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The theory of wavefront analysis of a noncircular wavefront is given and applied for a systematic compar-
ison of the use of annular and Zernike circle polynomials for the analysis of an annular wavefront. It is
shown that, unlike the annular coefficients, the circle coefficients generally change as the number of poly-
nomials used in the expansion changes. Although the wavefront fit with a certain number of circle poly-
nomials is identically the same as that with the corresponding annular polynomials, the piston circle
coefficient does not represent the mean value of the aberration function, and the sum of the squares of
the other coefficients does not yield its variance. The interferometer setting errors of tip, tilt, and defocus
from a four-circle-polynomial expansion are the same as those from the annular-polynomial expansion.
However, if these errors are obtained from, say, an 11-circle-polynomial expansion, and are removed from
the aberration function, wrong polishing will result by zeroing out the residual aberration function. If the
commonpractice of defining the center of an interferogram and drawing a circle around it is followed, then
the circle coefficients of a noncircular interferogram do not yield a correct representation of the aberration
function.Moreover, in this case, some of the higher-order coefficients of aberrations that are nonexistent in
the aberration functionare also nonzero. Finally, the circle coefficients, however obtained, do not represent
coefficients of the balanced aberrations for an annular pupil. The various results are illustrated analyti-
cally and numerically by considering an annular Seidel aberration function. © 2010 Optical Society of
America
OCIS codes: 010.1080, 010.7350, 220.1010, 120.3180, 220.0220.

1. Introduction

The orthonormal polynomials for an annular pupil
uniquely represent balanced classical aberrations
[1,2], just as the Zernike circle polynomials (here-
after known simply as circle polynomials) do for a cir-
cular pupil [1–3]. Some authors have compared the
use of annular polynomials with that of the circle
polynomials for annular wavefronts by considering

numerical examples [4–7]. However, none has con-
sidered a systematic analysis of such a comparison.

Because the circle polynomials form a complete
set, any wavefront, regardless of the shape of the pu-
pil (which defines the perimeter of the wavefront),
can be expanded in terms of them. Moreover, since
each orthonormal noncircular polynomial is a linear
combination of the circle polynomials, the wavefront
fitting with the former set of polynomials is as good
as that with the latter [8,9]. However, we illustrate
the pitfalls of using circle polynomials for a noncircu-
lar pupil by considering an aberrated annular pupil.
Also included is the case where the circle coefficients
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are calculated by assuming the circle polynomials to
be orthogonal over an annulus. This follows the com-
mon practice of defining a center of an interferogram,
drawing a unit circle around it, and determining the
circle coefficients in the same manner as for a circu-
lar interferogram. The results are applied to an an-
nular pupil aberrated by a Seidel aberration function
and the annular and circle coefficients are compared.
We show that not only the circle coefficients in this
case yield an incorrect representation of the aberra-
tion function, but the coefficients of some of the non-
existent polynomial terms are nonzero as well.

2. Relationship Between the Orthonormal and the
Corresponding Zernike Coefficients

Consider an aberration function Wðx; yÞ across a
noncircular pupil. Let us fit this function with J
orthonormal polynomials Fjðx; yÞ in the form

Ŵðx; yÞ ¼
XJ
j¼1

ajFjðx; yÞ; ð1Þ

where Ŵðx; yÞ is the best-fit estimate of the function
with J polynomials and aj is the coefficient of the
polynomial Fjðx; yÞ. The orthonormality of the poly-
nomials across the noncircular pupil is represented
by

1
A

Z
pupil

Fjðx; yÞFj0 ðx; yÞdxdy ¼ δjj0 ; ð2Þ

where δjj0 is a Kronecker delta. The orthonormal coef-
ficients are given by

aj ¼
1
A

Z
pupil

Wðx; yÞFjðx; yÞdxdy: ð3Þ

It is evident that their value does not depend on the
number of polynomials J used in the expansion.

Letting F1ðx; yÞ ¼ 1, it is easy to see from Eq. (2)
that the mean value of a polynomial Fj≠1ðx; yÞ across
the pupil is zero. Hence, the mean value and the var-
iance of the estimated aberration function are given
by

hŴi ¼ a1; ð4Þ

σ2
Ŵ

¼ hŴ2ðx; yÞi − hŴðx; yÞi2 ð5Þ

¼
XJ
j¼2

a2
j ; ð6Þ

where σŴ is its standard deviation. The number of
polynomials J used in the expansion to estimate
the aberration function is increased until σŴ ap-

proaches its true value within a certain prespecified
tolerance.

Because the circle polynomials Zjðx; yÞ form a com-
plete set, each orthonormal noncircular polynomial
can be written as a linear sum of them in the follow-
ing forms:

Fjðx; yÞ ¼
XJ
i¼1

MjiZiðx; yÞ; ð7Þ

fFjg ¼ MfZjg; ð8Þ

where Mji are the elements of the lower triangular
conversion matrixM. The estimated aberration func-
tion can accordingly be expanded in terms of the
circle polynomials in the form

Ŵðx; yÞ ¼
XJ
j¼1

b̂jZjðx; yÞ; ð9Þ

where b̂j is the Zernike coefficient of a polynomial
Zjðx; yÞ. The circle polynomials are orthonormal in
Cartesian coordinates across a unit circle according
to

1
π

Z
x2þy2≤1

Zjðx; yÞZj0 ðx; yÞdxdy ¼ δjj0 ; ð10aÞ

or in polar coordinates (with x ¼ ρ cos θ and
y ¼ ρ sin θ):

1
π

Z1

0

Z2π

0

Zjðρ; θÞZj0 ðρ; θÞρdρdθ ¼ δjj0: ð10bÞ

Substituting Eq. (7) into Eq. (1), we obtain

Ŵðx; yÞ ¼
XJ
j¼1

aj

Xj

i¼1

MjiZiðx; yÞ ¼
XJ
j¼1

XJ
i¼j

aiMijZjðx; yÞ:

ð11Þ

Comparing Eqs. (9) and (11), we obtain

b̂j ¼
XJ
i¼j

aiMij: ð12Þ

Evidently, the value of a coefficient b̂j depends on the
number of polynomials J used in the expansion.
Equation (12) can be written in a matrix form as

b̂ ¼ MTa; ð13Þ

where a and b̂ are the columnvectors representing the
orthonormal and the Zernike coefficients, respec-
tively, and MT is the transpose of the conversion
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matrixM. Thus, the matrix that is used to obtain the
orthonormal polynomials from the circle polynomials
is also used to obtain the Zernike coefficients from the
orthonormal coefficients. The transpose of a matrix is
obtained by interchanging its rows and columns. Be-
causeM is a lower triangular matrix, MT is an upper
triangular matrix. Multiplying both sides of Eq. (13)
by the inverse ðMTÞ−1 of MT, we obtain

a ¼ ðMTÞ−1b̂: ð14Þ

Accordingly, if the Zernike coefficients are known, the
orthonormal coefficients can be obtained from them.
It should be evident from Eq. (12) or Eq. (13) that a
Zernike coefficient is a linear combination of the
orthonormal coefficients, just as an orthonormal
polynomial is a linear combination of the circle
polynomials.

