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Abstract: The use of the discrete Fourier transform has decreased since the introduction of 
the fast Fourier transform (fFT), which is a numerically efficient computing process. This 
paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms 
that iteratively apply the discrete Fourier transform within a local and optimal frequency 
domain. The new technique achieves 210 times higher frequency resolution than the fFT 
within a comparable computation time. The method’s superb computing efficiency, high 
resolution, spectrum zoom-in capability, and overall performance are evaluated and compared 
to other advanced high-resolution Fourier transform techniques, such as the fFT combined 
with several fitting methods. The effectiveness of the ilFT is demonstrated through the data 
analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental 
setup using grating in a diverging beam produced by a coherent point source. 
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1. Introduction 

The Talbot self-image analysis [1–4] and Moiré pattern processing [5,6] are examples of data 
analysis methods that require the precise calculation of spatial frequency and the 
corresponding period. While some different types of frequency data processing options such 
as autocorrelation are available, the Fourier transform provides the most general and direct 
conversion between spatial (or temporal) domain and frequency domain. In practice, the fast 
Fourier transform (fFT) has been often used for these calculations because of its high 
computation efficiency. The fFT algorithm was developed to reduce both the time and cost of 
Fourier-transform numerical calculations used for the analysis of various periodic phenomena 
[7–11] and it was included in the “Top 10 Algorithms of the 20th Century” by IEEE (Institute 
of Electrical and Electronics Engineers), Computing in Science and Engineering [12]. The 
algorithm has been so popular that the limit of the frequency interval (i.e., resolution) imposed 
by the fFT method is often overlooked. The frequency interval [7,13,14], which is expressed 
as 1/(NΔ), where N is the number of sampled data and Δ is the sampled interval, provides the 
spectrum of phenomena in the frequency interval multiplied by an integer. 

As an example, in the Talbot self-image analysis, the amount of data, the sampled interval, 
and the frequency interval are all determined by the measured images. To extract the 
dominant frequency information from the Talbot intensity modulation images, the fFT 
spectrum is often analyzed with a mathematical fitting method, such as the application of the 
center-of-mass algorithm to a grid of the frequency spectrum around the spectral peak and the 
fitting of the spectral peak with a parabolic or other mathematical model to precisely locate 
the spectral peak [15,16,20]. These fitting approaches have been successfully verified by 
various studies [16,17]. For some applications, these methods have been applied to distinguish 
a real peak signal in low signal-to-noise ratio (SNR) data [18]. Another interesting approach is 
the use of an interpolated input signal to enhance the precision of frequency analysis for data 
with few-kilohertz pulse repetition [19]. 

However, the output of those methods, depends strongly on the fitting conditions, such as 
the size of the grid, the location of the spectral peak in the fitting region, the background 
spectrum of the grid, and/or the number of fitting parameters. Thus, the application of a 
physically meaningful or well-established fitting model is critical for achieving a reliable 
result. As an extreme example, if a signal expected to exhibit a double-peak feature is fitted 
using a normal Gaussian model, the final outcome will be misleading. 

Another common solution, known as the zero-padding approach, increases the array size 
of the original input image and the larger number of elements in the array improves the 
precision of the frequency analysis by providing a narrower frequency interval [7,13,14]. 
Unfortunately, the larger array size exponentially increases the calculation time. For instance, 
with the PC used in this work, the fFT time increased from 0.21 s to 1, 6, and 44 s for 
precisions of 1/2, 1/22, and 1/23 of the original frequency interval (without zero padding), 
respectively. The rapidly increasing memory requirement for processing such a large number 
of elements is another critical factor that must be considered. 

The fFT originated from the discrete Fourier transform; the two processes are often used 
interchangeably [21] for the study of frequency coordinates. However, the inherent frequency 
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interval limit of the fFT can be overcome using the discrete Fourier transform. Unfortunately, 
the discrete Fourier transform requires considerably longer computation time and processing 
resources. 

Here, an iterative local Fourier transform (ilFT) method combining the fFT and the 
discrete Fourier transform along with a set of algorithms is presented. This iterative approach 
provides an attractive and practical solution to achieve both high computation efficiency and a 
good frequency resolution, as precise as 210 times higher than the fFT. Section 2 introduces 
the concept and processing algorithms of the ilFT by applying an iterative approach within a 
local frequency domain. The high efficiency, superb resolution, and overall performance of 
the method are systematically evaluated and compared with other high-resolution Fourier 
transform techniques in Section 3. Section 4 presents a demonstration of the ilFT for a Talbot 
self-image experiment that requires high-precision peak frequency determination. Section 5 
summarizes the features of the new technique and its significance. 

