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fixtures that are registered to the vertex of each mirror. The mirrors are aligned in spacing by using a laser tracker and 
SMRs to locate these nests and construct the vertex location of each mirror to determine the needed adjustment. The 
laser tracker is also used to place the mirrors in their nominal positions within the mounting structure to bring their 
positions within range for fine alignment. This paper describes the methods used to register the center reference fixtures 
to the optical axes and vertices of each mirror with results given to demonstrate our success. The use of these references 
in the system alignment is also reported to confirm the practicality of this alignment scheme for systems with multiple 
large aspheric mirrors. 
 
Table 1. Hobby-Eberly Telescope optical prescription with the wide 
field corrector 

Surface Radius of curvature 
(mm) 

Conic 
constant 

Thickness 
(mm) 

M1 -26163.900 0.0000 -14006.420 

M2 2620.660 0.6635 986.890 

M3 -2032.428 -7.7114 -1569.597 

M4 -376.630 -2.0984 336.820 

M5 -742.046 -0.2684 -2410.618 

Focal plane 980.650  0.0000 - 
 
 

Table 2. Wide field corrector alignment tolerances 

Degree of Freedom Tolerance Unit 

M2 to M3 axial 100 µm 

M2 to M5 axial 100 µm 

M4 to M5 axial 20 µm 

M2 decenter (X or Y) 50 µm 

M3 decenter (X or Y) 50 µm 

M4 decenter (X or Y) 20 µm 

M4 M5 decenter (X or Y) 50 µm 

M2 tilt (X or Y) 2.808E-03 deg 

M3 tilt (X or Y) 2.808E-03 deg 

M4 tilt (X or Y) 4.621E-03 deg 

M4 M5 tilt (X or Y) 3.183E-03 deg 
 

2. THE CENTER REFERENCE FIXTURE 
Each mirror in the wide field corrector has alignment references which are referred to as center reference fixtures. 

Representative examples of these fixtures are shown in Figure 2. The fixture is kinematically mounted to three V-blocks 
about the geometrical axis of each mirror. The center reference fixtures all have a CGH mounted at their center. This 
CGH is used as a reference for the decenter and tilt alignments. There are also three sphere mounted retroreflector 
(SMR) nests bonded to the fixtures for M2, M3, and M5. The SMR nests provide a reference for the axial location of 
each mirror vertex. The vertex of M4 is referenced to a single SMR on a separate fixture, also shown in Figure 2, which 
uses the backplane of the mirror as the datum for vertex location.  
 

 
Figure 2. Photograph of the M2 center reference fixture (left) and M4 vertex fixture (right) 

SMR nests 

V-block 

CGH 

SMR nest 

Kinematic 
mounting 
interface
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2.1 Registration of the optical axis to the center reference fixture 

In order to align the CGH optical axis with the optical axis of the mirror the set up in the Figure 3 was used. As 
shown in the Figure, the set up consists of a precision air-bearing, an interferometer and CGH to evaluate the wavefront 
of the optical surface and a point source microscope to monitor the CGH in the center reference fixture. The general 
procedure to register the CGH to the optical axis of the mirror is given below. 
 

STEP 1: Align decenter and tilt of the optical axis of the mirror relative to the axis of rotation of the 
air-bearing by evaluation of modulations in coma and tilt induced by misalignments.  

STEP 2: Install the center reference fixture, with the CGH installed, and the point source microscope. 
STEP 3: Align the optical axis of the CGH relative to the axis of rotation in decenter by evaluation of 

the CGH center mark coordinates on rotation. 
STEP 4: Align the optical axis of the CGH relative to the axis of rotation in tilt by evaluation of the 

CGH angle on rotation with the point source microscope in the autocollimator mode. 
 
 

 
Figure 3. Center reference fixture alignment with the optical axis of M5 using null CGH test and PSM on a rotary air bearing.  

  
2.2 Mirror alignment to axis of mirror rotation 

In order to clearly explain the concepts presented in this paper, a set of labels for the relevant aberration coefficients 
is used. The notation for the aberration coefficients is summarized in Table 3. The labels for misalignments of the mirror 
or CGH are explained in Table 4.  
 