If the orthonormal coefficients are not known, the
Zernike coefficients b̂j can be obtained by a least-
squares fit. Suppose the aberration values are known
over a certain domain by way of interferometry at N
data points. Equation (9) can be written in matrix
form

Ŝ ¼ Zb̂; ð15Þ
where Ŝ is an array of N elements representing the
values of the aberration function Ŵðx; yÞ, and Z is an
N × J matrix representing each of the J polynomials
over theN data points. Solving Eq. (15), for example,
with a standard singular-value decomposition algo-
rithm yields

b̂ ¼ Z−1Ŝ; ð16Þ

where Z−1 is a generalized inverse of the Zmatrix. Of
course, this procedure can also be used to determine
the orthonormal coefficients by replacing the circle
polynomials with the orthonormal polynomials.
Except for any numerical error because of the finite
number N of the data points, the b̂ coefficients given
by Eq. (16) are the same as those given by Eq. (13).

If the practice of drawing a unit circle around an
interferogram and determining the Zernike coeffi-
cients for a circular pupil is extended to a noncircular
wavefront, the coefficients thus obtained will be
given by

bj ¼
1
A

Z
pupil

Wðx; yÞZjðx; yÞdxdy: ð17Þ

The circle polynomials in Eq. (17) are implicitly as-
sumed to be orthonormal over the noncircular pupil.
The value of a circle coefficient bj does not depend on
the number of polynomials used in the expansion.
Substituting Eq. (1) for the estimated aberration
function Ŵðx; yÞ in terms of the orthonormal polyno-
mials, we obtain

bj ¼
XJ
j0¼1

aj0
1
A

Z
pupil

Zjðx; yÞFj0 ðx; yÞdxdy ¼
XJ
j0¼1

aj0 hZjjFj0 i;

ð18Þ
or in a matrix form

b ¼ CZFa; ð19Þ
where CZF is a matrix representing the inner
products hZjjFj0 i of the Zernike polynomials with
the orthonormal polynomials over the domain of
the noncircular wavefront. As illustrated in Section
7, by considering a Seidel aberration function, the
Zernike coefficients bj thus obtained are incorrect in
the sense that they do not yield a least-squares fit of
the aberration function Wðx; yÞ, unlike the coeffi-
cients b̂j. This, of course, is due to the incorrect
assumption of orthonormality of the circle polyno-
mials over the noncircular pupil.

To relate the b̂ and the b coefficients, we equate the
right-hand sides of Eqs. (1) and (9), multiply both
sides by Zj0, and integrate over the domain of the non-
circular pupil. Thus,

XJ
j¼1

b̂jZjðx; yÞ ¼
XJ
j¼1

ajFjðx; yÞ; ð20Þ

XJ
j¼1

b̂jhZj0 jZji ¼
XJ
j¼1

ajhZj0 jFji; ð21Þ

CZZ b̂ ¼ CZFa ¼ b; ð22Þ
where we have utilized Eq. (19). From Eqs. (13) and
(22), it is evident that

CZF ¼ CZZMT : ð23Þ
Typical elements of the matrices CZZ and CZF are
given by

cjj0 ¼
1
A

Z
pupil

Zjðx; yÞZj0 ðx; yÞdxdy; ð24Þ

djj0 ¼
1
A

Z
pupil

Zjðx; yÞFj0 ðx; yÞdxdy: ð25Þ

It is evident from Eq. (24) that cjj0 ¼ cj0j.

3. Orthonormal Annular Polynomials

Consider a system with a unit annular pupil with an
obscuration ratio. Thus the inner and outer radii of
the pupil are ϵ and unity. The polynomials Ajðρ; θ; ϵÞ
that are orthonormal across it and represent ba-
lanced aberrations for it can be obtained from the
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circle polynomials by the Gram–Schmidt orthogona-
lization process [1,2]. Like a circle polynomial, an an-
nular polynomial is also separable in its dependence
on the radial coordinate ρ and the azimuthal angle θ.
The dependence on the obscuration ratio ϵ is con-
tained only in the radial portion of the polynomial.
The polynomials are given by

Aevenjðρ; θ; ϵÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
Rm

n ðρ; ϵÞ cosmθ; m ≠ 0;

ð26aÞ

Aoddjðρ; θ; ϵÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
Rm

n ðρ; ϵÞ sinmθ; m ≠ 0;

ð26bÞ

Ajðρ; θ; ϵÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
R0

nðρ; ϵÞ; m ¼ 0; ð26cÞ

where ϵ ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, n and m are positive inte-
gers, and n −m ≥ 0 and positive. Except for the nor-
malization constant, an annular polynomial with
n ¼ m has the same form as that for a corresponding
circle polynomial. The index j is a polynomial order-
ing number in the same manner as it is for the circle
polynomials. Thus, the polynomials are ordered such
that an even j corresponds to a symmetric polynomial
varying as cosmθ, while an odd j corresponds to an
antisymmetric polynomial varying as sinmθ. A poly-
nomial with a lower value of n is ordered first, and for
a given value of n, a polynomial with a lower value of
m is ordered first. The annular polynomials are
orthonormal across the annular pupil according to

1

πð1 − ϵ2Þ
Z1

ϵ

Z2π

0

Ajðρ; θ; ϵÞAj0 ðρ; θ; ϵÞρdρdθ ¼ δjj0 : ð27Þ

As ϵ → 0, an annular polynomial reduces to a corre-
sponding circle polynomial and Eq. (27) reduces to
Eq. (10b).

The annular polynomials can be written in terms
of the circle polynomials according to

fAjg ¼ MfZjg; ð28Þ

where M is the conversion matrix. An annular aber-
ration function Wðρ; θ; ϵÞ can be estimated by J
orthonormal polynomials according to

Ŵðρ; θ; ϵÞ ¼
XJ
j¼1

ajAjðρ; θ; ϵÞ; ð29Þ

where the orthonormal annular expansion coeffi-
cients are given by

aj ¼
1

πð1 − ϵ2Þ
Z1

ϵ

Z2π

0

Wðρ; θ; ϵÞAjðρ; θ; ϵÞρdρdθ: ð30Þ

The mean value and the variance of the estimated
function are accordingly given by Eqs. (4) and (6).

Table 1 lists the first 11 annular polynomials along
with the names associated with some of them. They
are given in terms of the circle polynomials in
Table 2. The nonzero elements of an 11 × 11 conver-
sion matrix, as obtained from Table 2, are listed in
Table 3. The transpose matrix MT can be obtained
easily by interchanging the rows and columns of M.
The nonzero elements of the 11 × 11 matrices CZZ

and CZF obtained from Eqs. (24) and (25) by integrat-
ing over an annular pupil and replacing Fj0 ðx; yÞ by
Aj0 ðρ; θ; ϵÞ are given in Tables 4 and 5, respectively.

