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Abstract: Aspheric optical surfaces are often tested using computer-
generated holograms (CGHs).  The etching of the CGH pattern must be 
highly accurate to create desired wavefronts.  Variations of line width, 
etching depth, and surface roughness cause unwanted wavefront errors.  The 
sensitivity to these manufacturing errors is studied using scalar diffraction 
analysis.  We provide a parametric model that can be used for optimizing 
the CGH design to give good diffraction efficiency and limited sensitivity to 
manufacturing errors.  
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1. Introduction 

An optical element with a large aspheric departure is often tested with computer-generated 
holograms.  The primary role of CGHs is to generate reference wavefronts of any desired 
shapes [1, 2].  The accurately drawn pattern on the CGH provides exact wavefront control.  
However, uncertainties from the CGH manufacturing processes introduce errors in hologram 
and hence in the generated wavefront.  Fabrication errors of the CGH can be classified into 
two basic types: irregularities in the CGH substrate, and the pattern errors.  The pattern errors 
include etching depth errors, duty-cycle errors, surface roughness errors and pattern distortion 
errors [3].   

CGHs for optical testing are usually binary, either chrome-on-glass type or phase type.  
Chrome-on-glass CGHs have the pattern defined by a thin layer of chrome coating on the 
glass.  This type of CGH is widely used in optical testing, because it is not sensitive to 
fabrication errors when it is used in transmission.  This will be explained in Section 3.  
However, chrome-on-glass CGHs only have the maximum diffraction efficiency of 10% for 
the first order of diffraction.  When the light intensity is not high enough, phase type CGHs 
can be used for optical testing.  Phase type CGHs have the pattern etched into the glass 
substrate.  The maximum diffraction efficiency for the first order can be up to 40%. 
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In our previous work, we used the binary diffraction model to study the wavefront 
sensitivity of binary CGHs on the etching depth and duty-cycle variations [4, 5].  We also 
used the same model to analyze the effect of small scale surface roughness to the wavefront 
phase [6].  In optical testing, both the sensitivities of wavefront phase to the fabrication errors 
and the variation of the fabrication errors are very important for optical engineers to know. 
We discussed the methods for measuring the fabrication errors in the CGH substrate, duty 
cycle, etching depth and the effect of surface roughness in our previous paper [7].  This 
information combined with the knowledge of sensitivity to manufacturing errors can help us 
design the CGHs, which can give good diffraction efficiency and low sensitivity to 
manufacturing errors.  We now apply the parametric model to optimize the design parameters 
of CGHs in order to achieve good diffraction efficiency and minimize the manufacturing error 
coupled into the testing system. 

2. Parametric model 

The parametric model was first developed by Chang and Burge [4, 5].  A binary, linear 
grating model was used to build the parametric model based on scalar diffraction theory.  
Figure 1 illustrates a binary, linear grating. 

 
Fig. 1 Binary, linear grating profile 

 
The grating is defined by the period S and the etching depth t.  Duty-cycle is defined 

as /D b S= , where b is width of the etched area.  A0 and A1 are the amplitudes of the output 
wavefront from the unetched area and etched area of the grating, respectively.  The phase 
function φ represents the phase difference between rays from the peaks and valleys of the 
grating structure.  For a chrome-on-glass CGH used in transmission, A0 is zero, and A1 is 
unity.  For a phase type CGH used in transmission, A0 and A1 are both unity, 

and
2

( 1)n t
π

φ
λ

= − , where n is the refractive index of the grating. 

Based on Fraunhofer diffraction theory, the wavefront phase Ψ  and diffraction efficiency 

η  in the far field can be derived.  The wavefront phase sensitivity functions D∂Ψ ∂ , φ∂Ψ ∂  

and 1A∂Ψ ∂  are introduced to specify the wavefront error caused by small deviations in duty-

cycle DΔ , phase function φΔ  and the amplitude 1AΔ .  The variation in the amplitude is due to 

scatter loss from the surface roughness, which varies across the substrate due to the limitations 
in the etching process [6].  Table 1 summarizes the diffraction efficiencies, wavefront phases 
and sensitivity functions for the zero and the non-zero diffraction orders [7]. 
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Table 1. Summary of equations for parametric model analysis 
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The sensitivity functions can be evaluated directly to give the wavefront error due to 
variations in duty-cycle D, etch depth t or amplitude A1.  These functions are shown in Eqs.(1-
3) respectively, 
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, (3) 

