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We investigated interference fringes due to superposition of diverging light waves reflected from the two sides of
a plane parallel plate. A non-localized fringe pattern of high contrast was obtained as a function of incident angle
when we used a coherent diverging beam. We found that the fringe density increased to a certain angle and then
decreased thereafter, against the common belief that the fringe density increases monotonically with the angle of
incidence. Because the fringe density is maximum at this angle and does not change rapidly in the vicinity, we could
employ Fourier analysis to estimate interferometric parameters, such as thickness, refractive index, and wavelength,
that determine the characteristic stationary fringe density. ©2020Optical Society of America

https://doi.org/10.1364/AO.399942

1. INTRODUCTION

Metrology using interferometers provides precise estimates of
physical quantities and constants. Since its successful demon-
stration in astronomical measurements [1], interferometry has
been developed as one of the most reliable metrological tools,
and recently, the most sophisticated interferometers have been
built to detect space distortions much smaller than the size
of a proton, proving the existence of gravitational waves [2].
Although a variety of interferometers and interference effects
have been studied and utilized for specific metrological applica-
tions, the main idea of such interferometric measurements lies
in retrieving the phase information of light [3–8].

Here, we investigated the reflected interference fringes from
transparent plane parallel plates (PPP), when illuminated with
a coherent diverging light beam. The fringes are formed by
the interference between mainly the two reflected diverging
beams: one reflected from the first (upper) surface, and the
other reflected internally from the second (bottom) surface, as
described in Fig. 1. Although there are light waves emerging
from the PPP after multiple internal reflections, they do not
contribute significantly to the interference because they are
much weaker than the first two reflected lights unless the refrac-
tive index of the PPP material is large or the angle of incidence

approaches π/2. Therefore, for most glass plates with n ∼ 1.5,
non-localized fringes are formed practically by superposition of
the two diverging waves from the image point sources, A1 and
A2, as depicted in Fig. 1.

The first image point (A1) is simply the mirror image of the
point source A by the top surface. The position of the second
image conjugate point (A2) can also be determined by the mir-
ror image of A by the bottom surface, including the refraction
effect through the medium. If one assumes that the position of
A2 does not change with the angle of incidence, the constant-
phase surfaces would be described by the hyperboloids whose
surfaces pass between the two image points A1 and A2 [9].
Moreover, if the PPP is thick enough (∼1000 wavelengths),
one would expect a dense fringe pattern as a function of angle of
incidence whose spacing decreases monotonically with increas-
ing angle of incidence, approaching the case of the double-slit
experiment.

However, we found that the fringe density increased to a cer-
tain angle, and then decreased as the angle of incidence further
increased, against the common belief that the fringes would
become denser for larger angles of incidence. This phenome-
non is related to the fact that the location of the second image
A2 changes with the angle of incidence due to refraction. The
existence of a stable angle, where the fringe density is maximum,

1559-128X/20/288568-07 Journal © 2020Optical Society of America

mailto:mcha@pnu.edu
https://doi.org/10.1364/AO.399942
https://crossmark.crossref.org/dialog/?doi=10.1364/AO.399942&amp;domain=pdf&amp;date_stamp=2020-09-24


Research Article Vol. 59, No. 28 / 1 October 2020 / Applied Optics 8569

Fig. 1. Two rays emanating from a point source (A) are reflected
from two sides of a plane parallel plate (PPP) and interferes at a point
S on the screen. The thickness and the index of refraction of the PPP
are t and n, respectively. A1 is the image of A upon reflection at the
top surface, while A2 is the reflected image by the bottom surface. In
Gaussian optics, A2 lies on the z axis and A1 A2 = 2t/n.

allows a standard Fourier analysis of the fringes around it, the
principles of which we have demonstrated with a glass plate and
an anisotropic crystal plate.

2. CALCULATION OF PHASE DIFFERENCE

Figure 1 shows a schematic diagram of our interference con-
figuration using a transparent plate. The two (top and bottom)
surfaces of the plate are assumed to be perfectly planar and
parallel to each other, treating the plate as an ideal PPP. (A more
general case of a wedged plate is discussed in Appendix B.) A
spherical wave emanating from a coherent point source A is
reflected by the two surfaces of the PPP, and then interferes
on a screen. In the diagram, we show two rays that intersect
at a specific point S on the screen. One can interpret that the
interference fringes are formed by the superposition of the two
spherical waves emanating from the two virtual point sources
(A1 and A2), which are the mirror images of the real point
source (A).