4. Annular and Zernike Circle Coefficients of an
Annular Wavefront

Given a certain annular aberration function, its an-
nular coefficients can be determined from Eq. (30). If
it is expanded in terms of only the first four circle
polynomials, i.e., if J ¼ 4, then the expansion b̂ coef-
ficients according to Eq. (13) are given by

0
BBB@

b̂1
b̂2
b̂3
b̂4

1
CCCA ¼

0
BBB@

1 0 0 −

ffiffiffi
3

p
ϵ2ð1 − ϵ2Þ−1

0 ð1þ ϵ2Þ−1=2 0 0
0 0 ð1þ ϵ2Þ−1=2 0
0 0 0 ð1 − ϵ2Þ−1

1
CCCA

0
BBB@

a1

a2

a3

a4

1
CCCA ¼

0
BBB@

a1 −
ffiffiffi
3

p
ϵ2ð1 − ϵ2Þ−1a4

ð1þ ϵ2Þ−1=2a2

ð1þ ϵ2Þ−1=2a3

ð1 − ϵ2Þ−1a4

1
CCCA; ð31Þ

b̂1 ¼ a1 −
ffiffiffi
3

p
ϵ2ð1 − ϵ2Þ−1a4; ð32aÞ

b̂2 ¼ ð1þ ϵ2Þ−1=2a2; ð32bÞ

b̂3 ¼ ð1þ ϵ2Þ−1=2a3; ð32cÞ

b̂4 ¼ ð1 − ϵ2Þ−1a4: ð32dÞ

These coefficients represent the Zernike piston, tip,
tilt, and defocus coefficients, respectively.

To see how these coefficients change as more
polynomials are used in the expansion, we con-
sider an expansion using 11 circle polynomials.
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The coefficients are now given by

b̂1 ¼ a1 − 3ϵ2ð1 − ϵ2Þ−1a4 þ
ffiffiffi
5

p
ϵ2ð1þ ϵ2Þð1 − ϵ2Þ−2a11;

ð33aÞ

b̂2 ¼ ð1þ ϵ2Þ−1=2a2 −

�
2

ffiffiffi
2

p
ϵ4=B

�
a8; ð33bÞ

b̂3 ¼ ð1þ ϵ2Þ−1=2a3 −

�
2

ffiffiffi
2

p
ϵ4=B

�
a7; ð33cÞ

b̂4 ¼ ð1 − ϵ2Þ−1a4 −
ffiffiffiffiffiffi
15

p
ϵ2ð1 − ϵ2Þ−2a11; ð33dÞ

b̂5 ¼ ð1þ ϵ2 þ ϵ4Þ−1=2a5; ð33eÞ

b̂6 ¼ ð1þ ϵ2 þ ϵ4Þ−1=2a6; ð33f Þ

b̂7 ¼ ½ð1þ ϵ2Þ=B�a7; ð33gÞ

b̂8 ¼ ½ð1þ ϵ2Þ=B�a8; ð33hÞ

b̂9 ¼ ð1þ ϵ2 þ ϵ4 þ ϵ6Þ−1=2a9; ð33iÞ

b̂10 ¼ ð1þ ϵ2 þ ϵ4 þ ϵ6Þ−1=2a10; ð33jÞ

b̂11 ¼ ð1 − ϵ2Þ−2a11; ð33kÞ

where

B ¼ ð1 − ϵ2Þ½ð1þ ϵ2Þð1þ 4ϵ2 þ ϵ4Þ�1=2: ð34Þ

It is evident that all of the first four coefficients
change, and bj ¼ Mjjaj for 5 ≤ j ≤ 11. The Zernike as-
tigmatism coefficients b̂5 and b̂6 are smaller than the
corresponding annular coefficients a5 and a6 by a fac-
tor of ð1þ ϵ2 þ ϵ4Þ1=2. However, the Zernike spherical
aberration coefficient b̂11 is larger than the corre-
sponding annular coefficient a11 by a factor of
ð1 − ϵ2Þ−2. For example, when ϵ ¼ 0:5, the astigma-
tism coefficients are smaller by a factor of 1.1456
and the spherical aberration coefficient is larger by
a factor of 1.7778.

It should be evident that, because of the orthogon-
ality of the trigonometric functions, there is correla-
tion between an annular and a circle polynomial
only if they have the same azimuthal dependence.
As a consequence, the piston coefficient b̂1, for exam-
ple, is a linear combination of the piston coefficient a1,
defocus coefficient a4, and various orders of spherical
aberration. Similarly, the tilt coefficient b̂2 is a linear
combination of the tilt coefficient a2 and various or-
ders of coma, or astigmatism coefficient b̂5 is a linear
combination of various orders of astigmatism.Accord-
ingly, the astigmatism coefficients change if a 13-
polynomial expansion is considered. For example, b̂5
then contains contribution from a13 as well. The tip
and tilt coefficients b̂2 and b̂3 change further if poly-
nomials A16 (varying as cos θ) and A17 (varying as
sin θ) are included in the expansion. Moreover, A16
also contributes to the coma coefficient b̂8, and A17 si-
milarly contributes to the coma coefficient b̂7. The
defocus coefficient b̂4 does not change until the sec-
ondary spherical aberration polynomial A22 is in-
cluded with its coefficient a22. Its inclusion also
affects the primary spherical aberration coefficient
b̂11. Thus, it is easy to see which, when, and by how
much the b̂j coefficients change, depending on the
number of polynomials used in the expansion.

We note that the mean value of the aberration
function is given by the annular piston coefficient
a1. However, the value of the corresponding Zernike

Table 1. Orthonormal Annular Polynomials Aj ðρ; θ; ϵÞ for an Obscuration Ratio ϵ

j n m Ajðρ; θ; ϵÞ Aberration Name

1 0 0 1 Piston

2 1 1 2½ρ=ð1þ ϵ2Þ1=2� cos θ x tilt

3 1 1 2½ρ=ð1þ ϵ2Þ1=2� sin θ y tilt

4 2 0
ffiffiffi
3

p ð2ρ2 − 1 − ϵ2Þ=ð1 − ϵ2Þ Defocus

5 2 2
ffiffiffi
6

p ½ρ2=ð1þ ϵ2 þ ϵ4Þ1=2� sin2θ 45° Primary astigmatism

6 2 2
ffiffiffi
6

p ½ρ2=ð1þ ϵ2 þ ϵ4Þ1=2� cos2θ 0° Primary astigmatism

7 3 1
ffiffiffi
8

p 3ð1þϵ2Þρ3−2ð1þϵ2þϵ4Þρ
ð1−ϵ2Þ½ð1þϵ2Þð1þ4ϵ2þϵ4Þ�1=2 sin θ Primary y coma

8 3 1
ffiffiffi
8

p 3ð1þϵ2Þρ3−2ð1þϵ2þϵ4Þρ
ð1−ϵ2Þ½ð1þϵ2Þð1þ4ϵ2þϵ4Þ�1=2 cos θ Primary x coma

9 3 3
ffiffiffi
8

p ½ρ3=ð1þ ϵ2 þ ϵ4 þ ϵ6Þ1=2� sin3θ
10 3 3

ffiffiffi
8

p ½ρ3=ð1þ ϵ2 þ ϵ4 þ ϵ6Þ1=2� cos3θ
11 4 0

ffiffiffi
5

p ½6ρ4 − 6ð1þ ϵ2Þρ2 þ 1þ 4ϵ2 þ ϵ4�=ð1 − ϵ2Þ2 Primary spherical aberration
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circle coefficient b̂1 depends on the number of polyno-
mials used in the expansion, and it does not equal a1
and, therefore, does not represent the mean value.
An orthonormal annular coefficient (other than pis-
ton) represents the standard deviation of the corre-
sponding aberration term in the expansion, but a
Zernike circle coefficient generally does not. The var-
iance of the aberration function cannot be obtained
by summing the squares of the Zernike circle coeffi-
cients b̂js (excluding the piston coefficient). The circle
coefficients bjs can be obtained from the b̂j or the aj
coefficients according to Eq. (22). They are consid-
ered in Section 7 for a Seidel aberration function.

