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Aberrations of imaging systems can be described using a polynomial expansion of the dependence
on field position. Aberrations on axis and those with linear field dependence can be calculated and
controlled using Fermat's principle and the Abbe Sine Condition. We now present a powerful
new set ofrelationships that fully describe the aberrations that depend on the second power of the
field. A simple set of equations, derived using Hamilton's characteristic functions, which we call
the Pupil Astigmatism Criteria, use on-axis behavior to evaluate and control all aberrations with
quadratic field dependence and arbitrary dependence on the pupil. These relations are explained,
validated, and applied to design optical systems that are free of all quadratic field dependent
aberrations.

OCIS Codes: 220.1010 Aberration theory, 220.4830 Optical systems design

1. Introduction

The aberration of a general optical system depends on both the field and aperture. For an axially symmetric
system, let the field be h and the aperture be p. The aberrations can be expanded in the following form1' 2:

W(h, ) = W2m+k2n+kk (h2 ) .(p2 )fl . (h.)k, (1)

where m, n and k are integers. If aberrations are classified in terms of their field dependence, then we have:

Spherical aberrations with no field dependence such as W040, W060, W080, etc.

. Linear field-dependent aberrations such as W131, W151, W171, etc.

. Quadratic field-dependent aberrations such as W222, W22, W262, . . . and W220, W240, W260, etc.

Figure 1. An axisymmetric optical system images the point 0 to point I
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Criteria already exist for complete correction of aberrations that depend on the field to the 0th (spherical) or
1st order (coma). In Figure 1, the optical system images an on-axis object point 0 to point I. For the system to be
free of all orders of spherical aberration, Fermat's principle must be satisfied, i. e. the optical path length (OPL)
from 0 to I along any ray must be constant for all a.

OPL[OI] = constant (independent of 0), (2)

For the system to be free of all orders of coma, which depends on the field size linearly, the Abbe Sine
Condition' must be satisfied, i.e.

sin(a) =constant (independent of 0). (3)
sin(9)

These two conditions are useful in optical design because they tell the designer how to correct all orders of
spherical aberrations and coma using only on-axis properties. Likewise, it is desirable to have simple mathematical
conditions for correction of other fundamental aberrations. We derived such conditions for correcting the aberrations
that are quadratic in field. Like the Sine Condition, these general and elegant conditions involve only the on-axis ray
properties.

2. The Pupil Astigmatism Criteria
The conditions for correction of aberrations with quadratic field dependence were derived using Hamilton's

characteristic functions2, given in the next section. The Hamiltonian treatment uses ray geometry to specify the
point, angle, and mixed characteristic functions. These three functions, which give complete information about the
rays and wavefronts are related by a set of differential equations. We developed general forms of these functions for
imaging systems and performed a Taylor expansion in terms of the field. We show how the first term, with no field
dependence is equivalent to Fermat's principle and the term with first order field dependence can be reduced to the
Abbe sine condition. We also show a term that depends on the second power of field, which has profound
implications for optical design.

To use this second order term, we evaluate the astigmatism in an infinitesimal bundle of rays about by the
object (or image) point, as shown in Fig. 2. For the case of finite conjugates, this bundle originates at a fictitious
entrance pupil at infinity and passes the object point collimated. (Since this analysis only requires on-axis ray
tracing, the actual pupil position is not important.) In general, we can find the tangential and sagittal focus of this
bundle as a function of position in the pupil 8. We defme s as the distance from the image point to the sagittal focus
and t as the distance to the tangential focus. Similar definitions for s and tare made for the case of an object at
infinity by defining the fictitious entrance pupil at any arbitrary plane.

a) Object located a finite distance from optical system

Figure 2. Definition of s and I for imaging systems. The parameter 8gives the pupil dependence.
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Using the quadratic term from the expansion of the Hamiltonian relations, we show an elegant set of
relations that can be used to control quadratic field dependent aberrations. These are summarized in Table 1.

Table 1. Pupil astigmatism relations for axisymmetrical optical systems.