Table 3. Zernike fringe aberration coefficient 

Zernike Coefficient Wavefront fit polynomial 
Z2 ρcosθ 
Z3 ρsinθ 
Z7  (3ρ3 -2 ρ)cosθ 
Z8  (3ρ3 -2 ρ)sinθ 

 

Table 4. Mirror misalignment labels 

Misalignment Label Description of Mirror/CGH Position 
θx Sloped along x-axis, tilted about y-axis 
θy Sloped along y-axis, tilted about x-axis 
Δx Decentered along x-axis 
Δy Decentered along y-axis 

 

Interferometer 

Null-test CGH 

Point Source Microscope 
(PSM) 

5 DOF stage 

Tilt table on air bearing 

M5 & center reference fixture  
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Each aspheric mirror in the WFC has an associated null CGH test which is used to test the aspheric surface of the 
mirror. The null test for each mirror was simulated in Zemax in order to find the sensitivities of tilt and third-order coma 
Zernike coefficients to misalignments of the mirror. Simulated misalignments were introduced at the vertex of each 
mirror and sensitivities of the Zernike coefficients were evaluated for decenter and tilt independently. The net Zernike 
coefficients from a given decenter, Δ, and tilt, θ, in x and y direction are described in Equation (1) and Equation (2) 
respectively. ൤ZଶZ଻൨ = ൤∅ଵଵ ∅ଵଶ∅ଶଵ ∅ଶଶ൨ ∙ ൤Δ௫θ௫൨    (1) 

where the sensitivity is defined as,  ∅ଵଵ = Zଶ∆/∆௫,	∅ଵଶ = Zଶ஘/ߠ௫, ∅ଶଵ = Z଻∆/∆௫ and	∅ଶଶ = Z଻஘/ߠ௫. 
 ൤ZଷZ଼൨ = ൤∅ଵଵ ∅ଵଶ∅ଶଵ ∅ଶଶ൨ ∙ ൤Δ௬θ௬൨   (2) 

where the sensitivity is defined as,  ∅ଵଵ = Zଷ∆/∆୷,	∅ଵଶ = Zଷ஘/θ୷, ∅ଶଵ = Z଼∆/∆୷ and	∅ଶଶ = Z଼஘/θ୷. 
Note that due to the axisymmetric geometry the form of these equations and magnitudes of the sensitivities are identical 
for x and y oriented aberrations and misalignments as shown in the example data for M5 in Table 5. 
 

Table 5. Tilt and coma sensitivity calculation from known perturbation in the M5 null test. 

M5 Perturbation Z2 (µm) Z7 (µm) 
Δx= 0.05 mm -87.4668 8.7967 
θx= .001 degree 23.23439 -2.0650 
 Z3 (µm) Z8 (µm) 
Δy= 0.05 mm -87.4668 8.7967 
θy= .001 degree 23.2344 -2.0650 

 
From equation (1) and equation (2) the net decenter and tilt of the mirror on the x and y axis are calculated from equation 
(3) and equation (4) using the Zernike coefficients from measurements,  ൤Δ௫θ௫൨ = ൤∅ଵଵ ∅ଵଶ∅ଶଵ ∅ଶଵ൨ିଵ ∙ ൤ZଶZ଻	൨   (3) ൤Δ௬θ௬൨ = ൤∅ଵଵ ∅ଵଶ∅ଶଵ ∅ଶଵ൨ିଵ ∙ ൤ZଷZ଼	൨   (4) 

The calculation of decenter and tilt based on measured Zernike coefficients can be used to find the absolute 
misalignment of the mirror within the null-test and quantify how the alignment of the mirror changes as it is rotated 
about an axis. The tilt and third order coma Zernike coefficients are sinusoidal with rotation angle and when the mirror 
optical axis is aligned with the air bearing axis the amplitude of modulation in the Zernike coefficients approaches zero.  

