verification of group lens motion in a Double Gauss System 
The relationships above can also be applied to a group of elements in a system that shift together.  The sample Double 
Gauss system provided with the Zemax software was used to demonstrate the validity of the equations for the shift of a 
group of elements.  A summary of the relevant system properties is given below. 
 

Table 2:  Double Gauss System Data 

Parameter Value 
Effective Focal Length 99.5 mm 

Working F/# 3 
Entrance Pupil Diameter 33.3 mm 

Image Space NA 0.165 
Focal length of shifted group 178.6 mm 

 
 

 
Figure 12: Double Gauss design used to compare the actual focal shift to the predicted values for a group of elements 

 
The angle of the light entering the first optic and the angle of the light exiting the final optic are used for the calculations.   
 



 

 

 

Figure 13: Numerical apertures used for the following calculations 

The group of lenses was shifted axially in the ẑ+  direction and the shift of the marginal ray focus was recorded.  The 
predicted focal shift from Equation 15 was then compared to the shift of the marginal ray focus in the ray trace 
simulation.   

 

 
Figure 14: Graph comparing predicted vs actual focal shift for a group of lenses 

Since the effective focal length of the shifted group of elements is much larger than each of the individual elements in 
the Cooke triplet, the predicted values are accurate for larger shifts (>2mm compared to >0.5mm for the Cooke triplet) 
 
 



 

 

5.3   Verification of individual mirror motion in a Ritchey-Chretien telescope 
To verify the validity of the relationships given for reflective elements, the primary and secondary mirrors in a Ritchey-
Chretien telescope were individually shifted axially while the other element remained fixed.  The sample Cassegrain-
type Ritchey-Chretien telescope provided with the Zemax software was used.  A summary of the relevant system 
properties is given below. 
 

Table 3: Ritchey-Chretien system data 

Parameter Value 
Effective Focal Length 1752.1 mm 

Working F/# 11.7 
Entrance Pupil Diameter 150 mm 

Image Space NA 0.043 
Primary mirror focal length 371.4 mm 

Secondary mirror focal length -145.1 mm 
 
 

 
Figure 15: Ritchey-Chretien design used to compare the actual focal shift to the predicted values for individual mirrors 

The graph below shows the focal shift predicted by Equation 15 compared to the actual focal shift from Zemax. 
 



 

 

 
Figure 16:  Graph comparing predicted vs actual focal shift for a mirror 

As discussed previously, the amount of error in the estimation is proportional to the (f/#)2 of the shifted elements.  The 
f/# of the mirrors are larger than the previous two examples, so the error in the estimation is greater here for the same 
amount of axial motion. 
 

6. CONCLUSION 
 

Presented in this paper are simple equations for estimating the focal shift from the motion of an optical element or group 
of elements.  In summary: 
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 −  for refractive surfaces 
+ for reflective surfaces 

      fzΔ = focal shift from nominal 

      EzΔ  = axial shift of the element(s) 

    xNA   = entering numerical aperture (estimated by angle of light entering element, relative to the optical axis) 

     'xNA  = exiting numerical aperture (estimated by angle of light exiting element, relative to the optical axis) 



 

 

     imNA   = numerical aperture in the image plane 

        m   = magnification of the element 
 
These equations are valid for small motions and the amount of error from actual focal shift decreases proportional to 
1/(f/#)2 of an element.  Determining the amount of wavefront error due to defocus was also presented.  These equations 
can be applied to determine which elements in a system affect focal shift the greatest amount or for simplified first order 
tolerance analysis of how the axial motion of a lens, mirror, or group of lenses is coupled to focal shift. 
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