Type of quadratic field aberrations Criterion for correction

Correction of all aberrations in tangential plane t(8) (4)
2

= Constant
Cos (8)

Correction of all aberrations in sagittal plane s(&) = Constant (5)

Set all sagittal aberrations equal to tangential t(O) (6)s(8) =
cos2(8)

Correction of all aberrations t(9) (7)
s(O)= = Constant

cos2 (0)

It is important to realize that these criteria give the conditions for correction of quadratic field dependent
aberrations for all orders of the pupiL So, not only are low order astigmatism and field correction corrected, but
higher order aberrations of the pupil such as oblique spherical aberration are corrected as well. Also, it is important
to understand the distinction between the pupil astigmatism relations and the well known Coddington equations.3
The Coddington equations can be used for any field angle to determine the tangential and sagittal images defined by
an infmitesimal bundle of rays that go through the object point and the very center of the pupil. Thus they allow a
complete trace of the aberrations with quadratic pupil dependence and high order field dependence. In contrast, the
pupil astigmatism relations give only information about aberrations with quadratic field dependence, but for each
point in the pupil. So the Coddington equations are most useful for low numerical aperture, wide field of view
systems and the pupil astigmatism conditions are useful for fast systems with a smaller field of view. It should be
noticed that t ands that appear in the pupil astigmatism criteria can be calculated by using the Coddington equations,
but without the understanding ofthe criteria, they are not physically significant.

3. Derivation of the Pupil Astigmatism Criteria for systems with object at finite distance
In this section, we reproduce the derivation of the pupil astigmatism relations that is given by Zhao and

Burge elsewhere.4

a. Ham ilton's Characteristic Functions
We used Hamilton's characteristic functions2' 3 to derive the Pupil Astigmatism Criteria. Hamilton's

characteristic functions are a set of functions that represent the optical path length along a ray. In Figure 2a, a ray
originates from a point P0(x0, y0, z0) in object space, and passes through P1(x1, y1, z1) in image space. 0 and I are the
origins of local coordinate systems. (p0,q0,m0) and (p1,q1,m1) are ray vectors in object space and image space
respectively. A ray vector is the vector along the ray with length equal to the index of refraction of the local
medium. Qo and Q are the intersections of perpendiculars drawn from 0 and I to the ray in object space and image
space respectively. H0 and H1 are the intersections of the ray with the x-y plane in object and image space
respectively. If we make the following definition:
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[AB] optical path length along the ray from Point A to Point B,

then the Hamilton's characteristic functions are defined as follows:

Point characteristic: V(xo,yozo; x1,y1,z1) [P0P1],

Mixed characteristic: W(x0,y0z0; p1,q1) [P0Q1],

Angle characteristic: T(p0,q0; p1,q1) [QoQi].

Hamilton's characteristic functions are very powerful tools for investigation of the general properties of
optical systems. If one of the Hamilton characteristics is known, we can obtain all the information about any ray. For
example,
if V is known, then

p0 =———, (8a)
ax0

av
p1 =—, (8b)

ax,

if W is known, then

p0 =—, (9a)
ax0

x1 =——-—, (9b)
ap,

and if T is known, then
aTx0 =, (lOa)
ap0

aT
x1 =——. (lOb)

ap,

Other coordinates and ray vector components can be calculated in the same way.

Since the Hamilton's mixed and angle characteristic functions can be used to calculate the ray intercept at a
plane, we can then use them to calculate ray aberrations.

b. Derivation of the Pupil Astigmatism Criteria
We use Hamilton's mixed characteristic function W to derive the criteria for the finite conjugate systems.

For a rotationally symmetric system, W only depends on the following 3 quantities:

2 2 2
h =x0 +y0

p2=p12+q12, (11)

h.p=x0p1 +y0q1.
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Ifwe expand W in a power series ofthe field and neglect 3' and higher powers, we find

W(x0,y0,p1,q1;z0,z1)= W0(p)+(x0p1 + y0q1)W(p)+(x0p1 + y0q1)2W2(p)

+(x02 +y02)W(p), (12)

where W1, W2 and W3 are coefficients ofthe expansion and they are functions ofp only.
Ifwe consider a field point in the x-z plane, then y0 0 and

W(x0 , y0 ,p1 , q1 z0 ,z1 ) = W0(p) + x0p1 (p) + x02 (p12W2 (p) + W (p)) . (13)

According to Eq. (9), the coordinates ofthe ray intersection with the x-y plane in image space are:

x1 = — (p)_0 (p1W (p)) — x02 (2W (p)+ W3 (p)) (14)
3p1 ap1 p1

and

y1 = — W0(p) 0 (p1W(p)) — x02 (2W(p) + W3(p)) . (15)
tq1 5q1

Also, according to Eq. (9),

p0 =—p1W1(p) (16)

at Point 0.

