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Abstract: Zernike polynomials provide a well known, orthogonal set of 
scalar functions over a circular domain, and are commonly used to represent 
wavefront phase or surface irregularity.  A related set of orthogonal 
functions is given here which represent vector quantities, such as mapping 
distortion or wavefront gradient.  These functions are generated from 
gradients of Zernike polynomials, made orthonormal using the Gram-
Schmidt technique.  This set provides a complete basis for representing 
vector fields that can be defined as a gradient of some scalar function.  It is 
then efficient to transform from the coefficients of the vector functions to 
the scalar Zernike polynomials that represent the function whose gradient 
was fit.  These new vector functions have immediate application for fitting 
data from a Shack-Hartmann wavefront sensor or for fitting mapping 
distortion for optical testing.  A subsequent paper gives an additional set of 
vector functions consisting only of rotational terms with zero divergence.  
The two sets together provide a complete basis that can represent all vector 
distributions in a circular domain. 
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1. Introduction  

Zernike polynomials [1-3] are commonly used in optical testing, engineering, and analysis. 
There are two reasons for this. First of all, Zernike polynomials are orthogonal in a unit circle, 
which is convenient since many optics are circular in shape.  Secondly, the lower order 
members of Zernike polynomials represent typical optical wavefront aberrations such as 
power, astigmatism, coma and spherical aberration.  Besides direct wavefront measurements, 
wavefront slopes are often measured as well, e.g. with shearing interferometry [4], Shack-
Hartmann sensors [5], or a scanning pentaprism test [6].  Various techniques have been 
developed to convert measured slope data to a wavefront map expressed in terms of Zernike 
polynomials.  Garvrelides [7] developed a set of vector polynomials that are orthogonal to the 
gradients of Zernike polynomials but not mutually orthogonal. The coefficient for a specific 
Zernike polynomial representing the wavefront can then be directly calculated from 
integration of the dot product of the slope and the corresponding vector polynomial. Acosta 
[8] et al, took a different approach but arrived at similar results. This approach skips the 
intermediate step of fitting the vector slope data and obtains the wavefront directly. Yet, it is 
desirable to fit measurement data in the measurement space. In this case, a set of vector 
polynomials is needed to fit the vector slope data.    

Vector polynomials are also used for quantifying mapping distortion, which is important 
for accurate measurement of optical surfaces [9] and can be severe due to the use of null 
optics.  Typically, polynomial mapping functions are defined and the coefficients are fit to 
data using least squares techniques. [10, 11] 

Although the above problems can be solved using a least squares fit to vector functions 
that are not orthogonal over the domain, the results are not optimal.  The fit to a non-
orthogonal basis set can require many more terms than are necessary, and the coefficients 
themselves may not be meaningful, because the value for any particular coefficients will 
change as higher order terms are fit.  When fitting to real data, the propagation of noise is 
increased with the use of non-orthogonal basis functions.  If the functions are truly 
orthogonal, the least squares solution is not necessary, coefficients can be determined by a 
much simpler and computationally efficient inner product.   Clearly, an orthonormal basis is 
desired. 

In this paper, we present such a desired set of vector polynomials which are orthonormal 
in a unit circle. These polynomials are perfect for fitting slope data. Since they are gradients 
of linear combinations of Zernike polynomials, it is also straightforward to convert the fitted 
slope map to the wavefront map expressed in terms of Zernike polynomials.  

 In Section 2, we present the Zernike notations that we adopted from Noll’s landmark 
paper1 and list the gradients of the Zernikes following the recursion relationships presented 
there. We then use the Zernike gradients as a basis to obtain an orthonormal set of vector 
polynomials using the Gram-Schmidt method and present the result in Section 3.  The 
mapping from the orthonormal vector polynomials to gradients of scalar functions represented 
by standard Zernike polynomials is discussed in Section 4. 

The vector set is made complete with the addition of a complementary set of vector 
polynomials with non-zero curl, as presented in a subsequent paper. [12] The addition of this 
second set of functions provides a complete basis, capable of representing any vector 
distribution in the circular domain.  Applications of the vector polynomials for fitting the 
slope data taken from Shack-Hartmann sensors or other slope measurement devices, and in 
correcting mapping distortions for null tests of aspheric surfaces will be presented in 
subsequent papers as well.  

