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Computer-generated holograms (CGHs), such as those used in optical testing, are created by etching
patterns into an optical substrate. Imperfections in the etching can cause small scale surface roughness
that varies across the pattern. The variation in this roughness affects the phase and amplitude of the
wavefronts in the various diffraction orders. A simplified model is developed and validated that treats the
scattering loss from the roughness as an amplitude effect. We demonstrate the use of this model for
engineering analysis and provide a graphical method for understanding the application. Furthermore, we
investigate the magnitude of this effect for the application of optical testing and show that the effect on

measurement accuracy is limited to 1 nm for typical CGHs.

OCIS codes: 050.1380, 050.2770.

1. Introduction

Computer-generated holograms (CGHs) play an im-
portant role in a variety of applications in modern
optics. Such applications include beam shaping, im-
age processing, and optical testing [1]. The pattern on
a CGH determines whether the wavefront is split into
a number of beams, compensates for some aberra-
tions in an optical assembly, or performs other useful
optical functions. This high degree of flexibility in
creating complex wavefronts has made CGHs ex-
tremely useful. A properly designed CGH can per-
form the functions of a conventional lens or mirror.
They also have the potential to be thin, lightweight,
and cost effective. CGHs have been most successful
for optical testing of aspheric surfaces, where the CGH
can be used to control the shape of a highly aspheric
wavefront to less than a hundredth of a wave [2].
Errors in the CGH fabrication can cause the dif-
fracted wavefront to suffer aberrations. Manufac-
turing limitations result in errors in the pattern
distortion, linewidth, etching depth, and surface
roughness. The first three fabrication errors have
been studied by Chang and Burge [3,4]. In this
paper, the coupling of surface roughness to the
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wavefront phase and diffraction efficiency is dis-
cussed. A parametric model is built to analyze the
coupling of surface roughness to performance based
on the scalar diffraction theory. A computer simu-
lation of the effects of surface roughness is provided
in Section 3. The coupling of surface roughness vari-
ation to wavefront errors is developed in Section 4.
A simple graphical representation is introduced to
further explain the coupling of surface roughness to
diffraction efficiency and wavefront phase.

2. Parametric Model

A binary, linear grating model is used to build the
parametric model because many complicated CGHs
can be viewed as a collection of binary, linear gratings
with various spatial frequencies. The grating is spec-
ified by the period S, the width of the etched area b,
and the etching depth #. Duty cycle is defined as D
= b/S. Ay and A, are the amplitudes of the output
wavefront from the unetched and etched area of the
grating, respectively. The values of A, and A; can be
determined by the reflectance or the transmittance
coefficients at the grating interface. The phase func-
tion ¢ represents the phase difference between rays
from the peaks and the valleys of the grating struc-
ture, which is equal to 2w(n — 1)¢/\ for the grating in
transmission, where n is the refractive index of the
grating.



Table 1.

Summary of Diffraction Efficiencies and Wavefront Phases

Zero Order Nonzero Order
(m = 0) (m=1,=%2,..)
M A1 — D)? + A*D* + 2A,A,D(1 — D)cos(d) [A2 + A2 — 24,A, cos(b)]D? sinc*(mD)
A D sin(db) A, sin(d)sine(mD)

tan(¥)

Ay(1—-D)+AD cos(d)

[—A+ A, cos(d)]sinc(mD)

Assuming that the grating above is illuminated by
a planar wavefront at normal incidence, the output
wavefront immediately past the grating, either re-
flected or transmitted, can be expressed as

‘ x\ 1 X
u(x) =Ay+ (A —Ao)rect(b> *g comb(s>. (1)

Based on Fraunhofer diffraction theory, the far-field
diffraction wavefront can be obtained by taking the
Fourier transform of this output wavefront, which is

depending on the techniques of etching. Figure 2
shows a simulated grating profile. For simplicity,
only the bottom surface is shown with roughness.
The local etching depth can be defined as the aver-
age phase difference between the top surface and
the bottom surface. If the surface roughness is on a
scale that is much smaller than the period of the
pattern, the coupling of the scattered light into the
diffracted light can be ignored, since the light is
scattered at wide angles. However, the values of A,
and A; are reduced due to scattering, and the scat-

{Ao +[A; cos(d) — A]D} + i{A, sin($)D}
U = {{[Al cos(d) — Ay]D sinc(mD)} + i{A; sin(¢)D sinc(mD)}

1, +2,.. . (2)
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where £ gives the component of the diffracted light at
the angle m\/S. Assuming the intensity of the inci-
dent wavefront is unity, the diffraction efficiency is
the modulus squared of the complex wavefront, and
the wavefront phase is the inverse tangent of the
ratio of the real and imaginary parts of the complex
wavefront. Table 1 lists the diffraction efficiencies
and wavefront phase V¥ for the zero and the nonzero
diffraction orders in the far-field regime. The equa-
tion indicates that the wavefront phase is not affected
by duty cycle for nonzero diffraction orders. The rea-
son that the sinc(mD) functions are left in both the
numerator and the denominator is to preserve the
sign information for the wavefront phase.