Figure 4 shows the M5 alignment to the rotation axis of the air bearing. Data are collected every 45 degrees on 
rotation. The alignment of M5 to the bearing axis will be used as a representative example of the mirror alignment 
procedure. The average value of the Zernike coefficients represents a static misalignment of the rotation axis relative to 
the null-test CGH optical axis. The static misalignment is minimized to reduce measurement errors and the mirror axis is 
aligned to the air bearing axis by minimizing the modulation of the Zernike coefficients on rotation. 

The resulting dataset for each Zernike coefficient as a function of rotation angle was given by a least-squares fit of 
the measurements to a sine-wave. The relative phase of the fit-functions for x and y coefficients of each aberration was 
set at 90 degrees and the modulation amplitudes were set equal. The amplitudes were set equal because x and y 
components of the same aberration must vary with the same amplitude in rotation. The 90 degree relative phase follows 
directly from the expectation that rotational components of x and y components of the same aberration exchange 
magnitudes when the optic is rotated by 90 degrees.  

The sine-wave least-squares fits determine the static aberration magnitudes and orientations, rotational modulation 
amplitudes of the aberrations, and the orientations of the rotational components of the aberrations. The static component 
of all Zernike coefficients was subtracted from each fit-function in order to isolate the mirror’s misalignment from the 
bearing axis. The mirror’s position was always evaluated and adjusted at the nominal orientation. The values of the 
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isolated rotational components of the Zernike coefficients at the nominal orientation were entered in Equation 2 for both 
x and y orientations to determine the sign and magnitude of decenter and tilt of the mirror relative to the bearing. 
Decenter was always adjusted with two digital indicators against the OD of the mirror along the x and y axes. These 
indicators provided position feedback while adjusting mirror position to reduce the decenter between the mirror’s optical 
axis and the bearing axis. Tilt was generally adjusted using the interference fringes as feedback, but the tilt of the mirror 
optical axis relative to the bearing was always measured during alignment of the alignment-CGH to properly quantify 
the resultant alignments.  
 

 

 
              

Figure 4. Example of coma data from the M5 null test with parameters relevant to the mirror alignment labeled on the plot (left) and 
geometric relationship of calculated axis locations (right). 

 
2.3 Mirror alignment uncertainties 

Ideally the curve-fit is representative of the mirror to bearing alignment without any mechanical instability. If the 
mirror deviates slightly from its ideally sinusoidal changes in position and tilt during the measurement the aberrations 
associated with the small deviation become residual values in the curve-fit. As the mirror approaches a level of rotational 
alignment that is comparable to the stability of the optical test the motion errors become dominant in the aberration data. 
Repeated averaged measurements at each mirror orientation ensure that the random interferometer errors are negligible 
in comparison to the aberration fitting residuals. Thus, the fitting residuals for aberration coefficients Z2, Z3, Z7, and Z8 at 
a particular orientation of the optic are correlated errors. For a given orientation the residual value of each coefficient is 
propagated into a mirror x direction residual using equation 1, and similarly for y using equation 2. Performing this 
calculation at each rotation angle generates a set of mirror position fitting residuals that are used in an RMS calculation 
of mirror position standard deviation for each degree of freedom. In order to claim 95% confidence in the alignment 
results the standard deviations of the mirror decenter and tilt are multiplied by two. 

                      
Table 6. Mirror alignment errors relative to the air-bearing axis for each CGH alignment. 

 Mirror decenter 
magnitude 

 (µm) 

Mirror tilt 
magnitude 

(µrad) 
M2, CGH1 18.5 ± 17.2 5.7 ± 5.6 
M2, CGH2 13.6 ± 15.3 2.6 ± 7.2 
M3, CGH1 3.7 ± 6.0 1.4 ± 2.1 
M3, CGH2 3.5 ± 6.1 1.2 ± 2.2 
M4, CGH1 2.4 ± 3.2 6.2 ± 12.7 
M4, CGH2 2.5 ± 2.6 7.2 ± 9.7 
M5, CGH1 4.1 ± 2.8 4.9 ± 3.0 
M5, CGH2 4.2 ± 2.8 5.1 ± 2.9 
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Given the measured mirror parameters, the virtual surface subtended by the measurement points can be modeled as 
equivalent to the mirror surface with its radius of curvature reduced by the radius of the SMR.  
The measured surface slope is easily determined by differentiating the sag equation and substituting the reduced radius 
for the mirror radius. Equation (5) and (6) give the mathematical form of the mirror surface sag and measured surface 
slope, respectively.  (ݎ)ݖ = ௥మோାඥோమି(௄ାଵ)௥మ + ܽଷݎ଺ + ܽସ଼ݎ + ܽହݎଵ଴  (5) ݖᇱ(ݎ) = ௥ඥோᇱమି(௄ାଵ) + 6ܽଷݎହ + 8ܽସݎ଻ + 10ܽହݎଽ   (6) 

