
 

 

Effects of birefringence on Fizeau interferometry that uses 
polarization phase shifting technique  
Chunyu Zhao, Dongyel Kang and James H. Burge  
College of Optical Sciences, the University of Arizona 
1630 E. University Blvd., Tucson, AZ 85721 

Abstract:  Interferometers that use different states of polarization for the reference and test 
beams can modulate the relative phase shift using polarization optics in the imaging system.  
This allows the interferometer to capture simultaneous images that have a fixed phase shift, 
which can be used for phase shifting interferometry.  Since all measurements are made 
simultaneously, the interferometer is not sensitive to vibration.  Fizeau interferometers of this 
type have advantage over Twyman-Green type systems because the optics are in the common 
path of both the reference and test wavefronts, therefore errors in these optics affect both 
wavefronts equally and do not limit the system accuracy. However, this is not strictly true for 
the polarization interferometer when both wavefronts are transmitted an optic that suffers from 
birefringence.  If some of the components in the common path of the reference and test beams 
have residual birefringence, the two beams see different phases. Therefore, the interferometer is 
not strictly common path. As a result, an error can be introduced in the measurement. In this 
paper, we study the effect of birefringence on measurement accuracy when different 
polarization techniques are used in Fizeau interferometers. We demonstrate that measurement 
error is reduced dramatically for small amount of birefringence if the reference and test beams 
are circularly polarized rather than linearly polarized.   
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1. Introduction 
In a common path interferometer, e.g. a Fizeau interferometer, both the reference and test beam 
go through the same optics up to the reference surface, therefore, any defect in the common path 
affects the phases of reference and test beams equally and has no effect on the measurement 
accuracy.1 However, when the reference and test beams have different polarization states, if a 
component in the common path has residual birefringence, the reference and test beams see 
different phases and an error is introduced in the measurement. In this case, the interferometer is 
no longer strictly common path, though it still physically is.  There now exist commercial 
phase-shifting Fizeau interferomters that use this polarization technique to simultaneously take 
multiple frames to freeze vibration.3,4  Birefringence is a concern because it is always present, 
especially for big and thick optics. For example, Schott specifies the residual birefringence of 
standard BK7 glass at <6nm/cm.2 If a test plate is 10cm thick, the birefringence is about 60nm 
which is significant if the required measurement accuracy is high. But by using circular 
polarized light instead of linearly polarized light, the measurement error caused by the residual 
birefringence can be dramatically reduced and can be eliminated. In Section 2, we give the 
maximum measurement error when the reference and test beams are linearly polarized. In 
Section 3, first we set up a model to study the effect of birefringence when circularly polarized 
beams are used for the reference and test beams, and show analytically the combined beam 
before phase shifting is elliptically polarized rather than linearly polarized. In Section 3.2, we 
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study the beam intensities after a general elliptically polarized beam passes the linear polarizer. 
We show that the observed intensity is sinusoidal, but a phase retardation is introduced and 
fringe contrast is reduced. We use this result to analyze the phase measurement error due to 
birefringence in Section 3.3. We present the simulation result in Section 3.4.   

 
2.Linear polarization case: 
To analyze the effect of birefringence we assume a Fizeau interferometer as shown in Figure 1.  
As in all Fizeau interfermeters, the reference surface is the last surface in the system, so all of 
the transmissive optics are common path.  If some optics have residual birefringence, we model 
the combined birefringence as a waveplate whose fast axis and retardation vary from point to 
point in the pupil. The light reflected from the reference surface creates the reference wavefront 
and light transmitted through this surface, then reflected from the surface under test creates the 
test wavefront.  The interference between the two is used to determine the error in the surface 
under test.   Phase shift interferometry is conventionally performed moving the reference 
surface to cause a phase shift and capturing successive interferograms.  Recently, Fizeau 
interferometers that simultaneously capture all of the different phase shifts have been 
developed.  These systems are configured so that the reference wavefront and the test wavefront 
have orthogonal polarization states.  Through clever use of geometry or coherence, the system 
can be configured so that only the desired polarization states are measured.  

 

 
Figure 1. A simultaneous phase-shifting polarization Fizeau interferometer. 
 
If the reference and test beams are linearly polarized, e.g. the reference beam is x-polarized 

and test beam is y-polarized, and if the residual birefringence is φ (in radian) and its fast axis is 
along x, then the test beam sees an additional phase 2φ due to this birefringence. It is mistakenly 
attributed to the surface figure error: 
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This would be the maximum measurement error caused by the residual birefringence in the 
common path of the reference and test beams. 
 
3.  Circular polarization case: 
When the reference and test beams are circularly polarized, a linear polarizer can be used as the 
phase shifter as shown in Figure 2. Rotation of the linear polarizer shifts the relative phase 
between the two polarizations.5 4D Technologies uses the same principle but a pixilated mask to 
achieve simultaneous phase shifting.4   

  

 
 
Figure 2. A phase-shifting Fizeau interferometer with circularly polarized reference and test 
beams uses a linear polarizer as the phase-shifter. 

