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ABSTRACT 
Interferometers accurately measure the difference between two wavefronts, one from a reference surface and the 
other from an unknown surface.  If the reference surface is near-perfect or is accurately known from some other 
test, then the shape of the unknown surface can be determined. We investigate the case where neither the 
reference surface nor the surface under test is known. By making multiple modulated measurements where both 
surfaces are translated and rotated, we obtain sufficient information to reconstruct the figure of both surfaces.  
We have developed software that provides a maximum likelihood estimation of both surfaces, as well as an 
assessment of the quality of the reconstruction. This was demonstrated for the measurement of a large flat mirror, 
using a smaller reference mirror that has significant shape errors. 
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1. INTRODUCTION 

Sub-aperture testing (SAT) has been primarily proposed for testing large aperture optics with standard interferometers 
[1]. Two general algorithms [2, 3] have been proposed for sub-aperture data reduction, where polynomials are used to 
describe the full aperture surface data, and get the polynomial coefficients by least square fitting the data in sub-aperture. 
The polynomial fitting methods have been typically used with a non-overlapping sub-aperture testing configuration and 
could not describe local irregularities in a surface well due to the finite polynomial terms. To adequately make use of the 
sub-aperture testing data, testing configurations with overlapped apertures have been suggested and widely used [4, 5]. 
Data from sub-aperture measurements have been stitched by calculating the relative pistons and tilts between 
overlapping sub-apertures. 

Sub-aperture testing has also been investigated as a non-null aspheric test method. By translating the reference surface or 
test surface, the radius curvature of the reference sphere is controlled to best match the local radius curvature of the 
aspheric surface. In this way, the numbers of the interferogram fringes are reduced to within the dynamic range of an 
interferometer. The full aspheric surface can then be measured by stitching a number of sub-aperture measurement data 
with best-fit reference spheres [6, 7, 8, 9]. To reduce the need of precise prior knowledge of fringe nulling or the 
alignment of sub-apertures, several iterative algorithms have been developed to estimate the positions of each 
sub-aperture [10, 11].  
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In this paper, we investigate the case where neither the reference surface nor the surface under test is known in 
sub-aperture testing. By designed relative translation and rotation of the reference and test surfaces, we modulate the 
sub-aperture testing data, so that errors in the reference and test surfaces can be separated. We have applied linear 
analysis to create a global maximum likelihood solution for combining sub-aperture testing data and reconstructing 
reference and test surfaces. Our methodology is self-calibrated and has an easily controlled structure for detecting the six 
degrees of freedom in the sub-aperture positions.  This method can be used for interferogram stitching as other methods 
mentioned above, however its self-calibration property makes it non-restrictive to the stitching application. Our method 
can also be used to calibrate other testing methods, for instance verifying a null lens system and CGH aspheric testing.   

 

2.  DESCRIPTION OF THE METHOD 

 

 

 

 

 

 

 

We applied our method to test a large flat mirror with a Fizeau interferometer set up. A 1-m flat mirror was measured 
using a 60 cm reference. The position of the mirror under test relative to the reference surface is shown in Figure 1. In 
the figure the transmitting reference flat, represented by the small circle, was rotated six times around its center during 
the measurement. The test mirror, represented by the large circle, was rotated eight times around its center. The 
combination of the rotation of the reference surface and the rotation of the test surface gave information to separate the 
errors in the test surface from the errors in the reference surface. The numbers and test geometries of sub-aperture tests 
were designed by eigen analysis of the modulation, so that we could separate the errors in each surface and make test 
easily performed and robust. 

Figure 2 shows the flow diagram of our maximum likelihood estimation algorithm. Distortion corrected sub-aperture test 
data and the test geometry are used as input information for the program. For the above test scheme, Zernike 
polynomials are used to represent the reference and test surfaces. Numerical orthogonal basis functions are first created 
to describe the data within sub-aperture region. The advantage of numerical basis is that it can work for arbitrary 
sub-aperture geometry, circular, rectangular or other shapes. With the test geometry, an influence matrix is set up. Its 
structure is shown in figure 3. It describes the influences produced by the reference and test surface to each sub-aperture 
measurement. Each column in the matrix represents the effect caused by one unit of a certain polynomial term to 
sub-aperture measurement data. Additional piston and tilt terms are added to include the influences from the unknown 
piston and tilt motions introduced during the rotations of the two surfaces. So by modifying the structure of the influence 
matrix, random piston and tilt will not couple to the polynomial terms we are interested in. With sub-aperture testing data 
and the influence matrix, the maximum likelihood estimation are performed, and both reference and test surface shapes 
are obtained. By checking the fitting residuals and correlation between the sub-aperture residuals, we can estimate the 