We know is the magnification and generally it is a function of p. Let M(p) be the magnification, then
p1

M(p)=—W1(p). (17)

The ideal image of a point at (x0, 0, z0) will be at (x1', 0, z) where

x1'=M(O)x0. (18)

Let Ax and Ay be the lateral aberrations, and substitute Eq. (18) into Eqs. (14) and (15). We then obtain the
following equations for Ax and Ay:

AX = X1 — X

0W0
+ x0 (M(p) — M(O))) —

x02 (p12W2 (p)+ W3 (p)), (19.1)
Op1 Op1 Op1
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and

A))

=— aw0(p) 0 (p1M(p)) — x02 a(2W (p) + W3 (p)) . (19.2)
ac/i aq1

The first term of the right hand side of equations in (19) gives rise to field-independent spherical
aberrations of the form W0,0 where n is an even number. The second term gives rise to all the linear field-dependent
aberrations of the form W1,,1 where n is an odd number. The third term gives rise to all the quadratic field-dependent
aberrations of the form W2,,2 and W2,0, where n is an even number. Apparently W2(p) determines W2,2, and 1473(p)
determines W2,0.

For all the linear field-dependent aberrations to be corrected, M(p) must be constant, i.e.

p0M(p) = — = constant, (20)
p1

which is the famous Abbe Sine Condition.

For all the quadratic field-dependent aberrations to be corrected, the following equation must be true:

2
p1 W2 (p) + W3(p) =constant , (21)

which implies W2(p) 0 and W3(p) constant.

We would like to know what p12W2 (p) + W3 (p) represents physically. Consider a field point A in the

optical system shown in Figure 4(a). A is on the x-axis and has an infinitesimal field height x0. Now trace a ray from
Point 0 to Point I, which has an angle 0 with the optical axis in image space. Then trace a parallel ray from A inthe
tangential plane. The two rays intersect with each other at T in image space. Draw a perpendicular from I to the ray
originating from A, the foot is denoted as B. Let TI =t (>0), then the optical path length from T to I is

[TI]=n1t, (22)

where n is the index of refraction of medium in image space. The mixed Hamilton's characteristic function for the
ray that originates from 0 is then

W(O) = [oT]+ [TI], (23)

and the mixed Hamilton's characteristic function for the ray that originates from A is then

W(A) = [AT]+ [TB], (24)

where

[AT]= [OT]—x0p0, (25)
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and

[TB] = [TI]cos(89)

[TI] — [TI](88)2 /2 . (26)

Combining Eqs. (23), (24), (25) and (26), we get

W(A) = W(O) — x0p0 — [TI](88)2 /2 , (27)

where

88 = x1 cos(9)It = x0M(p) cos()It , (28)

where M(p) is the magnification.

Then

W(A) = W(O) — x0p0 —
x02 (n1M2 (p) cos2(9)I(2t)) . (29)

Comparing this equation to Eq. (13), we get

12w (p) + (p) = — n1M2 (p)cos2(8)
(30)

in the tangential plane.

To find out what W3(p) is, we trace a ray from Point 0 to Point I in sagittal plane, which has an angle 0
with the optical axis in the image space (see Figure 4(b)). Then trace a parallel ray from A to the image space. The
two rays intersect with each other at S in image space. Draw a perpendicular from I to the ray originating from A,
and denote the foot as B. Let SI =s (>0). Then the optical path length from S to I is

[SI]=n1s. (31)

The mixed Hamilton's characteristic function for the ray that originates from 0 is

W(O) = [os]+ [SI], (32)

and the mixed Hamilton's characteristic function for the ray that originates from A is

W(A) = [AS]+ [SB], (33)

where

[AS] = [us], (34)
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and

[SB] = [SI]cos(88)

[si]— [5J]89)2 /2 . (35)

So combining Eqs. (32), (33), (34) and (35), we get

W(A) = W(O) — [5j89)2 /2 , (36)

where

=;(P) (37)

Then

W(A) = W(O)- 2 (flM(P)) . (38)

Comparing this equation to Eq. (13) (notice p' = 0 in the sagittal plane), we get

(p) = - (39)

Assuming the Abbe Sine Condition is satisfied for an optical system, then M(p) constant. If we also
assume the image space is homogeneous, then combining equations (30), (39) and (19) leads to the following
conclusions:

. When s = t/cos2(O) = constant, then 1472(p) = 0, W3(p) = constant, and zlx =Ay= 0. This means that
all the quadratic field-dependent aberrations ofthe system are corrected.