According to Gaussian optics, the second image is formed at
a distance of 2t/n from the first image along the optical axis (z
axis) due to the refraction inside the PPP with a thickness t . In
this case, the fringe density would increase monotonically with
the angle of incidence, negating the existence of a stable angle.
However, it should be noted that the paraxial approximation
cannot be used for large angles of incidence. This can be seen
when looking obliquely at an object submerged in a medium
(for example, water). In this case, the object appears closer to the
surface than it would look when it is viewed from right above.
The apparent depth of a point object can be calculated as

d ′ =
d
n
[1− (n2

− 1) tan2(θ ′)]3/2, (1)

where d is the geometrical depth from the medium surface, n is
the relative index, and θ ′ is the internal angle of incidence from
the point object. (See Appendix A for derivation.) The image is
also laterally shifted by

1x = d(n2
− 1)tan3θ ′. (2)

When θ ′ = 0 (normal incidence), we can confirm that d ′ = d/n
and1x = 0. As the viewing angle increases, however, the image
rapidly gets closer to the surface and the viewer. This phenome-
non is the fundamental cause of the existence of a stable angle. It
should be noted that Eqs. (1) and (2) were derived directly from
the law of refraction without using any other approximations.
Although adding a third-order correction term to the Gaussian
optics can predict a similar result at small angles, it shows a large
discrepancy for large angles (θ ′ ∼ 1).

By the same token, the second image for the PPP in Fig. 1
moves significantly with the angle of incidence. Therefore,
we need to calculate the optical path length difference (OPD)
between the two rays based on the laws of reflection and refrac-
tion without using any approximation. For convenience, we
take our coordinate system as shown in Fig. 1, with the first
image point A1 as the origin. The optical path length of the first
ray (blue line in Fig. 1) is

L1 = na (AC +C S)= na OS = nar , (3)

where na is the refractive index of the atmosphere and r = OS.
Meanwhile the optical path length of the second ray (solid red

line in Fig. 1) is

L2 = na (AB + DS)+ n(B F + F D)=
na (l + ls )

cos φ
+

2nt
cos φ′

=
nar cos θ

cos φ
+

2nt
cos φ′

.

(4)

Here, t and n are the thickness and the refractive index of the
PPP, respectively, l and ls are the distances from the top sur-
face of the PPP to the point source A and observation point S,
respectively. φ′ is the angle of refraction that is related to the
angle of incidenceφ by the law of refraction,

sin φ = nr sin φ′, (5)

where nr = n/na is the relative refractive index of the PPP. The
angles for the second ray can be determined by the relation

E G = E B + B D+ DG . (6)

As E G = r sin θ , E B = l tan φ, DG = ls tan φ,
B D= 2t tan φ′, and l + ls = y s = r cos θ , Eq. (6) becomes

r sin θ = r cos θ tan φ + 2t tan φ′. (7)

Therefore, the angles of incidence and refraction of the second
ray (φ and φ′) are determined as functions of incident angle
of the first ray θ by solving the coupled Eqs. (5) and (7). With
these angles, the phase difference between the two rays can be
obtained using Eqs. (3) and (4) as

8(θ)=
2π

λ
(OPD)=

2π

λ
(L2 − L1)

=
2πnar
λ

(
cos θ

cos φ
− 1+

t
r

2nr

cos φ′

)
. (8)
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3. NUMERICAL SIMULATION ON THE FRINGE
DENSITY

The stationary fringe pattern can be numerically calculated
using the phase difference in Eq. (8). Given φ and φ′ by Eqs. (5)
and (7), the phase difference can be expressed as a function of
θ , with r , t , and nr as parameters. Considering a phase delay of
π due to the reflection at the top surface (i.e., reflection from a
low-toward-high refractive index interface), destructive inter-
ference occurs at an angle satisfying 8(θ)= 2πm, where m is
an integer. Figure 2(a) shows the calculated 8(θ) for a 1 mm
thick BK7 glass plate case. Because it ranges from 20,700 to
15,500 rad throughout the entire angle of incidence, one can
expect∼100 fringes or more within a practical angular range of
beam divergence.