 
The circular geometry constructed through the measured points has radius rmeas and the slope of the measured surface at 
rmeas is used to project the appropriate radial and axial distances Δr and Δz from the measurements to the actual point of 
contact with the mirror surface. These offsets are applied as a change in radius and an axial location of the fit-circle to 
create an average region of circular contact on the optical surface. 
After the circular contact of the SMR against the mirror is determined the mirror surface sag equation is used to 
determine the z-offset of the vertex relative to the measured points. This offset is referred to as zvertex. The expressions 
for Δr, Δz, rcontact, and zvertex are given below, 
ݖ∆  = ݎ∆ ൯൯   (7)(௠௘௔௦ݎ)ᇱݖ൫tanିଵ൫	ௌெோcosݎ = ௖௢௡௧௔௖௧ݎ ൯൯   (8)(௠௘௔௦ݎ)ᇱݖ൫tanିଵ൫	ௌெோsinݎ = ௠௘௔௦ݎ + ௩௘௥௧௘௫ݖ (9)    ݎ∆ = ݖ∆− −  (10)     (௖௢௡௧௔௖௧ݎ)ݖ
 

Figure 10 shows the actual set up for the vertex registration of M2. This configuration allowed the laser tracker 
to be easily and stably positioned relative to the mirror and along its optical axis. In this geometry the encoder errors in 
the laser tracker should be symmetric and approximately equivalent between any two adjacent points.  

 
Figure 8. Laser tracker measurement setup for the M2 vertex registration. A similar configuration was also used for the M3 and 
M5 vertex registrations. 

Table 8 presents the coordinates of the vertex of each mirror within a coordinate system that is established based 
on three SMR nests. The coordinate system is established by constructing a z-axis normal to a plane coincident with the 
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M2 

Center reference fixture 
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thickness of this core was measured normal to its backplane to determine the normal distance from the polished M4 
backplane to the mirror vertex. This measurement was performed by setting the planar surface of the core onto a flat and 
measuring both the curved surface of the core and the surface of the flat. The measurements were performed with a point 
source microscope attached to a coordinate measuring machine (CMM) arm, where surface points were collected by the 
CMM encoders as the microscope reached a cat’s eye retro-reflecting condition. Figure 10 shows the core measurement 
setup. The points collected on the curved surface of the core were used to construct a sphere and a plane was constructed 
from the points measured on the surface of the flat. The maximum normal distance from the flat to the curved core 
surface was determined by subtracting the normal distance from the plane to the sphere’s center from the radius of the 
sphere. 

The second measurement determined the normal distance from the center of the mounted SMR to the backplane of 
M4. In order to determine this distance the backplane of M4 was set on top of 3 chrome steel balls on the CMM with its 
vertex fixture fastened to the V-blocks, as shown in Figure 11. The CMM was used again with a point source 
microscope in order to measure the center of curvature location and radius of each ball contacting the M4 backplane and 
of the SMR mounted in the fixture. This measurement was performed 4 times and both M4 and its fixture were re-
mounted each time the measurement was conducted.  

 
Figure 10. PSM on a CMM arm measuring the curved surface of the M4 core (left), and measuring the flat underneath the core 
(right). 

 
Figure 11. PSM on a CMM arm measuring the radii and center positions of the M4 support which is three steel balls (left) and 
the center of an SMR mounted in the M4 vertex reference fixture (right). 