 
3.1 The combined beam before the phase shifter 
If, for example, the test beam is right hand circular (RHC) and the reference beam is left 

hand circular (LHC), there always exists a coordinate system where the reference and test 
beams are in phase. We define this coordinate system as the global coordinate system XG-YG 
(see Figure 3). In this coordinate system, the Jones vectors6 of the test beam (denoted as TG) and 
the reference beam (denoted as RG) are 
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As stated in Section 2, the residual birefringence is modeled as a waveplate. Assume its 
retardation is φ (angle), and its fast axis has an angle α with the global XG-axis. We choose its 
fast axis as the local x-axis, denoted as XT-axis. In the local coordinate XT-YT (see Figure 3), 
the double pass Jones matrix of the waveplate is 
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Figure 3. Illustration of the definitions of global coordinate system and the waveplate local 
coordinate system. XG-YG is the global coordinate system where the incident reference and test 
beams are in phase. XT-YT is the waveplate local coordinate system with the fast axis along the 
XT direction. The test and reference beams are circularly polarized, and in phase in the global 
coordinate system. They have equal intensity (exaggerated in the figure).  

 
In the waveplate local coordinate system, the reference and test beam see a phase shift,  
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After the light is reflected from the reference and test surfaces, and passes the waveplate a 

second time, the reference and test beams become 
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where γ is the single pass phase difference between the reference and test beams caused by the 
physical separation between reference and test surfaces along a ray. 
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So, when there is no birefringence, i.e. φ=0, the combined beam is linearly polarized with the 

electrical field vector oscillates along a direction which has an angle αγ −  with the waveplate’s 
local XT axis and an angle γ  with the global XG axis. When the residual birefringence is non-
zero, the combined beam is elliptically polarized with the phase difference 2φ between the E-
fields in YT and XT directions (see Figure 4). 

 
Figure 4. Illustration of the combined beam’s polarization. The blue dashed line illustrates the 
ideal linearly polarized beam when no birefringence exists, while the green solid ellipsis 
illustrates the elliptically polarized beam when birefringence exists.  

 
3.2. Intensity after an elliptically polarized beam passes the phase shifter 
The reference and test beams both pass a linear polarizer before reaching the CCD. The 

polarizer combines the reference and test beams to obtain interference. It also serves as a phase 
shifter – when it rotates by angle of ω the phase difference between the reference and test beam 
will increase by 2ω.5 The interferometer can make simultaneous measurements with different 
phase shifts by creating multiple images of the pupil and viewing them through polarizers set at 
different angles.4 

 
When a general elliptically polarized beam passes through a linear polarizer, the transmitted 

beam intensity is a function of incident beam parameters and the angle of linear polarizer’s 
transmission axis.   
 
The Jones vector for general elliptically polarized light is:  
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The electrical field vector at any point forms an ellipsis described by7  
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Define an angle θ such that 
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Then the axis of the ellipsis has an angle ψ with the x-axis, as shown in Figure 5 where 
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Assume the elliptically polarized beam passes through a linear polarizer whose transmission 
axis has an angle ω  with x-axis. The Jones matrix for the polarizer is 
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Figure 5. Illustration of definitions of the angles θ and ψ associated with an elliptically 
polarized light. Also shown is a linear polarizer with transmission axis having an angle ω  with 
x-axis. 
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After the linear polarizer, the transmitted E-field is 
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The intensity of the beam is  
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where again )cos()2tan()2tan( δθψ = .  
 
Eq. (12) demonstrates that we can measure ψ, which is a characteristic of the incident 
elliptically polarized beam, by phase shifting interferometry with a linear polarizer as phase 
shifter. When the incident beam is linearly polarized, i.e. δ = 0, then ψ = θ. When the beam is 
elliptically polarized, compared to the linear polarization case, the beam intensity as a function 
of ω sees a phase shift 
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From Eq. (12), we also obtain the fringe contrast   
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With the definition of θ, the fringe contrast can be rewritten: 
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Figure 6 plots the transmitted beam intensity as a function of ω for a linearly polarized beam 
and an elliptically polarized beam. 
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Figure 6. The transmitted light intensity as a function of the linear polarizer’s rotation angle, 
after the waveplate the converts circular to linear polarization.  The red dash line represents the 
case when there is no error and the light is linearly polarized, while the blue solid line represents 
the case when birefringence has caused the light to be elliptically polarized. Note the intensity 
has a phase shift and a reduced contrast when the incident beam is elliptically polarized 
compared to the linearly polarized.  
 