5. Interferometer Setting Errors

The estimated wavefront obtained by using only the
first four polynomials represents the best-fit para-
bolic approximation of the aberration function in a
least-squares sense. In terms of the orthonormal an-
nular polynomials, it can be written as

Ŵðx; yÞ ¼ a1A1 þ a2A2 þ a3A3 þ a4A4 ð35aÞ

¼ a1 þ 2ð1þ ϵ2Þ−1=2a2xþ 2ð1þ ϵ2Þ−1=2a3y

þ
ffiffiffi
3

p
ð1 − ϵ2Þ−1a4½−ϵ2 þ ð2ρ2 − 1Þ�: ð35bÞ

In terms of the circle polynomials, it can be written

Ŵðx; yÞ ¼ b̂1Z1 þ b̂2Z2 þ b̂3Z3 þ b̂4Z4 ð36aÞ

¼ b̂1 þ 2b̂2xþ 2b̂3yþ
ffiffiffi
3

p
b̂4ð2ρ2 − 1Þ: ð36bÞ

In Eqs. (35) and (36), we have omitted the arguments
of the annular and circle polynomials for simplicity.
Substituting for the b̂j coefficients from Eqs. (32), we
find that the coefficients of x, y, and ρ2 representing
the tip, tilt, and defocus values obtained from the
Zernike coefficients, respectively, are the same as
those obtained from the orthonormal coefficients.
The estimated piston from the Zernike expansion
of Eq. (36b) is b̂1 −

ffiffiffi
3

p
b̂4, which is the same as a1 −ffiffiffi

3
p

ϵ2ð1 − ϵ2Þ−1a4 from the orthonormal expansion of
Eq. (35b). Accordingly, the aberration function ob-
tained by subtracting the piston, tip, tilt, and defocus
values from the measured aberration function is in-
dependent of the nature of the polynomials used in
the expansion, so long as the nonorthogonal expan-
sion is in terms of only the first four circle polyno-
mials [as may be seen, for example, by comparing
Eqs. (33a)–(33d) with Eqs. (32a)–(32d)]. In an inter-
ferometer, the tip and tilt represent the lateral errors
and defocus represents the longitudinal error in the
location of a point source illuminating an optical sur-
face under test from its center of curvature. These
four terms are generally removed from the aberra-

Table 2. Annular Polynomials Aj ðρ; θ; ϵÞ in Terms of
the Zernike Circle Polynomials Z j ðρ; θÞa

A1 ¼ Z1

A2 ¼ ð1þ ϵ2Þ−1=2Z2

A3 ¼ ð1þ ϵ2Þ−1=2Z3

A4 ¼ ð1 − ϵ2Þ−1ð− ffiffiffi
3

p
ϵ2Z1 þ Z4Þ

A5 ¼ ð1þ ϵ2 þ ϵ4Þ−1=2Z5

A6 ¼ ð1þ ϵ2 þ ϵ4Þ−1=2Z6

A7 ¼ B−1½−2 ffiffiffi
2

p
ϵ4Z3 þ ð1þ ϵ2ÞZ7�

A8 ¼ B−1½−2 ffiffiffi
2

p
ϵ4Z2 þ ð1þ ϵ2ÞZ8�

A9 ¼ ð1þ ϵ2 þ ϵ4 þ ϵ6Þ−1=2Z9

A10 ¼ ð1þ ϵ2 þ ϵ4 þ ϵ6Þ−1=2Z10

A11 ¼ ð1 − ϵ2Þ−2½ ffiffiffi
5

p
ϵ2ð1þ ϵ2ÞZ1 −

ffiffiffiffiffiffi
15

p
ϵ2Z4 þ Z11�

B ¼ ð1 − ϵ2Þ½ð1þ ϵ2Þð1þ 4ϵ2 þ ϵ4Þ�1=2
aWhere ϵ is the obscuration ratio of the annular pupil.

Table 3. Nonzero Elements of 11 × 11 Conversion
Matrix M for Obtaining the Annular Polynomials

Aj ðρ; θ; ϵÞ from the Zernike Circle Polynomials Z j ðρ; θÞ

M11 ¼ 1
M22 ¼ ð1þ ϵ2Þ−1=2 ¼ M33

M41 ¼ −

ffiffiffi
3

p
ϵ2ð1 − ϵ2Þ−1

M44 ¼ ð1 − ϵ2Þ−1
M55 ¼ ð1þ ϵ2 þ ϵ4Þ−1=2 ¼ M66

M73 ¼ −2
ffiffiffi
2

p
ϵ4B−1 ¼ M82

M77 ¼ ð1þ ϵ2ÞB−1 ¼ M88

M99 ¼ ð1þ ϵ2 þ ϵ4 þ ϵ6Þ−1=2 ¼ M10;10

M11;1 ¼ ffiffiffi
5

p
ϵ2ð1þ ϵ2Þð1 − ϵ2Þ−2

M11;4 ¼ −

ffiffiffiffiffiffi
15

p
ϵ2ð1 − ϵ2Þ−2

M11;11 ¼ ð1 − ϵ2Þ−2

Table 4. Nonzero Elements cjj 0 of 11 × 11 Matrix CZZ

of the Zernike Circle Polynomials over an Annular Pupil
of Obscuration Ratio ϵ, where cjj 0 ¼ cj 0 j

c11 ¼ 1
c14 ¼ ffiffiffi

3
p

ϵ2 ¼ c41
c1;11 ¼ −

ffiffiffi
5

p
ϵ2ð1 − 2ϵ2Þ ¼ c11;1

c22 ¼ 1þ ϵ2 ¼ c33
c28 ¼ 2

ffiffiffi
2

p
ϵ4 ¼ c82 ¼ c37 ¼ c73

c44 ¼ 1 − 2ϵ2 þ 4ϵ4
c4;11 ¼ ffiffiffiffiffiffi

15
p

ϵ2ð1 − 3ϵ2 þ 3ϵ4Þ ¼ c11;4
c55 ¼ 1þ ϵ2 þ ϵ4 ¼ c66
c77 ¼ 1þ ϵ2 − 7ϵ4 þ 9ϵ6 ¼ c88
c99 ¼ 1þ ϵ2 þ ϵ4 þ ϵ6 ¼ c10;10
c11;11 ¼ 1 − 4ϵ2 þ 26ϵ4 − 54ϵ6 þ 36ϵ8