where 

DΔ           : duty-cycle variation across the grating, 

D
WΔ         : wavefront variation in waves due to duty-cycle variation, 

φΔ            : etching depth variation in radians across the grating, 

WφΔ          : wavefront variation in waves due to etch depth variation, 

1AΔ           : variation in amplitude A1, 

1A
WΔ         : wavefront variation in waves due to amplitude variation. 
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As long as the duty-cycle, etching depth and amplitude vary over spatial scales that are 
large compared to the grating spacing, Eqs.(1-3) can be used to determine the coupling 
between fabrication errors and system performance.  The wavefront sensitivity functions 
provide a way of calculating the wavefront phase changes resulted from the fabrication non-
uniformities.  They can be used to identify which hologram structures are the most or the least 
sensitive to those fabrication uncertainties. 

Another wavefront error, known as CGH pattern position error, or pattern distortion, 
results from the displacement of the etched pattern in a CGH from its ideal position.  The 
amount of wavefront errors introduced by the CGH pattern distortions can be expressed as  

 ( , )W x y m
S

ε
λΔ = − , (4) 

where ε  is the grating position error in the direction perpendicular to the pattern.  The 
produced wavefront phase errors due to pattern distortions are linearly proportional to the 
diffraction order number and inversely proportional to the local fringe spacing [8].  CGH 
pattern distortion errors do not affect the zero-order diffracted beam.  The pattern distortion ε  
of 0.1 mμ  is achievable based on the current CGH fabrication technique.  For a CGH with an 
average line spacing of 20 mμ , the pattern distortion gives a wavefront error of 0.005λ for the 
first diffraction order.  This is small enough that we can usually ignore it in optical testing. 

Irregularities of CGH substrates are typically of low spatial frequencies.  The surface 
figure of a custom CGH substrate, with the size less than 100mm diameter, can be as good as 
0.02λ RMS.  For the system requires higher measurement accuracy or when the CGH 
substrate is large, the substrate irregularities need to be removed by calibration.  Since the 
substrate errors influence all the diffraction orders equally, we can measure the effect of 
irregularities using the zero order diffraction from the CGH, and then subtract it from the first 
order surface measurement to remove this error. 

3. Optimization design 

An optimal design of CGHs has the generated wavefront the least sensitive to the fabrication 
errors.  It also has the maximum diffraction efficiency such that there is enough light back into 
the interferometer.  Here we discuss the examples of both chrome-on-glass and phase CGHs, 
and provide an optimal design based on their fabrication uncertainties. 

3.1 Chrome-on-glass CGH 

For a chrome-on-glass CGH used in transmission, there is no transmitted beam from the 
coated portion of the CGH, because the chrome coating either reflects or absorbs all the light.  
So this chrome-on-glass hologram acts as a pure amplitude CGH.  Therefore, chrome 
thickness error does not affect the wavefront.  CGH duty-cycle and amplitude errors have no 
effect on wavefront for either the zero or the first diffraction orders. The wavefront sensitivity 
function to duty-cycle and amplitude is zero for both zero order and non-zero orders 
according to the equations listed in Table 1. 

The pure amplitude type CGHs are not sensitive to variations in duty-cycle, chrome 
thickness and amplitude, so the irregularities in CGH substrate and pattern distortion are the 
two main error sources.  Since substrate irregularities can be removed by calibration, only 
pattern distortion error remains.  Therefore, the overall wavefront accuracy using an 
amplitude type CGH can be as good as 0.005λ. 

As for the diffraction efficiency, since the fabrication errors on duty-cycle do not affect the 
wavefront phase for amplitude CGHs, we can choose a duty-cycle that maximizes the first 
order diffraction efficiency.  A duty-cycle of 50% has the maximum diffraction efficiency of 
10% at the first order of diffraction.  The zero order has 25% diffraction efficiency.  These 
results can be easily achieved by applying the equations in Table.1. 

