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ABSTRACT   

Lenses are typically mounted into precision machined barrels and constrained with spacers and retaining rings. The 
details of the interfaces between the metal and the glass are chosen to balance the accuracy of centration and axial 
position, stress in the glass, and the cost for production. This paper presents a systematic study of sharp edge, toroidal, 
and conical interfaces and shows how to control accuracy, estimate stress, and limit production costs. Results are 
presented from computer models, finite element simulations, and experimental testing. 
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1. INTRODUCTION  
Lenses are typically mounted into metal barrels that use well defined, accurately manufactured surfaces that contact the 
polished glass surfaces.  Additional spacers and retainers also contact the lenses to hold the lens in place.  This paper 
summarizes both the art and the science that are used for the design of the glass to metal interfaces.  We focus on three 
common configurations of lens interfaces – the sharp edge, a radiused toroid, and a conical or tangent interface.  The 
intent of this analysis is to develop a greater understanding of what factors affect the accuracy of a lenses location within 
an optical mount as well as how different lens interfaces can influence the survivability of a lens.   

The most accurate method of mounting a lens uses the polished optical surface itself as an interface datum. This method 
of mounting a lens provides the greatest potential for accuracy, but it can create highly localized contact stresses on the 
optical surface.  These stress concentrations may or may not create issues with survivability that must be accounted for.   

The details of the glass to metal interface, or the lens seat, provide the accuracy for positioning the lens.  A toroidal lens 
seat refers to the standard rounded edge that a lens seats against.  As the radius of the rounded edge reaches the 
minimum limit, the seat may be considered to represent the “sharp edge” lens seat that is most common in optical 
mounting.  The conical lens seat refers to a lens seat that is designed and manufactured to be tangent to the curved 
surface of the lens at a specific axial radius.  This cone shaped lens seat is also referred to as a “tangent lens seat” for the 
tangent nature of the interface.  This seat is usually chosen because of an increased area for the distribution of contact 
forces, but there can be a trade-off for accuracy in manufacturing and inspection.   

This paper will start by looking at mounting basics and achieving tight mechanical tolerances.  In this section, the 
geometry and dimensioning of the toroidal and conical lens seats will be explored in detail.  In the next section the focus 
of this analysis will shift to estimating the survivability of a lens and the reasons why one lens seat might be preferred to 
another.  

2. ACHIEVING TIGHT MECHANICAL TOLERANCES 

There are a few general considerations that need to be taken into account when it comes to achieving tight mechanical 
tolerances.  In most opto-mechanical systems, cost is a factor that must be considered and can have an effect and be 
affected by the design.  Focusing on the necessary tolerances of a design is not always obvious, but is important for not 
only the cost but also the manufacturability of a design.  The capabilities and the standard practices of machine shops 
will vary but being aware of how they operate and what you can expect can also affect a design.  Another feature of a 
design that can have larger than expected impacts on the survivability and accuracy of lens interfaces is the notes section 
of a drawing. 

The cost of a design is driven by many factors. For the cases that are being analyzed here, the cost considerations will be 
limited to the number of features present and the level of the drawing’s tolerances. When looking at a specific part, it is 
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important to note that the more features a part has and the more tightly it is dimensioned will be driving factors in the 
difficulty of manufacturing a part and therefore the cost.  It is therefore, more efficient and effective to develop designs 
that meet the system requirements with the fewer features designed and dimensioned. This method can improve accuracy 
as well.   

In order to keep tight the necessary tolerances of a design and relax the tolerances of unimportant features, it is important 
to know what degrees of uncertainty are present in our chosen mounting interface. In Figure 1 there are three examples 
of lens mounting interfaces.  On the left, there is the sharp edge lens seat which has the fewest degrees of uncertainty. In 
the middle is the toroidal lens seat which increases in features that need to be tolerance and detailed.  On the Right is the 
conical lens seat which can be dimensioned in a few different ways, it also has more degrees of uncertainty than the 
sharp edge seat.   

 
Figure 1. Design examples for sharp, toroid and conical lens interfaces. Each interface can be called 
out in the engineering drawings with specific notes for manufacturing. More details are required for a 
complete design, but these are good examples to start with for the necessary dimensions. 

In the following sections of this paper more detailed examples of these interfaces will be explored in order to illustrate 
the most important features of the designs. Particular attention will be paid to what these features and tolerances can 
mean for the positional accuracy of the lens.   
 
For various considerations it is also important that one pay particular attention to the engineering drawing notes and 
make sure that the tolerances for “unless otherwise specified” section of the drawing are not overly constrained.  If the 
important features are dimensioned correctly, then the unspecified sections should be of little concern.  Specifically, it is 
good to note whether or not all edges should be broken or left harp, what angular tolerances are present, and if there is a 
max radius for sharp corners.   
 
Machines shops that have experience with optics and opto-mechanical elements have many variations when it comes to 
their methods, standards, and limitations for manufacturing accuracy and inspection accuracy.  It is good practice to have 
a clear understanding of what their capabilities and standard procedures are when it comes to a design.  By picking a 
machine shop that sees the design’s requirements as standard, should provide a better end result along with a better cost 
level. 
 
Now a few specific cases of how various manufacturing and inspection uncertainties may affect a final manufactured 
lens system will be examined. The specific changes that can be expected to show up for a toroidal lens seat and for a 
conical lens seat will be detailed. 
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A gauge radius can be specified on a sharp edge lens seat, a toroidal lens seat, or a conical lens seat.  In figure 9 a) is an 
example of how a gauge radius can be dimensioned.  In the dimension a reference is made to a part number 
corresponding to the gauge to be supplied or manufactured.  

 
Figure 9. Using a gauge for manufacturing and inspection.  a) an example of how to dimension a gauge 
properly b) the procedure for manufacturing and inspecting a feature defined by a gauge 

For a machinist using a gauge, the procedure is rather straight forward. For an example using a sacrificial lens, the 
machinist will first make their initial cut, making sure to leave an excess of material for future adjustments.  Next, they 
will insert the gauge provided along with some type of centering plug.  By measuring the axial position of the sacrificial 
lens with a depth micrometer or coordinate measuring machine (CMM), the machinist can calculate how to make the 
final cut.  After making the final cut, the machinist can then verify the cut in the same way as the initial measurement 
was made.   

This is useful for working with all types of lens seat interfaces, given that the ability to obtain possibly sacrificial lenses 
or manufacturing specialized gauges is not limited. 

3. ESTIMATING SURVIVABILITY 
When it comes to survivability of lenses in our various mounting interfaces there are many factors that we can focus on 
in order to ensure lens safety.  These factors that may lead to reduced glass strength can include micro-flaws in the 
surface of your part, simple humidity, as well as unexpected point stresses that may result from a burr or a buildup of 
material on your lens interface.   

Micro-flaws, also known as subsurface damage, can be, for the most part, polished out of an optical surface.  One issue 
that arises with subsurface damage is that it cannot be accurately measured or identified by non-destructive means after 
the polishing process is completed. These flaws, if present in conjunction with atmospheric humidity and global stress 
fields, can degrade the survivability of an optic.   

Humidity and global stress fields can cause a flaw to propagate over time if the stress is of a significant magnitude[2]. 
Water is a catalyst for lens crack propagation and as such, it is important to avoid high contact localized stress fields 
when there are global stress fields present in a part. An example of this case would be for an optic that is exposed to high 
pressure differentials such as a vacuum window. 

Manufacturing using a gauge

1. Initial Cut
Leave Material

2. Insert Gauge
Measure Position with
Depth Mic or CMM

3. Final Cut
By The Numbers 4. Verify Cut

Teflon Centering Plug

a) b) 
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