2. Zernike polynomials and their gradients 

There are different numbering schemes for Zernike polynomials.  In this paper we adopt 
Noll’s notation and numbering scheme which defines the polynomials in polar coordinates as 
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 j: the general index of Zernike polynomials 
n:  the power of the radial coordinate r  
m: the multiplication factor of the angular coordinate θ 
n and m have the following relations: m ≤ n and (n - m) is even 

 
The general index j has no physical meaning, while the indices n and m do. For a given j, 

there is a unique corresponding pair of (n, m), and the parity of j determines the angle 
dependence of the polynomial.   While for a given pair of (n, m), j is ambiguous when m≠0. In 
some relationships given in the subsequent text, n and m are usually known, but the 
corresponding j (therefore the sine or cosine angle dependence of the polynomial) depends on 
other factors. For this reason, we choose to use j(n, m) for the general index of a Zernike 
polynomial to show that n and m are known and the actual j will be determined by other 
conditions.  The first 37 polynomials of this numbering scheme are listed in the Appendix, 
where the aforementioned relationship between j and (n, m) can be seen as well.  

As the first step toward establishing an orthonormal basis of vector polynomials, we derive 
the gradients of the Zernike polynomials.  We take the gradient of each Zernike polynomial 
and apply the recursion relationships from Noll to represent the gradients as linear 
combinations of lower order Zernike polynomials.  The first 37 gradient terms are presented 
in Table 1.  These functions provide a complete basis to represent gradients, but they require 
further manipulation to create an orthonormal set. 
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Table 1. Gradient of Zernike polynomials 

1 0Z∇ =  
6 2 3

ˆ ˆ6 6Z i Z j Z∇ = −  

2 1
ˆ2Z i Z∇ =  7 5 1 4 6

ˆ ˆ2 3 2( 2 6 3 )Z i Z j Z Z Z∇ = + + −  

3 1
ˆ2Z j Z∇ =  8 1 4 6 5

ˆ ˆ2( 2 6 3 ) 2 3Z i Z Z Z j Z∇ = + + +  

4 2 3
ˆ ˆ2 3 2 3Z i Z j Z∇ = +  9 5 6

ˆ ˆ2 3 2 3Z i Z j Z∇ = +  

5 3 2
ˆ ˆ6 6Z i Z j Z∇ = +  10 6 5

ˆ ˆ2 3 2 3Z i Z j Z∇ = −  

11 2 8 3 7
ˆ ˆ2 5( 2 ) 2 5( 2 )Z i Z Z j Z Z∇ = + + +  

12 2 8 10 3 7 9
ˆ ˆ10( 2 2 ) 10( 2 2 )Z i Z Z Z j Z Z Z∇ = + + + − − +  

13 3 7 9 2 8 10
ˆ ˆ10( 2 2 ) 10( 2 2 )Z i Z Z Z j Z Z Z∇ = + + + + −  

14 10 9
ˆ ˆ2 5 2 5Z i Z j Z∇ = −  

15 9 10
ˆ ˆ2 5 2 5Z i Z j Z∇ = +  

16 1 4 6 11 12 5 13
ˆ ˆ(2 3 6 3 2 2 15 30 ) (3 2 30 )Z i Z Z Z Z Z j Z Z∇ = + + + + + +  

17 5 13 1 4 6 11 12
ˆ ˆ(3 2 30 ) (2 3 6 3 2 2 15 30 )Z i Z Z j Z Z Z Z Z∇ = + + + − + −  

18 6 12 14 5 13 15
ˆ ˆ(3 2 30 30 ) ( 3 2 30 30 )Z i Z Z Z j Z Z Z∇ = + + + − − +  

19 5 13 15 6 12 14
ˆ ˆ(3 2 30 30 ) (3 2 30 30 )Z i Z Z Z j Z Z Z∇ = + + + + −  

20 14 15
ˆ ˆ30 30Z i Z j Z∇ = −  

21 15 14
ˆ ˆ30 30Z i Z j Z∇ = +  

22 2 8 16 3 7 17
ˆ ˆ2 7( 2 3 ) 2 7( 2 3 )Z i Z Z Z j Z Z Z∇ = + + + + +  

23 3 7 9 17 19 2 8 10 16 18
ˆ ˆ14( 2 2 3 3 ) 14( 2 2 3 3 )Z i Z Z Z Z Z j Z Z Z Z Z∇ = + + + + + + − + −  