A real grating is not as perfect as shown in Fig. 1.
Both the top and the bottom surfaces have rough-
ness, especially after reactive ion etching is used to
create the structures [5]. The rms roughness be-
tween the top and bottom (etched) surfaces may
vary from several angstroms to several nanometers,
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Fig. 1. Illustrates an ideal binary, linear grating.

tered light itself may cause ghost or glare in the
optical system.

It is hard to measure the scattering losses of a CGH
directly. One useful method is to measure the surface
roughness, and then calculate the scattering using
the total integrated scatter (TIS) formula. The sur-
face roughness can be measured by an interference
microscope [6].

The TIS formula relates the surface rms roughness
to the scattered light by comparing the amount of
light that is reflected specularly from a surface to the
amount of light that is reflected diffusely. The TIS in
reflection TIS, can be calculated by

Iscat
TIS, = 7

ref

4 2
~ (2moy = (: Rq> . (3)

A similar formula to calculate the TIS for the trans-
mitted light TIS;:

2= @moy=[2n(n - DRAP, @)

trans
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Fig. 2. Actual profile of a binary, linear grating.
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where o is the wavefront standard deviation in units
of waves, n is the index of refraction of the grating
substrate, and R, is the surface rms roughness. The
amplitude of the output wavefront after the rough
surface can be determined by

A = AFresnel\““‘l - TIS, (5)

where Ap.eme 1S the amplitude of transmitted or re-
flected light due to the Fresnel effect if there is no
scattering. The product of Ag,e and a small correc-
tion 1 —TIS gives the effective amplitude that can be
applied to calculate the diffraction efficiency and
wavefront phase. Therefore, the problem of surface
roughness can be simply treated as a light loss from
the rough surface. The wavefront phase and diffrac-
tion efficiency can be calculated by using the scatter-
corrected amplitudes. If both the top surface and
bottom surface are rough, the scattered loss from
both surfaces has to be considered, which means both
A, and A, need to be modified.

The surface roughness varies across the substrate
due to limitations in the etching process. The varia-
tion of surface roughness can cause light to scatter
differently at various locations across the grating.
The variation in amplitude causes wavefront errors
and nonuniformity in diffraction efficiency. In Section
3 the performance of a binary, linear grating with a
rough surface is simulated to demonstrate how scat-
tering affects the wavefront phase and diffraction
efficiency.

3. Numerical Demonstration

An example of a binary, linear, phase grating is used
to illustrate the coupling of the surface roughness to
its performance. A random surface height error with
a Gaussian distribution is added to the bottom sur-
face in each period, assuming the top surface is per-
fectly smooth. Since we are interested in the coupling
of roughness variation across the substrate, we model
a grating that has a sinusoid distribution across the
grating, so the bottom surface is rougher at the center
and smoother at the edges. The duty cycle and etch-
ing depth of this grating are 50% and 0.35\, respec-
tively. The amplitudes A, and A, are unity if there is
no scattered loss. Therefore, this rough grating is
equivalent to a grating with a constant phase ¢, duty
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Fig. 3. Rough grating and its equivalent model.
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Fig. 4. (Color online) Zero-order diffraction efficiency and wave-
front phase across the grating (50% duty cycle and 0.35\ etching
depth).

cycle D, amplitude A, and varying amplitude A,. The
actual grating relief and its equivalent model are
illustrated in Fig. 3.

The roughness of the bottom surface over the grat-
ing ranges from 0 to 0.08\ rms. Assuming the refrac-
tive index of the grating is 1.5, and the grating is used
in transmission, the equivalent amplitude A, varies
from 1 to 0.968 using Eq. (5). The P-V amplitude
variation is 0.032, and the rms amplitude variation is
0.011. This equivalent model allows rapid calculation
of the effects of scatter, and provides some physical
insight to the behavior.