We also note that the graph in Fig. 2(a) has an inflection point
(i.e., characteristic stationary fringe condition), indicating that
the fringe density, defined as

f (θ)=
1

2π

∣∣∣∣d8(θ)dθ

∣∣∣∣ , (9)

has an extremum as shown in Fig. 2(b). This cannot be expected
within the Gaussian approximation giving fixed image points,
where the fringe density is expected to increase monotonically.

For r = 100 mm and nr = 1.509 at 915 nm for BK7 [10],
the stable angle was calculated to be θs = 49.6◦. θs is smaller for
a larger refractive index, but does not depend on the wavelength.
The maximum fringe density ( f s ) is almost proportional to
the wave number (∼λ−1) as can be inferred from Eq. (8), with
a small departure due to the dispersion of the PPP material.
This property can be utilized to measure the wavelength of a
light source [11]. We also note that the stable angle in Fig. 2(b)
approaches that of the Haidinger fringes as the distance to the
observation point becomes much larger than the thickness
(t) of the PPP [11]. We have confirmed this limiting behavior
for r � t using numerical simulations. Therefore, the overall
characteristics of the fringes can be conveniently predicted by
the analytical expressions for the Haidinger fringes [11]. In the
experiment, the fringe density was measured applying a fast
Fourier transform (FFT) routine on the fringe data in a certain
angular range around the calculated θs , finding the maximum
fringe density f s .

4. EXPERIMENTAL VERIFICATION

The experimental setup to verify and demonstrate the sta-
tionary fringe phenomenon was configured using a PPP and a

Fig. 2. (a) Phase difference between the two rays reflected from
1 mm thick BK7 glass plate in Fig. 1, and (b) the fringe density.
Simulation parameters : r = 100 mm, nr = 1.509, and λ= 915 nm.

light source. We used a fiber-coupled laser diode (Qphotonics,
model QFBGLD-915-5) generating a single wavelength output
at 915 nm with a linewidth of 1 MHz to produce a high-contrast
interferometric fringe pattern. The single-mode fiber had a
numerical aperture of 0.14, and the output beam from the exit
end was linearly polarized. The naturally diverging beam from
the fiber end was used as the light source in our experiment.
The fiber end was placed ∼10 mm apart from the top surface
of a 1 mm thick BK7 glass plate, acting as a point source A in
Fig. 1. We used a near-TE-polarization configuration to obtain
a significant reflectance. Except the amount of reflection, the
polarization had little effect on the fringe contrast, stable angle,
and fringe density.

The PPP was oriented approximately to an incident angle of
θs = 49.6◦ relative to the axis of the diverging beam. Then, a lin-
ear CCD array (Alphalas, CCD-S3600-D) was placed 90 mm
away from the plate to measure the interference fringes, aligning
the CCD plane perpendicular to the reflected beam axis. The
geometrical distance of the ray from the end of the fiber to the
center of the CCD array via reflection from the top surface of
the plate was ∼100 mm. The CCD had a total of 3,600 pixels
that could record the fringes in an angular range of about 16◦.

Figure 3 shows a set of recorded CCD data for the inter-
ference fringes. The fringe contrast is close to 1, owing to the
high coherence of the diode laser used in the experiment and
negligible contributions from the multiple internal reflections.
By analyzing the fringes with a FFT routine, a spectrum with a
sharp peak was obtained, as shown in Fig. 4(a), which enabled
us to read the fringe density at the corresponding pixel. To
be specific, the fringe data in Fig. 3 were supplemented with
sufficient zero-padding and multiplied by a Gaussian window
with a width of 200 pixels before the FFT treatment. The fringe
density in Fig. 4(b) was obtained by recording the location of
the peak in the FFT spectrum while scanning the Gaussian
window to obtain local fringe densities [11]. We used the FFT
routine in MATLAB, installed on a personal computer. It shows
a maximum around pixel number of 2,500 corresponding to
∼50◦, which roughly agrees with our numerical prediction in
Fig. 2. Employment of the FFT was possible because the fringe
density around the stable angle did not vary rapidly with angle.