24 2 8 10 16 18 3 7 9 17 19
ˆ ˆ14( 2 2 3 3 ) 14( 2 2 3 3 )Z i Z Z Z Z Z j Z Z Z Z Z∇ = + + + + + − − + − +  

25 9 19 21 10 18 20
ˆ ˆ7(2 6 6 ) 7(2 6 6 )Z i Z Z Z j Z Z Z∇ = + + + + −  

26 10 18 20 9 19 21
ˆ ˆ7(2 6 6 ) 7( 2 6 6 )Z i Z Z Z j Z Z Z∇ = + + + − − +  

27 21 20
ˆ ˆ42 42Z i Z j Z∇ = +  

28 20 21
ˆ ˆ42 42Z i Z j Z∇ = −  

29 5 13 23 1 4 6 11 12 22 24
ˆ ˆ8( 3 5 7 ) 8( 2 6 3 10 5 14 7 )Z i Z Z Z j Z Z Z Z Z Z Z∇ = + + + + − + − + −  

30 4 6 11 12 22 24 5 13 23
ˆ ˆ8( 2 6 3 10 5 14 7 ) 8( 3 5 7 )Z i Z Z Z Z Z Z j Z Z Z∇ = + + + + + + + + +  

31 5 13 15 23 25 6 12 14 24 26
ˆ ˆ8( 3 5 5 7 7 ) 8( 3 5 5 7 7 )Z i Z Z Z Z Z j Z Z Z Z Z∇ = + + + + + + − + −  

32 6 12 14 24 26 5 13 15 23 25
ˆ ˆ8( 3 5 5 7 7 ) 8( 3 5 5 7 7 )Z i Z Z Z Z Z j Z Z Z Z Z∇ = + + + + + − − + − +  

33 15 25 27 14 26 28
ˆ ˆ8( 5 7 7 ) 8( 5 7 7 )Z i Z Z Z j Z Z Z∇ = + + + + −  

34 14 26 28 15 25 27
ˆ ˆ8( 5 7 7 ) 8( 5 7 7 )Z i Z Z Z j Z Z Z∇ = + + + − − +  

35 27 28
ˆ ˆ2 14 2 14Z i Z j Z∇ = +  

36 28 27
ˆ ˆ2 14 2 14Z i Z j Z∇ = −  

37 2 8 16 30 3 7 17 29
ˆ ˆ6( 2 3 2 ) 6( 2 3 2 )Z i Z Z Z Z j Z Z Z Z∇ = + + + + + + +  

3. An orthonormal set of vector polynomials 

We use linear combinations of the above terms to create an orthogonal set.  We define the 
inner product of two vector polynomials defined in a unit circle as  

 
1

( , ) ( )A B A B dxdy
π

= ⋅∫∫
� �� �

 (3) 

where the integration is over a unit circle.   
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The inner product is taken of the above gradient functions, and some results are shown in 
Table 2 (the table is symmetric about the diagonal, but only non-zero elements under the 
diagonal are shown).  These Zernike gradient polynomials are not orthogonal, as the matrix of 
inner products listed in Table 2 is not diagonal.  
 

Table 2. List of the inner products of the first 13 Zernike gradients 

Inner 
Product iZ∇  

jZ∇  1 2 3 4 5 6 7 8 9 10 11 12 13 

1 0             

2 0 4            

3 0 0 4 0          

4 .   24          

5 .    12         

6      12        

7   4 2     56       

8  4 2       56      

9         24     

10          24    

11    8 15        120   

12      4 15       120  

13     4 15         100 

 

3.1 Orthogonalization of gradient functions 

Using the Gram-Schmidt orthogonalization method [13, 14] (general description for the 
method can be found in Reference 13, and an optical application can be found in Reference 
14), we construct a new set of vector polynomials with Zernike gradient polynomials as basis. 
The gradient of Z1 is zero, therefore it is not used in the construction of the new set. We 
choose to index the first polynomial of this new set as 2 to maintain its correspondence with 
Zernike polynomials. The first 36 such polynomials are listed in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

4 3( , ) 0Z Z∇ ∇ =  

6 6( , ) 12Z Z∇ ∇ =
 

6 12( , ) 4 15Z Z∇ ∇ =  
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Table 3. List of first 36 orthonormal vector polynomials iS
�

 as functions of Zernike gradients. 