To simulate the far-field diffraction, we first take a
Fourier transform of the output wavefront right after
the grating for both the actual grating with the
roughness and its equivalent model, which treats
only the amplitude effects of the scatter. After prop-
agating the wavefronts, a spatial filter is used to
select a desired diffraction order. Finally, an inverse
Fourier transform is applied to obtain the complex
wavefront in the far field for that particular order.

The simulation results are shown in Figs. 4 and
5. The circle markers represent the actual grating
with the rough bottom surfaces as shown in Fig.
3(a). The asterisk markers represent the equivalent
model, and the solid curves represent the analytical
solution using the equations from Table 1. At differ-
ent locations of the grating, different values of A, are
used in the equations to calculate the wavefront
phase and diffraction efficiencies. A local averaging
filter is used on all the curves to smooth the data.
From the simulation results, we can see that the
equivalent model matches both the rough grating and
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Fig. 5. (Color online) First-order diffraction efficiency and wave-
front phase across the grating (50% duty cycle and 0.35\ etching
depth).



Table 2. Sensitivity Functions for Diffraction Efficiencies and Wavefront Phases

Zero Order Nonzero Order
(m =0) m=*1,%2,...)
J
% 2A,D* + 2A,D(1 — D)cos(d) (24, — 24, cos($))D? sinc’*(mD)
1
v A,D(1— D)sin(db) —A, sin(d)
9A, A1 -D)®+A2D?+ 2A,A,.D(1 — D)cos(d) Al +A2— 24,4, cos(d)

analytical calculation. The rough grating has random
noise, because the spatial filter has a finite size that
allows some lower-order scattering to come into the
optical system.

The simulation shows that with 50% duty cycle and
0.35\ etching depth, the diffraction efficiencies de-
crease with an increase in the surface roughness for
both the zero and the first diffraction orders, while
the effects of surface roughness on the wavefront
phase are opposite. The surface roughness causes the
wavefront phase to decrease in the zero diffraction
order and increase in the first order.

The numerical model demonstrates that the small
scale surface roughness can be treated purely as an
amplitude effect. Rather than treating the roughness
directly, we can measure the surface roughness of the
grating and treat it as the scattering loss.

4. Errors Analysis due to Surface Roughness

When applying CGHs in any application, it is neces-
sary to evaluate them in order to assure the accuracy
and validity of the measurement results. The cou-
pling of surface roughness to the performance on dif-
fraction efficiency and wavefront phase can be
obtained by measuring the surface roughness varia-
tion over the sampled points of CGHs and converting
it to the amplitude variation. The variation in diffrac-
tion efficiency and wavefront phase caused by the
surface roughness can be evaluated by

an

Amy, = 94, AA,, (6)
1 0¥

W), = 5o o M, )

where AW, is the wavefront variation in waves due
to surface roughness, An,, is the diffraction efficiency
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Fig. 6. (Color online) Diffraction efficiency sensitivity for the (left)
zero order and the (right) first order.

variation due to surface roughness, and AA; is the
variation in amplitude due to scattering, using the
equivalent model.

dn/0A; and 0¥ /0A, are the derivative of diffraction
efficiency and wavefront phase with respect to A,
which are called as the “sensitivity functions.” The
sensitivity functions can be evaluated directly to give
the wavefront error and efficiency error for a given
surface roughness variation. Table 2 shows the sen-
sitivity functions for amplitude A;. It can be ex-
panded for both amplitude A, and amplitude A, if the
surface roughness of the top surface needs to be taken
into account.

As long as the surface roughness varies over spatial
scales that are large compared to the grating spacing,
the sensitivity functions can be used to determine the
coupling between the surface roughness variation
and system performance. Figure 6 shows the diffrac-
tion efficiency sensitivities to the amplitude A, at
various duty cycles for both the zero order and the
first order, assuming it is a phase grating with the
nominal values of A; and A, unity. The point with
50% duty cycle and 0.35\ etching depth, which are
the parameters of the CGH used in Section 3, is
marked as an asterisk in the figure. At that point, the
diffraction efficiency sensitivities of amplitude for the
zero order and the first order are 0.206 and 0.322,
respectively, where the units are (diffraction effi-
ciency variation)/(variation in amplitude).