Table 5. Nonzero Elements djj 0 of 11 × 11 Matrix
CZF of the Zernike Circle Polynomials over an

Annular Pupil of Obscuration Ratio ϵ

d11 ¼ 1
d22 ¼ ð1þ ϵ2Þ1=2 ¼ d33

d41 ¼ ffiffiffi
3

p
ϵ2

d44 ¼ ð1 − 2ϵ2 þ ϵ4Þð1 − ϵ2Þ−1
d55 ¼ ð1þ ϵ2 þ ϵ4Þ1=2 ¼ d66

d73 ¼ 2
ffiffiffi
2

p
ϵ4ð1þ ϵ2Þ−1=2 ¼ d82

d77 ¼ ð1 − ϵ2Þð1þ 4ϵ2 þ ϵ4Þ1=2ð1þ ϵ2Þ−1=2 ¼ d88

d99 ¼ ð1þ ϵ2 þ ϵ4 þ ϵ6Þ1=2 ¼ d10;10

d11;1 ¼ −

ffiffiffi
5

p
ϵ2ð1 − 2ϵ2Þ

d11;4 ¼ ffiffiffiffiffiffi
15

p
ϵ2ð1 − ϵ2Þ

d11;11 ¼ ð1 − ϵ2Þ2
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tion function and the remaining function is given to
the optician to zero out from the optical surface by
polishing.

6. Wavefront Fitting

When an aberration function is expanded in terms of
the orthonormal polynomials, one or more polyno-
mial terms can be added or subtracted from the aber-
ration function without affecting the coefficients of
the other polynomials in the expansion. However,
that is generally not true with the Zernike expan-
sion. This is due to the fact that an expansion in
terms of the orthonormal polynomials gives a best
fit for each polynomial, but an expansion in terms
of the circle polynomials gives it for the whole set
in the expansion. The estimated or reconstructed
wavefront by the same number of corresponding
orthonormal or Zernike polynomials is the same. For
example, the four-polynomial aberration functions of
Eqs. (35) and (36) are identically the same function.

Although the wavefront fit with a certain number
of circle polynomials is as good as the fit with a cor-
responding set of the orthonormal polynomials, there
are pitfalls in using the circle polynomials. Because
the circle polynomials are not orthogonal over the
noncircular pupil, the advantages of orthogonality
and aberration balancing are lost. Because they do
not represent the balanced classical aberrations for
a noncircular pupil, the Zernike coefficients b̂js do
not have the physical significance of their orthonor-
mal counterparts. For example, the mean value of a
circle polynomial across a noncircular pupil is not
zero, the Zernike piston coefficient does not repre-
sent the mean value of the aberration, the other
Zernike coefficients do not represent the standard
deviation of the corresponding aberration terms,
and the variance of the aberration is not equal to
the sum of the squares of these other coefficients.
Moreover, the value of a Zernike coefficient generally
changes as the number of polynomials used in the ex-
pansion of an aberration function changes. Hence,
the circle polynomials are not appropriate for the
analysis of a noncircular wavefront. Of course, wave-
front fitting with the improperly calculated Zernike
coefficients bj by using Eq. (17) will be in error, as
demonstrated in Section 7 for a Seidel aberration
function.

7. Application: Annular and Zernike Circle Coefficients
of an Annular Seidel Aberration Function

Consider an annular pupil aberrated by a Seidel
aberration function given by

Wðρ; θ; ϵÞ ¼ Atρ cos θ þ Adρ2 þ Aaρ2cos2θ
þ Acρ3 cos θ þ Asρ4; ϵ ≤ ρ ≤ 1; ð37Þ

where At, Ad, Aa, Ac, and As represent the peak
values of distortion, field curvature, astigmatism,
coma, and spherical aberration, respectively. With-
out the explicit field dependence, distortion is
equivalent to a wavefront tilt, and field curvature

is equivalent to a wavefront defocus. The aberration
function when approximated by only four annular
polynomials can be written

Ŵðρ; θ; ϵÞ ¼ a1A1 þ a2A2 þ a4A4; ð38Þ
where the expansion coefficients according to
Eq. (30) are given by

a1 ¼ ð1þ ϵ2Þð2Ad þ AaÞ=4þ ð1þ ϵ2 þ ϵ4ÞAs=3;

ð39aÞ

a2 ¼ ð1þ ϵ2Þ1=2At=2þ ð1þ ϵ2 þ ϵ4Þð1þ ϵ2Þ−1=2Ac=3;

ð39bÞ

a4 ¼ ð1 − ϵ2Þð2Ad þ AaÞ=4
ffiffiffi
3

p
þð1 − ϵ4ÞAs=2

ffiffiffi
3

p
:

ð39cÞ

It should be evident that the coefficient a3 of the an-
nular polynomial A3 varying as sin θ is zero. The
mean value of the estimated aberration function is
given by a1, and its variance is given by

σ2
Ŵ

¼ a2
2 þ a2

4: ð40Þ

An expansion in terms of 11 annular polynomials can
be written

Wðρ; θ; ϵÞ ¼ a1A1 þ a2A2 þ a4A4 þ a6A6 þ a8A8

þ a11A11; ð41Þ

where the coefficients a1, a2, and a4 are given by
Eqs. (39a)–(39c) and

a6 ¼ 1

2
ffiffiffi
6

p ð1þ ϵ2 þ ϵ4Þ1=2Aa; ð39dÞ

a8 ¼ 1 − ϵ2

6
ffiffiffi
2

p
�
1þ 4ϵ2 þ ϵ4

1þ ϵ2

�1=2

Ac; ð39eÞ

a11 ¼ ð1 − ϵ2Þ2
6

ffiffiffi
5

p As: ð39f Þ

Again, it should be evident that the coefficients a5,
a7, and a9 of the polynomials A5, A7, and A9, respec-
tively, varying as sinmθ are zero. Moreover, the coef-
ficient a10 of the polynomial A10 varying as cos 3θ is
also zero. The 11-polynomial expansion represents
the Seidel aberration function exactly. Its mean val-
ue is again a1, as given by Eq. (39a), and its variance
is given by

σ2W ¼ a2
2 þ a2

4 þ a2
6 þ a2

8 þ a2
11: ð42Þ
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Next, we expand the Seidel aberration function
in terms of the circle polynomials. A four-polynomial
expansion can be obtained from Eqs. (32) and (39) in
the form

Ŵðρ; θ; ϵÞ ¼ b̂1Z1 þ b̂2Z2 þ b̂4Z4; ð43Þ

where

b̂1 ¼ ð2Ad þ AaÞ=4þ ½1 − ϵ2ð1þ ϵ2Þ=2�As=3; ð44aÞ

b̂2 ¼ a2=ð1þ ϵ2Þ1=2; ð44bÞ

b̂4 ¼ a4=ð1 − ϵ2Þ: ð44cÞ

The estimated aberration function in Eq. (43) is ex-
actly the same as that in Eq. (38), and the values of
piston, x tilt, and defocus are exactly the same as
those obtained from Eqs. (39a)–(39c). It should be
evident, however, that its mean value is not given
by b̂1. Moreover, because an expansion coefficient
does not represent the standard deviation of the cor-
responding aberration polynomial term, its variance
is not given by b̂22 þ b̂24.