2 2

1

4
S Z= ∇
�

 14 14

1

40
S Z= ∇
�

 26 26 14

1 7

5168
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 

3 3

1

4
S Z= ∇
�

 15 15

1

40
S Z= ∇
�

 27 27

1

84
S Z= ∇
�

 

4 4

1

24
S Z= ∇
�

 16 16 8

1 3

2120
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 28 28

1

84
S Z= ∇
�

 

5 5

1

12
S Z= ∇
�

 17 17 7

1 3

2120
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 29 29 17

1 4

3224
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 

6 6

1

12
S Z= ∇
�

 18 18 10

1 3

2120
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 30 30 16

1 4

3224
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 

( )7 7 3

1
2

48
S Z Z= ∇ − ∇
�

 19 19 9

1 3

2120
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 31 31 19

1 4

3224
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 

( )8 8 2

1
2

48
S Z Z= ∇ − ∇
�

 20 20

1

60
S Z= ∇
�

 32 32 18

1 4

3224
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 

9 9

1

24
S Z= ∇
�

 21 21

1

60
S Z= ∇
�

 33 33 21

1 4

3224
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 

10 10

1

24
S Z= ∇
�

 22 22 11

1 7

5168
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 34 34 20

1 4

3224
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 

11 11 4

1 5

380
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 23 23 13

1 7

5168
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 35 35

1

112
S Z= ∇
�

 

12 12 6

1 5

380
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 24 24 12

1 7

5168
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 36 36

1

112
S Z= ∇
�

 

13 13 5

1 5

380
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 25 25 15

1 7

5168
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 37 37 22

1 9

7288
S Z Z

⎛ ⎞
= ∇ − ∇⎜ ⎟⎜ ⎟

⎝ ⎠

�

 

 
In general, the S polynomials can be simply expressed in terms of Zernike gradient 
polynomials:  

For all j with n = m,  

 
1

2 ( 1)
j jS Z

n n
= ∇

+

�

. (4) 

For all j with n ≠ m, 

 '( ' 2, ' )

1 1

14 ( 1)
j j j n n m m

n
S Z Z

nn n
= − =

⎛ ⎞+= ∇ − ∇⎜ ⎟⎜ ⎟−+ ⎝ ⎠

�

 (5) 

where 'j j−  is even when m ≠ 0. 

3.3 S as linear combinations of Zernike polynomials 

Given that the vector polynomials S are functions of Zernike gradient polynomials and the 
Zernike gradient polynomials are functions of Zernike polynomials, we can express S in terms 
of Zernike polynomials as listed in Table 4.  
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Table 4. List of S polynomials expressed as linear combinations of Zernike polynomials. 

2 1
ˆS iZ=

�

 ( )20 14 15

1 ˆ ˆ
2

S iZ jZ= −
�

 

3 1
ˆS jZ=

�

 ( )21 15 14

1 ˆ ˆ
2

S iZ jZ= +
�

 

( )4 2 3

1 ˆ ˆ
2

S iZ jZ= +
�

 ( )22 16 17

1 ˆ ˆ
2

S iZ jZ= +
�

 

( )5 3 2

1 ˆ ˆ
2

S iZ jZ= +
�

 ( )23 17 19 16 18

1 ˆ ˆ( ) ( )
2

S i Z Z j Z Z= + + −
�

 

( )6 2 3

1 ˆ ˆ
2

S iZ jZ= −
�

 ( )24 16 18 17 19

1 ˆ ˆ( ) ( )
2

S i Z Z j Z Z= + + − +
�

 

( )7 5 4 6

1 ˆ ˆ( 2 )
2

S iZ j Z Z= + −
�

 ( )25 19 21 18 20

1 ˆ ˆ( ) ( )
2

S i Z Z j Z Z= + + −
�

 

( )8 4 6 5

1 ˆ ˆ( 2 )
2

S i Z Z jZ= + +
�

 ( )26 18 20 19 21

1 ˆ ˆ( ) ( )
2

S i Z Z j Z Z= + + − +
�

 

( )9 5 6

1 ˆ ˆ
2

S iZ jZ= +
�

 ( )27 21 20

1 ˆ ˆ
2

S iZ jZ= +
�

 

( )10 6 5

1 ˆ ˆ
2

S iZ jZ= −
�

 ( )28 20 21

1 ˆ ˆ
2

S iZ jZ= −
�

 