. When t/cos2(O) = constant, then p12W2 (p) + W3 (p) is constant in the tangential plane. Therefore,
zlx = 0 in the tangential plane, or all the quadratic field-dependent aberrations in the tangential plane
are corrected.

I When 5 = constant, then W3 (p) is constant. Therefore, /Jy = 0 in the sagittal plane, or all the
quadratic field-dependent aberrations of the form W2,o (n is even) are corrected. This includes field
curvature and oblique spherical aberrations.

• When s = t/cos2(6), then W2(p) = 0, and all the quadratic field-dependent aberrations of the form W22
(n is even) are corrected. The remaining quadratic field-dependent aberrations look like power or
spherical aberrations for the off-axis points.
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4. The Pupil Astigmatism Criteria for systems with object at infinity
When the object is at infmity, we used the Hamilton's angle characteristic to derive Pupil Astigmatism

Criteria for this type of system. The form of the criteria is identical to that of the finite conjugate system (Eqs (4)-
(7)), but s and tare now defined differently.

For an infmite conjugate system shown in Figure 2(b), we select an arbitrary plane which is perpendicular
to the optical axis in object space. Then we trace a small cone of rays which originate from any point in the plane
and are centered on the ray which is parallel to the optical axis. Again we have the tangential image at T and the
sagittal image at S. We define t IT and s IS. With these definitions, the Pupil Astigmatism Criteria for correcting
the quadratic field-dependent aberrations for infinite conjugate systems are the same as Eqs. (4)-(7).

5. Validation of the Pupil Astigmatism Criteria
The pupil astigmatism conditions were validated in two ways, and the details of the validations are in the

references publications. Particular design cases were evaluated and the actual quadratic field dependent aberrations
were shown to match those predicted by the relations presented here.3 Also, the pupil astigmatism relations, with the
relevant approximations, were shown to be consistent with the accepted Seidel analysis.5

6. Applications in optical design
The pupil astigmatism relations above can be used to evaluate optical systems, in the same way the offense

against the sine condition OSC can be used to determine coma. A more powerful application ofthese relations is
for the design ofnew systems. By using two general aspheric surfaces, it is always possible to design an aplanatic
imaging system that simultaneously satisfies Fermat's principle and the Abbe sine condition for each point in the
pupil. Iftwo more general aspherical surfaces are added, the system can be corrected for quadratic field dependent
aberrations for each point in the pupil as well.6 One such system is shown in Fig. 3, along with a plot showing the
aberrations to be corrected to second order. This treatment has also been extended to plane symmetric optical
systems.7

Figure 3. Layout of 4-miror telescope, fully corrected for all aberrations
up to 2nd order in field. Figure 4. Field dependence ofaberrations for telescope in Fig. 3.
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7. Summary
In this paper we reproduce the derivation given in another paper4, to be published in JOSA, of criteria for

correcting the aberrations that have a second order field dependence and any order of pupil dependence. We name
the criteria the Pupil Astigmatism Criteria due to the involvement of the astigmatism of pupil in the criteria. The
criteria take identical forms for systems with the object a finite distance away and systems with the object at infmity,
but the physical quantities in the criteria are defmed differently for these two types of systems. The criteria involve
only the properties of the rays that originate from the on-axis object point. This feature makes it very convenient to
use them in optical design. Also, when the criteria are not exactly satisfied, we now have a way to calculate the
residual aberrations that are quadratic in field without using any off-axis ray information. These criteria can be used
together with the Fermat's Principle and the Abbe Sine Condition to design a high-NA system which performs
perfectly over a moderate field of view8.

After the first manuscript of this paper was submitted to JOSA, a reviewer pointed out that the similar set
of criteria were derived by H. Boegehold and M. Herzberger8 more than 70 years ago. They took a different
approach and obtained an equivalent set of criteria for correction of all the aberrations that are quadratic in field. In
this paper, we derived these criteria in a more straightforward way and presented them in a simpler form. We
classify the quadratic field-dependent aberrations in 4 categories and explicitly list the condition for correction of
each of them. We also derived similar conditions for systems with the object at infinity. The analysis of residual
aberrations follows naturally.
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