From Eqs. (33) and (39), an 11-polynomial expan-
sion can be written:

Wðρ; θ; ϵÞ ¼ b̂1Z1 þ b̂2Z2 þ b̂4Z4 þ b̂6Z6 þ b̂8Z8

þ b̂11Z11; ð45Þ

where

b̂1 ¼ ð2Ad þ AaÞ=4þ As=3; ð46aÞ

b̂2 ¼ At=2þ Ac=3; ð46bÞ

b̂4 ¼ ð2Ad þ AaÞ=4
ffiffiffi
3

p
þAs=2

ffiffiffi
3

p
; ð46cÞ

b̂6 ¼ Aa=2
ffiffiffi
6

p
; ð46dÞ

b̂8 ¼ Ac=6
ffiffiffi
2

p
; ð46eÞ

b̂11 ¼ As=6
ffiffiffi
5

p
: ð46f Þ

As in the case of annular polynomials, the 11 circle
polynomials also represent the Seidel aberration
function exactly. The expansion coefficients can also
be obtained by inspection of the aberration function
and the form of the circle polynomials. Indeed, be-
cause of the form of the Seidel aberration function,
the circle coefficients are independent of the obscura-

tion ratio ϵ. Each b̂ coefficient represents the value of
the corresponding a coefficient for ϵ ¼ 0. It is clear
that each of the three nonzero coefficients of the
four-polynomial expansion changes as the number
of polynomials is increased from 4 to 11. Hence, the
values of piston, x tilt, and defocus obtained from the
coefficients b̂1, b̂2, and b̂4 are incorrect. Again, the
mean value of the aberration function is not given
by b̂1 and its variance is not given by the sum of
the squares of the other coefficients.

If we consider the first four polynomial terms as
representing the interferometer setting errors and
remove them from the aberration function, the resi-
dual aberration function from the annular expansion
is given by

WRAðρ; θ; ϵÞ ¼ a6A6 þ a8A8 þ a11A11: ð47Þ

The same residual aberration function is obtained if
a four-polynomial Zernike expansion of Eq. (43) is
subtracted from the aberration function Wðρ; θ; ϵÞ.
However, if the first four polynomials are subtracted
from the aberration function of Eq. (45), the residual
aberration function is given by

WRC b̂ðρ; θ; ϵÞ ¼ b̂6Z6 þ b̂8Z8 þ b̂11Z11

¼ ðAa=2
ffiffiffi
6

p
ÞZ6 þ ðAc=6

ffiffiffi
2

p
ÞZ8

þ ðAs=6
ffiffiffi
5

p
ÞZ11: ð48Þ

Because the 11-polynomial aberration functions of
Eqs. (41) and (45) are equal to each other [and equal
to the Seidel aberration function of Eq. (37)], the dif-
ference between the residual aberration functions of
Eqs. (48) and (47) is equal to the difference between
the interferometer setting errors given by Eq. (38) or
(43) and those given by Eq. (45). Accordingly, the dif-
ference or the error function consists of piston, tilt,
and defocus only. It is given by

ΔWRb̂ðρ; θ; ϵÞ ¼ −
1
6
ϵ2ð4þ ϵ2ÞAs þ

2
3

ϵ4

1þ ϵ2
Acρ cos θ

þ ϵ2Asρ2; ð49Þ

and is independent of the number J of the annular
and circle polynomials (e.g., 11, as above) used in
the expansion. Of course, piston does not affect the
peak-to-valley value or the variance of the aberration
function. If the interferometer setting errors ob-
tained from Eq. (45) are applied in the fabrication
and testing of an optical system with an annular pu-
pil, the difference function represents the polishing
error due to the use of the circle polynomials.

If we compare the annular coefficients of astigma-
tism, coma, and spherical aberration given by
Eqs. (39d)–(39f) with the corresponding Zernike coef-
ficients given by Eq. (46d)–(46f), we obtain
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a6

b̂6
¼ ð1þ ϵ2 þ ϵ4Þ1=2; ð50aÞ

a8

b̂8
¼ ð1 − ϵ2Þ

�
1þ 4ϵ2 þ ϵ4

1þ ϵ2

�1=2

; ð50bÞ

a11

b̂11
¼ ð1 − ϵ2Þ2: ð50cÞ

Because the b̂j coefficients are independent of the
value of ϵ, the variation of a ratio aj=b̂j with ϵ repre-
sents the variation of an annular coefficient aj.

Now we consider the expansion of the Seidel aber-
ration function in terms of the circle polynomials by
assuming them to be orthogonal over the annulus.
This is what one does when defining a center of an
interferogram, drawing a unit circle around it, and
determining its circle coefficients. The aberration
function in this case can be written in the form

Wðρ; θ; ϵÞ ¼ b1Z1 þ b2Z2 þ b4Z4 þ b6Z6 þ b8Z8

þ b11Z11 þ…; ð51Þ

where, according to Eq. (17), the coefficients bj are
given by

bj ¼
1

πð1 − ϵ2Þ
Z1

ϵ

Z2π

0

Wðρ; θ; ϵÞZjðρ; θÞρdρdθ: ð52Þ

They can also be obtained from Eq. (22), i.e., from the
annular or circle coefficients by using the matrix CZZ

or CZF given in Tables 4 and 5, respectively. The “in-
correct” circle coefficients bj are given by

b1 ¼ a1; ð53aÞ

b2 ¼ ð1þ ϵ2Þ1=2a2; ð53bÞ

b4 ¼ 1

4
ffiffiffi
3

p ð1þ ϵ2 þ 4ϵ4Þð2Ad þ AaÞ

þ 1

2
ffiffiffi
3

p ð1þ ϵ2 þ ϵ4 þ 3ϵ6ÞAs; ð53cÞ

b6 ¼ ð1þ ϵ2 þ ϵ4Þ1=2a6; ð53dÞ

b8 ¼
ffiffiffi
2

p
ϵ4At þ

1

6
ffiffiffi
2

p ð1þ ϵ2 þ ϵ4 þ 9ϵ6ÞAc; ð53eÞ

b11 ¼
ffiffiffi
5

p

4
ϵ4ð3ϵ2 − 1Þð2Ad þ AaÞ

þ 1

6
ffiffiffi
5

p ð1þ ϵ2 þ ϵ4 − 9ϵ6 þ 36ϵ8ÞAs; ð53f Þ

etc. These coefficients are incorrect in the sense that
they do not yield a least-squares fit of the aberration
function. Because an annular polynomial with n ¼ m
has the same form as that for a corresponding circle
polynomial except for the normalization constant,
the coefficients bj and aj for such a polynomial are
also related to each other by the normalization con-
stant. Equations (53a), (53b), and (53d) represent
this fact for n ¼ m ¼ 0, 1, 2, respectively. It is clear,
however, that the improperly calculated circle coeffi-
cients bj depend on the obscuration ratio of the pupil.
Evidently, they are different from the corresponding
b̂ coefficients given by Eqs. (46). While the value of
the piston coefficient b1 is equal to the true mean
value a1, the tilt coefficient b2 is larger than a2 by
a factor of ð1þ ϵ2Þ1=2 or 1.1180, and the coma coeffi-
cient b6 is larger than a6 by a factor of

ð1þ ϵ2 þ ϵ4Þ1=2

or 1.1456 when ϵ ¼ 0:5. Moreover, the b coefficients of
some of the nonexistent higher-order aberrations are
not zero. For example, the coefficients b22, b37, etc., of
the secondary and tertiary Zernike spherical aberra-
tions Z22, Z37, etc., and b16, b30, etc., of the secondary
and tertiary Zernike coma Z16 and Z30, etc., are non-
zero. Thus, nonexistent aberrations are generated
when an aberration function is expanded improperly
in terms of the circle polynomials.