( )11 8 7

1 ˆ ˆ
2

S iZ jZ= +
�

 ( )29 23 22 24

1 ˆ ˆ( 2 )
2

S iZ j Z Z= + −
�

 

( )12 8 10 7 9

1 ˆ ˆ( ) ( )
2

S i Z Z j Z Z= + + − +
�

 ( )30 22 24 23

1 ˆ ˆ( 2 )
2

S i Z Z jZ= + +
�

 

( )13 7 9 8 10

1 ˆ ˆ( ) ( )
2

S i Z Z j Z Z= + + −
�

 ( )31 23 25 24 26

1 ˆ ˆ( ) ( )
2

S i Z Z j Z Z= + + −
�

 

( )14 10 9

1 ˆ ˆ
2

S iZ jZ= −
�

 ( )32 24 26 23 25

1 ˆ ˆ( ) ( )
2

S i Z Z j Z Z= + + − +
�

 

( )15 9 10

1 ˆ ˆ
2

S iZ jZ= +
�

 ( )33 25 27 26 28

1 ˆ ˆ( ) ( )
2

S i Z Z j Z Z= + + −
�

 

( )16 11 12 3

1 ˆ ˆ( 2 )
2

S i Z Z jZ= + +
�

 ( )34 26 28 25 27

1 ˆ ˆ( ) ( )
2

S i Z Z j Z Z= + + − +
�

 

( )17 3 11 12

1 ˆ ˆ( 2 )
2

S iZ j Z Z= + −
�

 ( )35 27 28

1 ˆ ˆ
2

S iZ jZ= +
�

 

( )18 12 14 13 15

1 ˆ ˆ( ) ( )
2

S i Z Z j Z Z= + + − +
�

 ( )36 28 27

1 ˆ ˆ
2

S iZ jZ= −
�

 

( )19 13 15 12 14

1 ˆ ˆ( ) ( )
2

S i Z Z j Z Z= + + −
�

 ( )37 30 29

1 ˆ ˆ
2

S iZ jZ= +
�
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For a given Sj with corresponding indices j(n, m),  we define its x and y components as Sjx and 
Sjy, respectively, i.e.  

 ˆ ˆ
j jx jyS iS jS= +

�

 (6) 

From observation of the first 37 S polynomials, we found that both Sjx and Sjy are linear 
combinations of at most two Zernike polynomials with corresponding indices '( 1, 1)j n m− ±  
which may or may not exist binding by the rules 0n m≥ ≥ : 

 
( 1, 1) ' '( 1, 1)

( 1, 1) ' '( 1, 1)

,

.
jx a ja n m a ja n m

jy b jb n m b jb n m

S C Z C Z

S C Z C Z

− − − +

− − − +

= +

= +
 (7) 

For a given j(n, m), a set of rules can be used to determine all the parameters in Eq. (7) to 
express Sj as linear combinations of Zernike polynomials. These rules are summarized in 
Table 5. These rules are useful for obtaining analytical expression of any S polynomial by 
programming. They are complex since we have to deal with different cases of j, n and m 
combinations. The complexity mostly comes from the numbering scheme. In Noll’s 
numbering scheme, even j correspond to cosine angle terms and odd j to sine angle terms and 
these terms swap order each time after an m = 0 term. The rules will be simpler if we just use 
the sine/cosine dependence of the terms.  Basically, if an S polynomial has the same j index of 
a Zernike polynomial, its x-component is the linear combination of the Zernikes with same 
sine or cosine angle dependence, and the y-component has the opposite angle dependence. For 
example, for S32, the corresponding Z32 has cosine angle dependence, so the x-component  of 
S32 has Z24 and Z26 terms which both have cosine angle dependence, while the y-component of  
S32 has Z23 and Z25 terms which both have sine angle dependence. 

 
Table 5. The rules for writing S in terms of linear combinations of Zernikes. 