In the preceding analysis, we assumed an ideal PPP where
the two surfaces are perfectly parallel. However, commercially
available glass plates and crystal wafers may have wedge angles
of∼0.1 mrad. The BK7 glass plate used in our experiment had
a smaller wedge angle because we did not observe Fizeau fringes
on the surface of the plate (25 mm in diameter) upon viewing
the reflection of a monochromatic lamp. We recalculated the
phase difference 8(θ) for a plate with a wedge angle of α fol-
lowing the procedure described in Appendix B, numerically
verifying that the stable angle and fringe density changed by
only 1.8 µrad and 1.6 ppm, respectively, for a BK7 plate with
α = 0.1 mrad when β ≡ l/(l + ls )= 0.1. It is a great advantage
of this method that the analysis results are not very sensitive to
the wedge angle of the plate.

The preceding Fourier analysis can be applied to the measure-
ment of the wavelength of a light source or the refractive index
of a semi-transparent material of which the PPP is made. When
the thickness and refractive index of the PPP are known, the
wavelength of the light source can be related to the maximum
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Fig. 3. (a) Raw fringe data from linear CCD array for 1 mm thick BK7 glass plate illuminated by 915 nm laser. (b) Expanded view of (a) between
pixels 1800 and 2100. The center (∼pixel 1900) corresponds to an incident angle of 48◦.

Fig. 4. (a) FFT spectrum of the fringe data in Fig. 3(a) near the stable angle. (b) Fringe density [peak in (a)] versus center location of the Gaussian
window.

fringe density, enabling the wavelength measurement. This
analytical model can be configured in various optical layouts and
applied to measure interferometric parameters. We expect an
uncertainty level of∼5× 10−5 for the measurements as in [11],
because their fringe characteristics and the analysis procedure
are very similar to those of the current work.

5. STATIONARY FRINGES FOR A
BIREFRINGENT CRYSTAL

When the wavelength of the light source is known, the refractive
index can be estimated using the same method. As a demon-
stration, we measured the interference pattern reflected from
a 1 mm thick x -cut congruent LiNbO3 crystal (LN) plate.
Congruent LN has a large birefringence; the refractive index is
2.243 for ordinary polarization, while it is 2.165 for extraor-
dinary polarization for λ= 915 nm at 22◦C [12]. The stable
angles were calculated as 46.6◦ and 46.7◦ for the ordinary and
extraordinary waves, respectively, where the maximum fringe
densities were estimated to be 513.6/rad and 534.3/rad, respec-
tively. The optic axis of the LN plate, parallel to the surfaces, was
aligned parallel to the x axis defined in Fig. 1. Then, the 915 nm
laser was linearly polarized at 45◦ with respect to the crystalline
optic axis, and the angle of incidence was set to 47◦.

The interference pattern reflected from the LN plate had
smaller fringe density than that for the BK7 glass plate with

a similar thickness, and exhibited a modulating envelope as
shown in Fig. 5(a). This low-frequency modulation can be
attributed to the beating of two fringes with different fringe
densities caused by the different ordinary and extraordinary
refractive indices. This is supported by the FFT spectrum in
Fig. 5(b) showing two distinct peaks. We followed the same
FFT procedure as in the fringe analysis of the BK7 PPP. Because
the fringe density is sensitive to the refractive index, the index
values can be easily estimated by reading the peaks of the FFT
spectrum of the fringes. If we compare the maximum fringe
density in Fig. 4 for BK7 with those in 5(b) for LN, the latter are
significantly smaller than the former, because the indices of LN
are much larger than that of BK7.

Here, we estimated the indices of LN based on the known
index of BK7 (1.509 at 915 nm [10]) as follows: From Figs. 4(a)
or 4(b), one can read the maximum fringe density as 510/pixel
for the BK7 PPP, while it is estimated to be 828/rad in Fig. 2(b)
using Eqs. (8) and (9), resulting in a calibration relation between
the number of pixels and angular range in the stable region:
1 pixel= 6.158× 10−5 rad. For the LN plate, the maximum
fringe densities of 0.0316 and 0.0329/pixel are obtained from
the two peaks in Fig. 5(b), which can be converted to 513 and
534/rad, respectively, using the calibration relation. From
Eqs. (8) and (9), we found that these maximum fringe densities
can be produced when the index values are 2.25 and 2.17,
respectively, which agree with the ordinary and extraordinary
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Fig. 5. (a) Stationary fringes from 1 mm thick birefringent LN plate, and (b) corresponding FFT spectrum (Gaussian window centered at pixel
1663). TE component was ordinary, while TM component was extraordinary.

indices obtained by the established Sellmeier equations for con-
gruent LN [12]. If a more careful calibration is provided using a
few more index references, we expect a much higher accuracy in
the index measurements.