If we estimate the annular Seidel aberration func-
tion with only four-circle polynomials from Eq. (51),
we obtain

Ŵðρ; θ; ϵÞ ¼ b1Z1 þ b2Z2 þ b4Z4: ð54Þ

If we truncate the expansion in terms of the circle
polynomials in Eq. (51) to the first 11 circle polyno-
mials and remove the first four coefficients as inter-
ferometer setting errors, the residual aberration
function in this case is given by

WRCbðρ; θ; ϵÞ ¼ b6Z6 þ b8Z8 þ b11Z11: ð55Þ

The tilt error is larger by a factor of ð1þ ϵ2Þ1=2 or
1.1180, when ϵ ¼ 0:5, than its true value given by
a2, and the defocus error given by b4 can be compared
with its true value given by a4. Because the 11-
polynomial aberration function from Eq. (51) is not
equal to the aberration function of Eq. (41), their dif-
ference does not consist of the difference in their in-
terferometer setting errors. For example, Eq. (53d)
indicates that there will be an astigmatism term
in the difference function. Thus, wrong polishing will
result if the aberration function of Eq. (55) is pro-
vided to the optician to zero out.
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As a numerical example, we consider an annular
Seidel aberration function with At ¼ Ad ¼ Aa ¼ 1,
Ac ¼ 2, and As ¼ 3 in waves. As illustrated in Fig. 1,
the annular and circle coefficients of a four-
polynomial expansion differ from each other,
although they yield the same fit of the aberration
function. We note that, whereas the mean value a1
increases as ϵ increases, the piston coefficient b̂1
decreases. However, the defocus coefficient a4 de-
creases, but b̂4 increases. Both tilt coefficients a2
and b̂2 increase. For an 11-polynomial expansion,
the first four annular coefficients remain the same,
but the circle coefficients become independent of ϵ,
as in Eqs. (46). Figure 2 shows the coefficient ratios
a6=b̂6 (astigmatism), a8=b̂8 (coma), and a11=b̂11 (sphe-
rical) for an 11-polynomial expansion. We note that
the coefficient a6 increases, a11 decreases, and a8 is
nearly constant for small values of ϵ and then
decreases as ϵ increases. Figure 3 shows how the b̂
coefficients change as we change the number of poly-
nomials from 4 to 11 for ϵ ¼ 0:5. A wrong polishing
will result if the tip, tilt, and focus errors of an
interferometer setting are estimated from the 11-
circle-polynomial expansion, instead of the four.
The variation of standard deviation obtained from
the coefficients of a 4- or 11-polynomial expansion

is shown in Fig. 4, illustrating that the circle coeffi-
cients yield incorrect results. The standard deviation
obtained from the orthonormal coefficients increases
slowly with ϵ, starting at 1.7460 and 1.7877 for the 4-
and 11-polynomial expansions, respectively. How-
ever, the standard deviation obtained from the circle
coefficients is correct only when ϵ ¼ 0. It increases
rapidly with ϵ for the 4-polynomial expansion, but
it is constant for the 11-polynomial expansion, indi-
cating its incorrect nature. The sigma values from
the orthonormal and the circle coefficients are nearly
equal to each other for ϵ ≤ 0:5 because of the very
slow increase of the orthonormal sigma.

Figure5 shows the contours of theSeidel aberration
function for a circular and an annular pupil with ob-
scuration ratio of ϵ ¼ 0:5. The case of a circular pupil is
included just for reference. Thedark circular region in
Fig. 5(b) (and others) represents the obscuration. The
contours of the annular Seidel aberration function fit
with only four polynomials, as inEq. (38) or (43) and in
Eq. (54), are shown in Figs. 6(a) and 6(b), respectively.
The two figures look similar, but are not the same.
OnlyFig. 6(a) represents the least-squaresand, there-
fore, the correct fit. The contours of the residual

Fig. 1. (Color online) Orthonormal annular coefficients aj and
Zernike circle coefficients b̂j for a four-polynomial expansion.

Fig. 2. (Color online) Ratio of the orthonormal annular co-
efficients aj and Zernike circle coefficients b̂j for an 11-polynomial
expansion.

Fig. 3. Orthonormal annular coefficients aj and Zernike circle
coefficients b̂j, illustrating how the latter change as the number
of polynomials changes from 4 to 11.

Fig. 4. (Color online) Standard deviation as obtained from the
orthonormal annular coefficients aj and Zernike circle coefficients
b̂j of a 4- and 11-polynomial expansion.
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Fig. 5. Contours of (a) Seidel aberration function of Eq. (37) for a circular pupil with At ¼ Ad ¼ Aa ¼ 1, Ac ¼ 2, and As ¼ 3 in waves. (b)
Same Seidel aberration function, but for an annular pupil with obscuration ratio ϵ ¼ 0:5.

Fig. 6. Contours of an annular Seidel aberration function for ϵ ¼ 0:5 fit with only four polynomials, as in (a) Eq. (38) or (43), and
(b) Eq. (54).

Fig. 7. Contours of the residual aberration function after removing the interferometer setting errors. (a) WRA of Eq. (47) using annular
polynomials (b) WRC b̂ of Eq. (48) using circle polynomials correctly, and (c) WRCb of Eq. (55) using circle polynomials incorrectly.
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aberration function when the first four (of the 11)
polynomials are removed as interferometer setting
errors, as in Eqs. (47), (48), and (55), are shown in
Figs. 7(a)–7(c), respectively. All of the three figures
are different from each other, as expected. Only
Fig. 7(a) reflects removal of the correct interferometer
setting errors, and thus the correct residual aberra-
tion function. The contours of the difference of the re-
sidual functions using the circle polynomials from the
one using the annular polynomials given by Eq. (49)
and by subtracting Eq. (47) fromEq. (55) are shown in
Figs. 8(a) and 8(b). They represent the error functions
due to removal of incorrect interferometer setting
errors.