Rules Sj(n,m)  
ˆ ˆ

jx jyiS jS= +   Sjx Sjy 

m n j ja, ja’ jb, jb’ 
 

ja-jb 
 

Ca 
(Zja(n-1,m-1)) 

Ca’ 
(Zja’(n-1,m+1)) 

Cb 
(Zjb(n-1,m-1)) 

Cb’ 
(Zjb’(n-1,m+1)) 

2 ja=1, no ja’ jb=1, no jb’  0 1 NA 0 NA 1 1 

3 ja=1, no ja’ jb=1, no jb’  0 0 NA 1 NA 

0 even 
≥2  

 no ja, 
ja’ even 

no jb,  
jb’ odd 

 NA 1/ 2  NA 1/ 2  

even ja=jb,  
ja’-ja=2 

jb=ja,  
jb’-jb=1 

0 1/ 2  1/2 0 1/2 =2s+1,  
s odd 

odd ja=jb,  
ja’-ja=1 

jb=ja,  
jb’-jb=2 

0 0 1/2 1/ 2  -1/2 

even ja=jb,  
ja’-ja=1 

jb=ja,  
jb’-jb=2 

0 1/ 2  1/2 0 1/2 

1 

=2s+1,  
s even 

odd ja=jb,  
ja’-ja=2 

jb=ja,  
jb’-jb=1 

0 0 1/2 1/ 2  -1/2 

even no ja’ no jb’ -1 1/ 2  NA - 1/ 2  NA =2s or 
2s-1, 
s odd  odd no ja’ no jb’ 1 1/ 2  NA 1/ 2  NA 

even no ja’ no jb’ 1 1/ 2  NA - 1/ 2  NA 

m = 
n > 1  
 

=2s or 
2s-1, 
s even odd no ja’ no jb’ -1 1/ 2  NA 1/ 2  NA 

even ja’-ja=2 jb’-jb=2 -1 1/2 1/2 -1/2 1/2 =2s or 
2s-1, 
s odd  

odd ja’-ja=2 jb’-jb=2 1 1/2 1/2 1/2 -1/2 

even ja’-ja=2 jb’-jb=2 1 1/2 1/2 -1/2 1/2 

m>1 
m<n 

=2s or 
2s-1, 
s even 

odd ja’-ja=2 jb’-jb=2 -1 1/2 1/2 1/2 -1/2 
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3.4 Plots of vector polynomial functions 

The plots of first 12 S vector polynomials are shown in Table 6. 

 
Table 6. Plots of first 12 S polynomials in a unit circle. 
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4. Relating the vector polynomials to gradients of scalar functions  

The set of S polynomials fully spans the space of vector distributions ( , )V x y
�

 over the unit 

circle where a scalar function Φ(x,y) exists such that ( , ) ( , )V x y x y= ∇Φ
�

.  It is useful to 

represent the vector data using the vector polynomials S and relate to a scalar functions φ that 

are defined as i iS φ= ∇
�

.   
     Applying the rules listed in (4) and (5), the scalar functions can be calculated as 

For all j with n = m, 

 
1

2 ( 1)
j jZ

n n
φ =

+
. (8) 

For all j with n ≠ m,  
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 '( ' 2, ' )

1 1

14 ( 1)
j j j n n m m

n
Z Z

nn n
φ = − =

⎛ ⎞+= −⎜ ⎟⎜ ⎟−+ ⎝ ⎠
, (9) 

where 'j j−  is even when m ≠ 0. 

These relationships match those demonstrated for the vector functions listed in Table 3.  For 

example, ( )7 7 3

1
2

48
S Z Z= ∇ − ∇
�

 , which leads to ( )7 7 3

1
2

48
Z Zφ = − . 

 Applying these relations, the vector data ( , )V x y
�

 is decomposed into a linear combination 
of the orthonormal S polynomials as 

 i iV Sα=∑
��

. (10) 

Using the definitions of the scalar functions Φ and φi (V = ∇Φ
�

, i iS φ= ∇
�

), we have 

 i iα φΦ =∑ , (11) 

where the coefficients αi were found from the vector decomposition in Eq. (10).  Then the 
scalar function Φ  can in turn be represented as linear combinations of standard Zernike 
polynomials: 

 i i i iZα φ γΦ = =∑ ∑  (12)    

The coefficients of these standard Zernike polynomials can be found by 

 

( , )

( , ) '( 2, )

2 ( 1)

4 ( 1) 4( 1)( 2)

j n m
j

j n m j n m
j

n m
n n

n m
n n n n

α
γ

α α
γ +

= =
+

= − ≠
+ + +

 (13) 

 
where 'j j−  is even when m ≠ 0. 
 