When the chrome-on-glass CGH is used in reflection, A0 and A1 are both non-zero.  The 
phase difference between the chrome and glass must be considered.  There is a phase shift 
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introduced between the interfaces of the metal and the air due to metal thickness and complex 
Fresnel reflections.  In this case, we consider both amplitude and phase effects to analyze how 
the fabrication errors affect the wavefront phase.  In the following section, an example of 
phase CGHs is discussed. 

3.2 Phase CGHs 

When testing a bare glass surface using chrome-on-glass CGHs in transmission, light passes 
through CGH twice and only 0.04% of light returns to the interferometer, which may not be 
enough in optical testing.  Phase CGHs can have up to 40% diffraction efficiency at the first 
order, so the light back into the interferometer increases by a factor of 16, which makes phase 
CGHs useful for low-light-intensity optical testing. 

For phase CGHs, the zero and non-zero order diffractions have different sensitivities to 
duty-cycle, etching depth and amplitude.  When we measure the CGH using zero order 
diffraction and then subtract the result from the non-zero order surface measurement, there are 
residual wavefront errors left from the fabrication non-uniformities in duty-cycle, etching 
depth and amplitude.  Furthermore, all these fabrication errors are coupled together to affect 
the wavefront phases for both zero and non-zero orders of diffraction.  Our parametric model 
relates each fabrication error to wavefront performance.  To evaluate the overall effect of all 
the fabrication errors, we can combine the wavefront errors from each fabrication error by a 
root-sum-square (RSS). 

To verify the amount of wavefront errors caused by duty-cycle, etching depth and 
amplitude variation, we assume the P-V variations in the etching depth, duty-cycle and 
amplitude are 2%, 1% and 0.5%, respectively.  We also assume both A1 and A0 are unity.  The 
P-V wavefront errors from CGH fabrication non-uniformities after subtracting the zero order 
wavefront can be calculated using the parametric model.  It is shown in Table 2. 
 

Table 2 Wavefront errors from the fabrication variations 
 

Source of Errors Fabrication 
variation Wavefront error 

Etching depth error 2% 1 0( )m m φ
φ

φ φ φ

= =∂Ψ ∂Ψ Δ
− ⋅

∂ ∂
⋅⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Duty-cycle error 1% 01

2

m D
D

D Dπ

=∂Ψ Δ
−

∂
⋅ ⋅⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Amplitudes Error 0.5% 
1 1 0 1( ) 12 1 1 1

Am m A
A A Aπ

⎛ ⎞∂Ψ ∂Ψ Δ= = ⎜ ⎟− ⋅ ⋅
⎜ ⎟∂ ∂ ⎝ ⎠

 

 
The plots from Fig. 2 to Fig 4 give the wavefront errors caused by the variations we 

assumed above for different duty-cycles and etching depths.  Figure 2 shows that the 
wavefront sensitivities to etching depth are the same for the zero and the first orders at 50% 
duty-cycle.  Therefore, the wavefront error is zero at 50% duty-cycle, after subtracting the 
zero order wavefront from the first order.  The variation of duty-cycle only affects the 
wavefront for the zero order of diffraction.  Figure 5 shows the RSS wavefront errors.  It 
shows that when the etching depth is close to 0.5λ, the wavefront error increases dramatically.  
When we design a CGH, we should avoid choosing the etching depth close to 0.5λ. 
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Fig. 2. Wavefront error caused by 
2% etching depth variation 

Fig. 3. Wavefront error caused by 1% duty-cycle variation 
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Fig. 4. Wavefront error caused by 
0.5% amplitude variation 

Fig. 5. RSS wavefront error 

 
Assuming that the first order of diffraction is used for testing the surface, Fig. 6 gives the 

first order diffraction efficiency at different duty-cycles and etching depths.  The diffraction 
efficiency monotonically increases.  Larger etching depth has higher diffraction efficiency and 
larger wavefront errors.  The maximum diffraction efficiency of the first order occurs at 0.5λ 
etching depth.  Therefore, there is a tradeoff between the RSS wavefront error and diffraction 
efficiency. 