Fig.1. Sub-aperture testing configuration  
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test accuracy and diagnose the error sources and inconsistencies among sub-aperture data. Setting up a merit function 
with fitting errors, we can control all six degrees of freedom sub-aperture position uncertainties by optimizing the 
structures of the influence matrix separately or globally. Detailed mathematical description of the whole algorithm was 
described in our other paper [10]. As mentioned in the introduction, polynomial methods could not describe local 
irregularities in a surface well due to the finite polynomial terms. One way to deal with this issue is by checking 
modulation effects in the residual data, we can find the data which are modulated and are not absorbed by polynomials, 
and then we put those data to the corresponding regions of the test surface.  
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.3. The structure of Influence Matrix 

Fig.2. Flow diagram of the Maximum likelihood estimation algorithm 
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3. COMPUTER SIMULATION AND EXPERIEMT RESULT 

In our simulations, each surface was assumed to have an rms error of about 100 nm. We considered the following error 
sources. 

1) Random piston and tilt error 
They can be well absorbed by the additional piston and tilt terms in the influence matrix. 
 
2) Random rotation errors 
A standard deviation (std) (1.6 mm/semi-diameter) of the mirror rotational angular errors was randomly introduced to the 
sub-aperture measurement data. Here 1.6 mm corresponded to one pixel in our CCD. The resulting average rms errors of 
each surface were about 0.7 nm.  
 
3) Relative shifts or uncertainties in determining the center of each surface. 
With std of 1.6 mm random lateral shifts or uncertainties in determining the center of each surface, it produced about 2 
nm average rms errors. 
 
4) Random noise 
10 nm rms random errors were introduced, which produced about 0.3nm mean errors. 
 

By optimizing the structures of the influence matrix, the dominant error relative shifts can be well reduced and the total 
average estimation error can be controlled to less than 1 nm. Figure 4 showed the histogram of the surface rms 
estimation errors for test and reference mirrors.  Figure 5 and 6 showed an example of the estimation of the reference 
surface with above error budgets. 

 

 

 

 

 

 

 

 

 

 
5) Selection of the terms of polynomials to be used 
One way to estimate them is fitting polynomials to the sub-aperture data to get a feeling of how many terms need to be 
used in the algorithms. Surface data can be described better by using more terms, however more random noise will be 
coupled in the test result simultaneously. So the numbers of polynomials to be used are set by the noise level of the 
sub-aperture measurements.  

Fig.4. Estimate errors of the test surface: mean=0.79 nm, std=0.25nm; estimate errors of the reference surface: 

mean=0.3 nm, std =0.04nm  
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An experiment of this double rotation testing configuration was performed recently. The estimated reference surface 
compared with another independent test method has rms difference around 1nm. Fitting residual of the estimate was at 
the noise level of the interferometer. We also compared with the result from commercial stitching software; the estimate 
difference of the test surface was around 1nm. 

 

4. CONCLUSIONS 

In our maximum likelihood estimate method we investigate the case where neither the reference surface nor the surface 
under test is known. By making multiple modulated sub-aperture measurements, we obtain sufficient information to 
reconstruct the figure of the test and reference surfaces. Our methodology is self-calibrated and has an easily controlled 
structure for detecting the six degrees of freedom in the sub-aperture positions. The accuracy of the method is at least at 
the same level, 1 nm rms, of commercial stitching software. Our method is not restricted to stitching applications. It can 
also be used to calibrate other testing methods. The modulation and optimization characteristics of our method make it a 

Fig.5. (a) Original surface: rms=119.5 nm, (b) The estimated surface: rms=119.46nm  

(a) (b) 

Fig.6. Point-by-point subtracting map between original surface and estimated surface, rms=0.4nm. 
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general and easily applied method for multi-interferogram testing. 
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