     This procedure is useful for applications such as processing data from a Shack Hartmann 
sensor.  The centroid data, which is proportional to wavefront slopes, can be fit to the vector S 
polynomials to give a set of coefficients αi.  These are converted directly to a standard 
Zernike polynomial representation of the wavefront, with coefficients γi.  
     A reverse problem is: given a scalar function Φ and its Zernike decomposition coefficients 
γi, we can find αi from Eq. (13). When Φ is a wavefront, the rms spot radius 

is ( )22 ir f α= ∑ , where f is the system F number. 

5. Summary 

We derived an orthonormal set of vector polynomials in a unit circle. It has many potential 
applications, one of which is fitting slope data in optical testing. These polynomials are linear 
combinations of at most two Zernike polynomial’s gradients. They can be expressed as linear 
combinations of at most four scalar Zernike polynomials as well.  After wavefront slope data, 
e.g. data taken with a Shack-Hartmann sensor, is fit with the vector polynomials, it is 
straightforward to convert the fitted slope map to the wavefront map expressed in terms of 
Zernike polynomials.  
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Appendix: 

The first 37 Zernike polynomials according to Noll’s numbering:  
j n, m  Zernikes j n, m Zernikes 

n=0 n=5 
1 

m=0 1 1Z =  20 
m=5 

5
20 12 cos5Z r θ=  

n=1 n=5 
2 

m=1 2 2 cosZ r θ=  21 
m=5 

5
21 12 sin 5Z r θ=  

n=1 n=6 
3 

m=1 3 2 sinZ r θ=  22 
m=0 

6 4 2
22 7(20 30 12 1)Z r r r= − + −  

n=2 n=6 
4 

m=0 
2

4 3(2 1)Z r= −  23 
m=2 

6 4 2
23 14(15 20 6 )sin 2Z r r r θ= − +  

n=2 n=6 
5 

m=2 
2

5 6 sin 2Z r θ=  24 
m=2 

6 4 2
24 14(15 20 6 )cos 2Z r r r θ= − +  

n=2 n=6 
6 

m=2 
2

6 6 cos 2Z r θ=  25 
m=4 

6 4
25 14(6 5 )sin 4Z r r θ= −  

n=3 n=6 
7 

m=1 
3

7 8(3 2 )sinZ r r θ= −  26 
m=4 

6 4
26 14(6 5 ) cos 4Z r r θ= −  

n=3 n=6 
8 

m=1 
3

8 8(3 2 ) cosZ r r θ= −  27 
m=6 

6
27 14 sin 6Z r θ=  

n=3 n=6 
9 

m=3 
3

9 8 sin 3Z r θ=  28 
m=6 

6
28 14 cos 6Z r θ=  

n=3 n=7 
10 

m=3 
3

10 8 cos3Z r θ=  29 
m=1 

7 5 3
29 16(35 60 30 4 )sinZ r r r r θ= − + −  

n=4 n=7 
11 

m=0 
4 2

11 5(6 6 1)Z r r= − +  30 
m=1 

7 5 3
30 16(35 60 30 4 )cosZ r r r r θ= − + −  

n=4 n=7 
12 

m=2 
4 2

12 10(4 3 ) cos 2Z r r θ= −  31 
m=3 

7 5 3
31 16(21 30 10 )sin 3Z r r r θ= − +  

n=4 n=7 
13 

m=2 
4 2

13 10(4 3 )sin 2Z r r θ= −  32 
m=3 

7 5 3
32 16(21 30 10 ) cos3Z r r r θ= − +  

n=4 n=7 
14 

m=4 
4

14 10 cos 4Z r θ=  33 
m=5 

7 5
33 16(7 6 )sin 5Z r r θ= −  

n=4 n=7 
15 

m=4 
4

15 10 sin 4Z r θ=  34 
m=5 

7 5
34 16(7 6 ) cos5Z r r θ= −  

n=5 n=7 
16 

m=1 
5 3

16 12(10 12 3 )cosZ r r r θ= − +  35 
m=7 

7
35 16 sin 7Z r θ=  

n=5 n=7 
17 

m=1 
5 3

17 12(10 12 3 )sinZ r r r θ= − +  36 
m=7 

7
36 16 cos 7Z r θ=  

n=5 n=8 
18 

m=3 
5 3

18 12(5 4 )cos 3Z r r θ= −  37 
m=0 

8 6 4 2
37 9(70 140 90 20 1)Z r r r r= − + − +  

n=5  
19 

m=3 
5 3

19 12(5 4 )sin 3Z r r θ= −   
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