After conducting the measurements the data was processed in Spatial Analyzer. The data sets were transformed to 
match each other to best-fit, where the locations of the three balls contacting the backplane were aligned to each other at 
center of curvature. A total of 14 measurements were collected, per ball, to determine their radii. A reference frame was 
constructed such that the xy plane was coincident with the mirror backplane by ensuring that the center of curvature of 
each ball had a z-offset from the plane equal to its measured radius. The z-coordinates of the measured SMR locations in 
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this reference frame were used to determine the expected offset of the SMR from the M4 backplane along its surface 
normal. The SMR location was registered to the vertex location by calculating the difference between the core thickness 
and the SMR offset from the M4 backplane. The measured quantities and their individual uncertainties are summarized 
in Table 10 to show how the final result was found.  

 
Table 8. Uncertainties contributing to the M4 vertex reference fixture registration uncertainty. 

Quantity Value (mm) Uncertainty, 2σ  
Core surface radius 359.9213 0.00057 
Core center  of curvature to backplane 316.1135 0.00053 
Ball A radius 12.703 0.0014 
Ball B radius 12.304 0.0010 
Ball C radius 12.699 0.0010 
SMR center height from backplane 70.0568 0.0064 
SMR to vertex, normal distance  26.2490 0.0066 

          

3. INITIAL ALIGNMENT OF THE WIDE FIELD CORRECTOR WITH A LASER 
TRACKER 

A reference frame was established based on the locations of three hemispherical kinematic mounting interfaces on 
the corrector’s frame to meet the system requirement for the location of the optical axis of the WFC in the telescope. 
This reference frame is illustrated in Figure 12. Within this reference coordinate frame the mirrors have prescribed 
nominal z- coordinates that are derived from the system prescription in Table 1. The CGH in each mounted center 
reference fixture must be aligned such that it is centered on and normal to the z-axis. 
 

 
Figure 12. Reference frame for the WFC system alignment. 

Although the laser tracker only serves as a final alignment reference for mirror spacing it is very useful for initial 
mirror alignment. The three SMR locations on the center reference fixtures for M2, M3, and M5 were registered to the 
centroid and plane of their reference CGHs using the PSM mounted on a CMM arm, as shown in Figure 13. This 
registration allows the set of mounted SMR locations for each fixture to be used as a reasonably accurate reference from 
which to define mirror tilt and centration. After this registration is performed the mirror’s reference locations are 
diagnosed within the reference frame of the corrector to determine how the mirror must be moved to achieve its nominal 
alignment. 
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Figure 13. M5 center reference fixture in measurement setup under the PSM on a CMM (left) and measured points of SMR 
centers, points on the plane of the CGH, location of the CGH centroid, and registered vertex location (right). 

With the guidance of the laser tracker the wide field corrector is aligned to the specification of initial alignment as in 
Table 11. 

Table 11. initial mirror alignment error using the center reference fixtures with the laser tracker guidance 

 M2 M3 M4 M5 
Tilt, X (µrad) -23 -5 N/A 13 
Tilt, Y (µrad) 23 -24 N/A -4 
Decenter, X (µm) 6 -15 13 26 
Decenter, Y (µm) 9 16 -1 -38 
Axial position error, Z (µm) -69 -9 -8 4 

 

4. CONCLUDING REMARK 
A previous testing of the proposed alignment scheme with the center reference fixtures was able to provide 

alignment diagnostic errors as small as 3 µm in decenter and 6 µrad in tilt [3]. The laser tracker is expected to introduce 
less than 5 µm of axial spacing uncertainty during the final alignment. The levels of uncertainty and residual errors 
achieved in the reference alignments and much smaller errors expected during their use in alignment provides 
confidence in the successful alignment of the Wide Field Corrector. 

Currently the wide field corrector is aligned to the specification for initial alignment by the guidance of laser 
tracker. The next planned stage is to align the mirrors in the Wide Field Corrector using an autocollimator and video 
microscope in conjunction with the CGHs in the center reference fixtures. Finally, the alignment of Wide Field Corrector 
will be verified by system wavefront tests using CGHs and an interferometer to test the full system as well as isolated 
paris of mirrors.    
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