We acknowledge that the polarization-dependent analy-
sis was not considered in the analysis of the fringes from the
LN PPP. A rigorous analysis would require a full polarization
analysis and non-sequential ray tracing as a function of incident
angle using the configuration-specific birefringence of the crys-
tal plate. A polarization-dependent stationary fringe analysis
remains a good topic for future investigation.

Finally, we tested the possibility of a laser with poor coherence
being used in the interference experiment. When the same
experiment was repeated on the BK7 plate using a laser diode
(wavelength of 635 nm) with a large linewidth (∼0.5 nm), the
fringe contrast was about 0.5, which was worse than the that
of the fringes in Fig. 3. Such a poorer fringe contrast can be
explained by the fact that the OPD between the two interfering
lights was larger than the coherence length of ∼0.8 mm, cor-
responding to a linewidth of 0.5 nm. When this laser was used
for the LN plate, the fringe contrast of the reflected fringes was
even worse, which can be attributed partly to the larger refractive
index of LN (∼2.2) than that of BK7 (∼1.5). In the case of the
LN plate, the light rays emerging after experiencing more than
one internal reflection would have larger contributions to the
interference than in the BK7 case because of the larger Fresnel
reflections. In general, they make contributions that are out
of phase with the fringes formed by the two major interfering
rays, deteriorating the fringe contrast further. For a 1 mm thick
BK7 plate, however, a light source with a medium coherence can
also be used in the interferometry because the reflected fringes
showed a reasonable contrast. A thicker PPP would produce
fringes with larger density, facilitating the FFT analysis, but a
light source with a higher coherence is required.

6. CONCLUSION

We investigated the nontrivial stationary interference fringes
of diverging light waves reflected from the two sides of a
PPP. Nonlocalized fringes with high contrast were obtained
as a function of incident angle. The fringe density increased to a
maximum and then decreased thereafter, against the common

belief that the fringes would become denser for larger angles of
incidence. This characteristic phenomenon allowed us to utilize
a FFT routine for a simple but precise fringe analysis within
the stable fringe density range. We expect that our method can
be applied to a simple and robust apparatus for measuring the
thickness of a PPP, source wavelength, or refractive index of the
PPP material (isotropic or anisotropic).

APPENDIX A: IMAGE LOCATION OF AN OBJECT
SUBMERGED IN OPTICALLY DENSE MEDIUM

Let us consider a point source A submerged in a medium with a
higher index nw, as shown in Fig. 6. We determine the coordi-
nates of the image point A′ using the law of refraction, without
employing a paraxial approximation. Consider two rays AP
and AQ that make angles of incidence of θ and θ + δ, respec-
tively, in the medium, with δ� 1. Then, the image point A′

is the intersection of the two lines P P ′ and QQ′, which are
the refracted rays in the atmosphere (or a medium with lower
index, na ).

The equations of the two lines can be determined by applying
the law of refraction at the impact points P and Q at the inter-
face, respectively. At P ,

sin θ ′ = n sinθ, (A1)

Fig. 6. Schematic diagram showing two rays emanating from a
point source A, making oblique incidences at medium-atmosphere
interface.
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where n = nw/na is the relative refractive index, which is con-
sidered to be larger than 1. With the coordinates of the point
P (0, d tan θ), the equation of the line P P ′ is determined as

y = f (θ)(x − d tan θ), (A2)

where the slope f (θ) can be obtained from Eq. (A1) as

f (θ)= tan
(π

2
− θ ′

)
=

cos θ ′

sin θ ′

=

√
1− n2sin2θ

n sin θ
=

√
1

(n sin θ)2
− 1. (A3)

For the line QQ′, the equation is obtained similarly as

y = f (θ + δ)[x − d tan(θ + δ)]. (A4)