Similarly, wavefront phase sensitivity functions for
both the zero order and the first order are shown in
Fig. 7. The wavefront sensitivity functions for the
first order are the same for all the duty cycles, which
indicates that the wavefront phase is not sensitive to
the duty cycle. This phenomenon has been predicted
by the wavefront phase function in Table 1. At 50%
duty cycle and 0.35\ etching depth, the phase sensi-
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Fig. 7. (Color online) Wavefront phase sensitivity for the (left)
zero order and the (right) first order.

10 September 2007 / Vol. 46, No. 26 / APPLIED OPTICS 6575



Table 3. Diffraction Efficiency Variation and Wavefront Phase Variation
From Surface Roughness (50% Duty Cycle and 0.35\ Etching Depth)

Sensitivities P-V Error rms Error
Diffraction efficiency
Zero order 0.206 0.0064 0.0023
First order 0.322 0.0100 0.0035
Wavefront phase
Zero order 0.156\ 0.0048\ 0.0017\
First order —0.041\ —0.0013An  —0.0005\

tivities for zero order and first order are 0.156\ and
—0.041A, respectively, where the units are (wavefront
phase variation in waves)/(variation in amplitude).

Variations in diffraction efficiency and wavefront
phase can be computed by applying the sensitivity
functions with the amplitude variation, which is due
to the variation in surface roughness. For the case we
demonstrated in Section 3, the P-V amplitude varia-
tion is 0.032, and the rms amplitude variation is
0.011. The P-V and rms variation in diffraction effi-
ciency and wavefront phase are listed in Table 3. The
P-V variations match the computer simulation re-
sults in Section 3.

Note that surface roughness can be ignored if the
CGH is small, since the surface roughness may be
sufficiently uniform in a small scale. For a large-scale
CGH, nonuniformity in surface roughness will be-
come an issue. The variation in surface roughness
will cause the variation in diffraction efficiency and
wavefront phase.

The wavefront error of a 5 in. (127 mm) diameter
phase CGH was calculated using measured surface
roughness, taken with an interference microscope.
The surface roughness was found to be 2 nm = 0.5
nm rms. The scattered loss was 0.01% * 0.005%, and
the amplitude variation was 0.005%. Therefore, the
coupling of the surface roughness to the wavefront
phase was less than 1 nm, which is small enough to
be ignored.

5. Graphical Representation of Diffraction Field

The coupling of surface roughness to performance can
also be examined by plotting the real and imaginary
part of the complex field in a complex coordinate sys-
tem. The complex wavefront is for a binary, linear
grating is derived in Eq. (2). Both diffraction effi-
ciency and wavefront phase values may be easily ob-
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Fig. 8. Graphical representation for (left) zero- and (right) first-
order diffraction.
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tained from the plot. Figure 8 gives a demonstration
of this graphical representation. The circles in the
plot contain the complete solutions of a phase grating
with 50% duty cycle. The difference between the two
circles in each plot is the amplitude. Each point in the
circle corresponds to different values of etching depth.
A vector pointing from the origin of the complex coor-
dinate to a point on the circle corresponds to a solution
of the diffraction fields produced by the grating at a
specific etching depth. The magnitude of the vector
gives the amplitude of the diffraction field, while the
angle between the vector and the real axis gives the
wavefront phase value V¥ of the diffraction field.

In Fig. 8, all the vectors are pointing to the ¢
= 0.35\ on the circle. In each figure, one circle rep-
resents the case without scattering, which means
A, = A, = 1. The other circle represents the case with
scattering, where A; = 0.9A,. The scattering causes
the circle to shrink towards its center. For zero-order
diffraction, the scattering decreases the wavefront
phase, while it causes an increase in the wavefront
phase for the first order. While the diffraction effi-
ciency decreases in both cases, it drops more for the
first order.

As we can see, the graphical representation pro-
vides an intuitive view of the diffracted wavefront. It
helps to understand how the wavefront phase and
diffraction efficiency change with duty cycle, etching
depth, and amplitude.

6. Conclusion

The effect of surface roughness on a computer-
generated hologram (CGH) was analyzed based on
Fraunhofer diffraction theory. The numerical simula-
tion showed that fabrication tolerances on surface
roughness can result in variations in diffraction effi-
ciency and wavefront phase. Sensitivity functions due
to amplitude variations were derived, and they helped
to estimate the impact of surface roughness on the
diffraction efficiency and wavefront phase of a sample
CGH. For typical CGHs used in optical testing, the
effect of the surface roughness on measurement accu-
racy can be ignored. A simple graphical model of dif-
fraction field was also found to be useful in showing the
relationship between surface roughness and perfor-
mance.
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