8. Aberration Coefficients From Discrete
Wavefront Data

When an aberration function is known only at a dis-
crete set of points, as in a digitized interferogram, the
integral for determining the aberration coefficients
reduces to a sum and the orthonormal coefficients
thus obtained may be in error due to the lack of
orthogonality of the polynomials over the discrete
points of the aberration data set. The magnitude
of the error decreases as the number of points distrib-
uted uniformly across an interferogram increases.
This is not a serious problem when the wavefront
errors are determined by, say, the phase-shifting in-
terferometry, since the number of points can be very
large [10]. However, when the number of data points
is small, or the pupil is irregular in shape due to vig-
netting, then ray tracing or testing of the system
yields wavefront error data at an array of points
across a region for which the closed-form ortho-
normal polynomials are not available. In such cases,
we can determine the coefficients of an expansion in
terms of the numerical polynomials that are orthogo-
nal over the data set, obtained by the Gram–Schmidt

orthogonalization process [11]. However, if we just
want to determine the values of tip/tilt and de-
focus terms, yielding the errors in the interferom-
eter settings, they can be obtained by least-squares
fitting the aberration function data with only
these terms.

9. Discussion and Conclusions

After abrief reviewof the theory of expansion of anon-
circular aberration function in terms of the polyno-
mials that are orthonormal over the domain of the
function and in terms of the Zernike circle polyno-
mials, an annularwavefront is considered. It is shown
that, whereas the orthonormal annular expansion
coefficients are independent of the number of polyno-
mials used in the expansion, the circle coefficients
generally change as the number of polynomials
changes. In fact, it is easy to see which coefficients
changeandbyhowmuch.Accordingly, one ormorean-
nular polynomials can be added to or subtracted from
the aberration function without affecting the coeffi-
cients of the other polynomials. Moreover, unlike
the annular coefficients, the piston circle coefficient
does not represent the mean value of the aberration
function, and the sum of the squares of the other coef-
ficients does not yield its variance. However, since
each annular polynomial of a certain order is a linear
combination of the circle polynomials of that and
lower orders, the wavefront fit with a certain num-
ber of annular polynomials is identically the same
as that with the corresponding circle polynomials.
Accordingly, the interferometer setting errors of tip,
tilt, and defocus are the same with a four-circle-
polynomial expansion as those from the annular-
polynomial expansion. However, incorrect setting
errors are obtained when, for example, obtained
from the corresponding coefficients of an 11-circle-
polynomial expansion. Consequently, when these

Fig. 8. Contours of the difference or the error function (a) Eq. (49) and (b) obtained by subtracting Eq. (47) from Eq. (55).
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errors are removed from the aberration function,
wrongpolishingwill result by zeroing out the residual
aberration function.

These results are illustrated analytically as well as
numerically by considering an annular Seidel aberra-
tion function. Both the 4- and 11-polynomial expan-
sions in terms of the annular and circle polynomials
are considered, and their differences are discussed.
It is shown, for example, thatwhereas thenonzero an-
nular coefficients of an 11-polynomial expansion de-
pend on the obscuration ratio, the circle coefficients
are independent of it. While an expansion in terms
of any number of annular polynomials (larger than
the first four) yields the correct interferometer setting
errors, only a four-polynomial expansion in terms of
the circle polynomials yields their correct values.

For an annular wavefront shown in Fig. 5(b),
Figs. 6(a) and 7(a) represent the correct 4-polynomial
least-squares fit and the corresponding correct resi-
dual aberration function. The same results are
obtained whether the annular or the circle polyno-
mials are used in the fitting process. However, if 11
polynomials are used to estimate the aberration func-
tion and the first four are removed as interferometer
setting errors, then only the annular polynomials give
the correct residual aberration function. The residual
aberration functions shown in Figs. 7(b) and 7(c) ob-
tained respectively by using the circle polynomials in
a least-squares fit or assuming their orthogonality
over the annulus, are incorrect. The error functions
representing the difference between the correct and
the incorrect residual aberration functions are shown
in Figs. 8(a) and 8(b). These figures illustrate that,
while the correct interferometer setting errors can
be obtained by a 4-polynomial least-squares fit using
the annular or the circle polynomials, only the annu-
lar polynomials yield their correct values when ob-
tained by fittingwith a larger number of polynomials.

If the common practice of defining the center of an
interferogram and drawing a unit circle around it is
followed, then the circle coefficients of a noncircular
interferogram do not yield a correct representation
of the aberration function. Moreover, in this case,
some of the higher-order coefficients of aberrations
that are nonexistent in the aberration function are
also nonzero. Finally, the circle coefficients, however
obtained, do not represent the coefficients of the
balanced aberrations for an annular pupil. Conse-
quently, it should be clear that the circle polynomials
are not suitable for the analysis of an annular wave-

front, and only the annular polynomials should be
used for such an analysis.

Although we have considered annular wavefronts
as an example of a noncircular wavefront, the results
obtained and illustrated for them are also applicable
to other noncircular wavefronts, such as hexagonal
or square.

One of the authors (V. N. Mahajan) gratefully ac-
knowledges helpful discussions with William H.
Swantner. The other author (M. Aftab) did her in-
ternship with him while he was an Erasmus Mundus
Scholar with the Optics Research Group, Depart-
ment of Imaging and Science Technology, Delft
University of Technology, Delft, The Netherlands,
under the directorship of Florian Bociort.

†The author is also an adjunct professor at the
College of Optical Sciences, University of Arizona,
Tucson, Arizona 85721, USA, and at the Department
of Optics and Photonics, National Central
University, Chung Li, Taiwan.

References
1. V. N. Mahajan, “Orthonormal polynomials in wavefront

analysis,” inHandbook ofOptics, 3rd ed.,M. Bass, V.N.Mahajan,
and E. Van Stryland, eds. (McGraw-Hill , 2010), Vol. II, pp.
11.3–11.41.

2. V. N. Mahajan,Optical Imaging and Aberrations Part II: Wave
Diffraction Optics (SPIE, 2001).

3. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge
U. Press, 1999).

4. S. R. Restaino, S. W. Teare, M. DiVittorio, C. Gilbreath, and D.
Mozurkewich, “Analysis of the Naval Observatory Flagstaff
Station 1-m telescope using annular Zernike polynomials,”
Opt. Eng. 42, 2491–2495 (2003).

5. X. Hou, F. Wu, L. Yang, and Q. Chen, “Comparison of annular
wavefront interpretation with Zernike circle and annular
polynomials,” Appl. Opt. 45, 8893–8901 (2006).

6. M. Melozzi and L. Pezzati, “Interferometric testing of annular
apertures,” Proc. SPIE 1781, 241–248 (1993).

7. C.-J. Kim, “Polynomial fit of interferograms,” Appl. Opt. 21,
4521–4525 (1982).

8. V. N. Mahajan and G.-m. Dai, “Orthonormal polynomials in
wavefront analysis: analytical solution,” J. Opt. Soc. Am. A
24, 2994–3016 (2007).

9. G.-m. Dai and V. N. Mahajan, “Orthonormal polynomials in
wavefront analysis: Error analysis,” Appl. Opt. 47, 3433–
3445 (2008).

10. H. Schreiber and J. H. Bruning, “Phase shifting interferome-
try,” in Optical Shop Testing, 3rd ed., D. Malacara, ed. (Wiley,
2007), pp. 547–666.

11. V. N.Mahajan, “Zernike polynomials andwavefront fitting,” in
Optical Shop Testing, 3rd ed., D. Malacara, ed. (Wiley, 2007),
pp. 498–546.

20 November 2010 / Vol. 49, No. 33 / APPLIED OPTICS 6501