Eliminating x from Eqs. (A2) and (A4), we obtain

y
f (θ)
−

y
f (θ + δ)

= d [tan θ − tan(θ + δ)], (A5)

from which the y -coordinate of the intersection results as

y =−d
f (θ) f (θ + δ)

f (θ + δ)− f (θ)
[tan(θ + δ)− tan θ ]. (A6)

For δ� 1, one can approximate f (θ) f (θ + δ)≈ [ f (θ)]2.
Furthermore, by expanding f (θ + δ) and tan(θ + δ) in the
Taylor series around θ , keeping the linear terms in d only, Eq. (1)
is verified as

y = d [ f (θ)]2
sec2θ

d f
dθ

=−n3d
(

1

n2sin2θ
− 1

) 3
2

tan3θ

=−
d
n
[1− (n2

− 1)tan2θ ]3/2 . (A7)

The limiting case of θ→ 0 clearly results in y→−d/n,
which is the apparent depth predicted by the Gaussian optics.
However, when the angle of incidence increases, the apparent
depth is reduced, approaching the interface until the critical
angle (θc = sin−1n−1) is reached.

The x -coordinate of the intersection can also be determined
by inserting Eq. (A7) into Eq. (A2), verifying Eq. (2):

x = d(n2
− 1)tan3θ (0< θ < θc ). (A8)

This explains the fact that the image gets closer to the viewer as
the angle of incidence increases up to the critical angle θc . One
can easily see from Eqs. (A7) and (A8) that the shift of the image
point from the paraxial case is more significant for a material
with a larger refractive index.

APPENDIX B: FRINGES FROM A WEDGED
PLATE

Here, we consider the effects of a wedge angle between the two
interface planes of a PPP. A tilt angle of α is assumed for the
bottom plane of the PPP, as depicted in Fig. 7. This is a gener-
alization of the geometry in Fig. 1, where perfect parallelism is

Fig. 7. This diagram is a slight modification of Fig. 1: Tilt angle α is
assumed for the bottom plane.

assumed. We recalculated the OPD in Eq. (8) based on this new
geometry.

While the optical path length of the first ray does not change
[Eq. (3)], that of the second ray is altered due to the tilt of the
bottom plane. In the figure, φ1 is the angle of incidence at the
top plane, and φ2 is the angle of refraction related to φ1 by
the law of refraction:

sin φ1 = nr sin φ2. (B1)

We note that ∠DF C ′ =∠B F C ′ + 2α = φ2 + 2α because
C ′F is normal to the top plane. The emerging angle φ3 is
determined by the law of refraction applied at point D,

sin φ3 = nr sin(φ2 + 2α). (B2)

The angles for the second ray can be determined by the
relation,

E G = E B + BC ′ +C ′D+ DG . (B3)

As E G = r sin θ , E B = l tan φ1, DG = ls tan φ3,
BC ′ = t tan φ2, C ′D= t tan(φ2 + 2α), and l + ls = r cos θ ,
Eq. (B3) can be written as

r sin θ = l tan φ1 + ls tan φ3 + t[tan φ2 + tan(φ2 + 2α)].
(B4)

If we define the ratio l/(l + ls )≡ β, Eq. (B4) becomes

sin θ = β cos θ tan φ1 + (1− β) cos θ tan φ3

+
t
r
[tan φ2 + tan(φ2 + 2α)]. (B5)

With the given parameters α, β, and t/r , Eqs. (B1), (B2),
and (B4) can be solved to obtain the angles φ1, φ2, and φ3 as
functions of θ .

Then, the optical path length of the second ray can be
calculated as

L2 = na (AB + DS)+ n(B F + F D)

= na

(
l

cos φ1
+

ls

cos φ3

)
+ nt

(
1

cos φ2
+

1

cos(φ2 + 2α)

)
,

(B6)

and the phase difference is finally obtained:
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8(θ)=
2πnar
λ

[
cos θ

(
β

cos φ1
+

1− β

cos φ3

)

− 1+
nr t
r

(
1

cos φ2
+

1

cos(φ2 + 2α)

)]
. (B7)

When β = 0, φ1 = φ3 by Eqs. (B1) and (B2). In this case, one
can easily verify that this result is identical to Eq. (8), which is
the phase difference for an ideal PPP.
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