3.3 Analysis 
In Section 3.1, we show that, when birefringence exists, the combined beam from reference and 
test surfaces is elliptically polarized (see Eq. (6)). In Section 3.2, we show that we still measure 
a phase using phase shifting interferometry but with an error (see Eqs. (12) and (13)). The error 
depends on the characteristic of the elliptically polarized beam. From Eqs. (6), (10) and (13), we 
get 
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Which indicates that the surface measurement error ∆ is a function of the retardation φ, the 
birefringence angle α and the actual phase γ.  Since this is a function of the phase γ, the error 
will vary when this phase is changed by making slight adjustments to the system. 
 
Assume  
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then the maximum phase measurement error is 
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For small φ approximation, 
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The maximum surface figure measurement error is then 
 

2
max

max 2 4
φδ λ λ

π π
∆

= ≈ ,        (19) 

 
which indicates the maximum measurement error has quadratic dependence on the amount of 
birefringence.  
 
For comparison, we plot the maximum surface measurement errors as a function of 
birefringence when the reference and test beams are linearly and circularly polarized, 
respectively, for small amount of residual birefringence. 
  

 
Figure 7. Plot of the maximum surface measurement error vs. birefringence for both linear and 
circular polarization cases. 
 
 

3.4.  Simulation of surface measurements for a system with birefringence 
The effect of birefringence is illustrated using a set of simulations.  We perform the analysis for 
an interferometer that has 10 cm thick transmissive optic with birefringence of 6nm/cm.  A map 
of the birefringence is shown in Figure 8(a).  We evaluate the performance of this system as it 
measures a mirror that has 25 nm rms surface irregularity. We also assume the measurements to 
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be made with 5 fringes of tilt due to alignment. The ideal and measured surface maps and 
measurement error maps are shown in Figure 8(b). The results verify that the measurement error 
is significantly smaller for small residual birefringence when circularly polarized beams, rather 
than linearly polarized beams, are used.  
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Figure 8. Simulated Fizeau measurements for a system with birefringence in the common part 
of the system  (a) Birefringence map. The fast axis angle has a linear distribution along y-axis 
from 0 to 90 degrees. And the retardation has a linear distribution along x-axis from 0 to 60nm. 
(b) Results of simulation for an ideal system with 25 nm rms surface irregularity (c) Results for 
simulated phase shift interferometry for the case with 60 nm  birefringence with the spatial 
distribution shown in (a). The measurement error is calculated by subtracting the ideal surface 
error from the simulated measurement.  Note the reduction in fringe contrast as well as the 
phase error for both cases. 
 
If we maintain the distribution of birefringence and vary the magnitude of retardation, we 
expect to see the measurement error increases as a function of the maximum retardation.  Figure 
9 shows the RMS measurement error as a function of the maximum retardation for the linear 
and circular polarization cases. It is obvious that measurement error is linear to birefringence 
when linearly polarized beams are used. In contrast, the measurement error is quadratic to 
birefringence when circularly polarized beams are used instead. 
 
There is an important distinction between the form of the measurement errors for the two cases.  
When linear polarization is used, an error is created that will be proportional to the 
birefringence and constant for all interferograms.  Superimposed is an error that depends on the 
alignment and shows up as ripples in the surface with two times the frequency of the 
interferogram fringes.  This component of the error will change as the alignment is adjusted, 
thus can be reduced by averaging, but the larger, fixed component would remain as a real error 
in the test.  For the case of the circular polarizarion, there is NO fixed error, and only the ripple 
type that depends on the interferogram alignment.  Therefore it is possible to reduce the effect 
of the birefringence for the case of circular polarization by averaging multiple maps with 
different alignment. 
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Figure 9. Plot of RMS surface measurement error as a function of maximum retardation of the 
birefringence distribution shown in Figure 8(a), for both linear and circular polarization cases. 
The dots are theoretical calculation results using Eq. (16), which agree with the interferometric 
simulation results for the circular polarization case. 
  
4. Summary 
Fizeau interferometers can use polarization techniques to create a phase shift between the 
reference and test beams.  If some element in the common path exhibits residual birefringence, 
it can limit measurement accuracy. We model the residual birefringence as a waveplate whose 
fast axis orientation and retardation vary from point to point in the pupil.  If the reference and 
test beams are linearly polarized and orthogonal, the measurement phase error can be as large as 
the amount of birefringence. We studied the case when the two beams are circularly polarized 
and orthogonal, and we derived a set of relations to calculate the measurement error and the 
fringe contrast when birefringence is present. For small amount of birefringence, we showed 
that the error is quadratic to the amount of birefringence. So, in the case of small birefringence, 
the measurement error is significantly smaller if circular polarization rather than linear 
polarization is used to differentiate reference and test beams.   In addition, this error is a 
function of the phase difference between the reference and the test, so the error can be further 
reduced by averaging multiple measurements with slight phase shifts. 
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