Figure 7 shows the relationship between the first order diffraction efficiency and the RSS 
wavefront error in the case of 2% etching depth error, 1% duty-cycle error and 0.5% 
amplitude error.  The RSS wavefront error is plotted on log scale.  Each curve represents a 
duty-cycle.  The points on each curve show the RSS wavefront and diffraction efficiency at a 
certain etching depth.  It can be shown that when the etching depth is less than 0.4λ, the 
diffraction efficiency increases rapidly as the etching depth increases, and the RSS wavefront 
error does not change much.  When the etching depth is greater than 0.4λ, the RSS wavefront 
error increases significantly but the diffraction efficiency remains almost unchanged.  Based 
on our assumption on the CGH fabrication errors, the duty-cycle of 50% and etching depth 
between 0.3λ and 0.4λ are a reasonable design, because their diffraction efficiencies are 
greater than 25% and the wavefront errors are relatively small. 
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Fig. 6. Different efficiency at 
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Fig. 7 Relationship between RSS 
wavefront error and the first order 
diffraction efficiency (Each point 
on the curve represents different 
etching depth) 

 
When we design a CGH, it is important to know the fabrication uncertainties during the 

CGH writing process.  Based on those fabrication uncertainties, a plot like Fig. 7, showing the 
relationship between diffraction efficiency and RSS wavefront error, can be obtained.  
Depending on the application, there is a tradeoff between the diffraction efficiency and 
wavefront errors.  This plot helps optical engineers to determine the CGH parameters that are 
optimal for their applications.  

The amplitude errors due to scatter are usually small in CGH.  Etching depth and duty-
cycle are mostly the main errors.  In the case that duty-cycle error dominates, for example, 
consider a case with 5% duty-cycle variation and 1% etching depth variation.  The 
relationships between the RSS wavefront error and diffraction efficiency are shown in Fig. 8.  
For this case, CGHs with a larger duty-cycle have larger wavefront errors.  This can be 
predicted from Fig. 3.  In Fig. 3, the larger duty-cycles always have more wavefront errors.  
Therefore, when the duty-cycle error is dominant in the CGHs, the duty-cycle of 40% with the 
etching depth of 0.5λ is preferable. However, all the curves in Fig. 8 are very close to each 
other, which means the wavefront error and diffraction efficiency are not very sensitive to 
duty-cycles. 

When etching depth error dominates, consider a case with 1% duty-cycle variation and 5% 
etching depth variation.  The relationships between the RSS wavefront error and diffraction 
efficiency are shown in Fig. 9.  CGHs with 50% duty-cycle have less wavefront error and 
higher diffraction efficiency.  This is because the difference of wavefront errors caused by 
etching depth between the zero order and first order is zero at 50% duty-cycle, as shown in 
Fig. 2.  Therefore, the duty-cycle of 50% with the etching depth ranging from 0.3λ to 0.4λ is 
preferable. 
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Fig. 8. RSS wavefront error vs. the 
first order diffraction efficiency 
(duty-cycle error dominant) Each 
point on the curve represents 
different etching depth 

Fig. 9. RSS wavefront error vs. the 
first order diffraction efficiency 
(etching depth error dominant) 
Each point on the curve represents 
different etching depth 

 

In conclusion, given the fabrication errors, we can optimize the duty-cycle and etching 
depth to achieve best performance.  If the fabrication errors are unknown, we can choose 50% 
duty-cycle and 0.35λ etching depth.  In this way, we will not suffer large wavefront error and 
low diffraction efficiency, no matter what fabrication error is dominant.  

4. Conclusion 

This paper introduced the parametric model that relates the wavefront performance to the 
fabrication errors of CGHs, and also discussed a method for optimizing the CGH design using 
this parametric model.  To calibrate the CGH substrate error, wavefront errors from both the 
zero and first orders of diffraction must be considered.  The examples of both chrome-on-
glass and phase CGH are discussed in detail.  For chrome-on-glass CGHs used in 
transmission, fabrication errors on duty-cycle and chrome thickness have no effect on the 
wavefront.  For phase CGHs, fabrication errors affect the wavefront phase for the zero and 
non-zero orders differently.  There is a balance between the wavefront performance and 
diffraction efficiency.  The procedure to find the optimal CGH parameter can be described as 
below. 

• Estimate or measure each fabrication errors of CGHs 
• Calculate the wavefront errors caused by each fabrication error using this parametric 

model 
• Plot the relationship between the RSS wavefront error and diffraction efficiency to 

find the optimal solution for CGH parameters 
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