2. Algorithms for the ilFT 

The discrete Fourier transform for two-dimensional sampled data g(xi,yj) that are a function of 
the spatial coordinate (x, y)can be expressed as [7,13,14]: 

 2 ( )2

, 1
( , ) ( , ) ,x i y j

N
j f x f y

x y i j
i j

G f f g x y e π− +

=

= ∆ ∑  (1) 

where (fx, fy) is the frequency coordinate used to calculate the spectrum and Δ is the sampled 
interval (same in x and y direction). The spatial coordinates are expressed as the sampled 
interval multiplied by integers as follows: 

 and .i jx i y j= ∆ = ∆     (2) 
In contrast to the fFT, which calculates the entire frequency spectral range at once, the 

discrete Fourier transform can only evaluate a set of arbitrarily or (if available) optimally 
selected frequency coordinates with a high resolution. The capability of the ilFT to achieve 
not only highly precise but also fast spectrum analysis is mainly based on strategically 
implementing this advantage. 

Prior to a detailed discussion about each algorithm, it is important to acknowledge that the 
ilFT method does not extract super-resolution information, which is not originally contained 
in the raw data. In other words, the ilFT does not create or guess new information. Instead, it 
enables a powerful spectrum zoom-in feature to navigate existing and highly diverse 
information by using an efficient numerical process. The enhanced performance of the 
method mainly originates from its smart approach to avoiding practical limits, such as 
physical time, memory capacity, and other computing resources. 

2.1 Searching for a dominant spectral peak 

Figure 1 shows a schematic flow chart of the iterative process applied to determine a precise 
spatial frequency and period (e.g., Talbot self-image). This process uses an fFT computation 
to determine an initial spectral peak coordinate. Then, N × M grid frequency coordinates 
around the spectral peak are formed with the coordinates sampled at 1/2 of the initial fFT 
frequency interval. A 5 × 5 grid of frequency coordinates was used as an example case in 
Section 2. For each frequency coordinate location, Eq. (1) is utilized to calculate the 
frequency spectral value and a new spectral peak (with double precision) is searched among 
the N × M spectral values. During the iterative process, the next N × M grid frequency 
coordinates around the new peak are continually re-formed at 1/2 of the previous frequency 
interval. At every repetition, the frequency resolution is improved by factor of 2. For instance, 
ten iterations enhance the frequency precision by a factor of 210 compared to the initial 
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resolution. Although a frequency peak has been considered as the search target in this 
discussion, the target can be defined as any other spectral feature of interest. 

 

Fig. 1. Schematic flow chart showing the iterative spectrum zoom-in algorithm implemented in 
the ilFT method. 

2.2 Three algorithms for high computing efficiency 

Although the 250 ( = 25 coordinates × 10 iterations) computations required for the 5 × 5 grid 
case of Section 2.1 are significantly less than the original 10242 spectral value calculations in 
the two-dimensional frequency coordinates, the 250 spectral values still require a long 
computation time owing to the heavy numerical load of the ilFT. As an example, each ilFT 
calculation for a frequency coordinate lasted approximately 0.18 s using a PC (CPU: i7-
4550U with 1.50 GHz), whereas the fFT required approximately 0.21 s for the entire 
spectrum. (Note that these performance rates may depend on the specific computing 
environment, programming language, and other factors.) Considering the 250 (or more, as 
necessary) computations, it is essential to apply more efficient algorithms to reduce the 
calculation time while maintaining the high precision of the ilFT. Three algorithms were 
combined to improve the overall computing efficiency. 

The first algorithm regularizes the number of elements used to calculate the spectrum 
during the ilFT iterations. For instance, in the results discussed in Section 4, the original 
image was zero padded to create a 2048 × 2048 image that fulfills the condition of the image 
array size being equal to a power of 2, and approximately two thirds of the elements were 
zero. A sufficient (within an affordable calculation time for a given computing environment 
and tasks) zero padding in a regularized size produces a fast initial fFT result and, more 
importantly, a good initial estimation that guides the following ilFT iterations. However, the 
zero padding increases the integration domain of the ilFT. The integration range of the ilFT is 
limited only within the non-zero data area so that the ilFT calculations are not affected by the 
large regularized image size. For instance, this treatment reduced the computation time by 
approximately one third ( = 3/8) for the data processing discussed in Section 4. 

The second algorithm recycles the previously calculated spectral values in the subsequent 
iteration steps by defining partly overlapping subsequent grid points. For instance, among the 
25 coordinates of a 5 × 5 grid considered in each repetition, the spectra of the nine coordinates 
are identical to the previous values because the nine grid points overlap with the previous 
locations, as depicted in Fig. 2. Instead of calculating for 25 new spectral values, this 
controlled zoom-in approach (enforcing identical locations) allows previous values to be 
recycled. On the other hand, if the 25 new locations are slightly differ from the previous 
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coordinates, no recycling is possible. For the 5 × 5 grid case, the computing time is reduced 
by approximately one third ( = 9/25) with this approach. (Please, note that the second 
algorithm does not interpolate any values during the process. Instead, it calculates the exact 
new spectral values for the non-overlapping grid locations in the zoom-in area.) 

 
Fig. 2. Conceptual diagram depicting spectral value recycling during ilFT iterations. 

The third algorithm adapts the next zoom-in coordinates with the assumption that the 
spectrum over the current grid area forms a pure convex shape. In other words, only a single 
spectral peak exists in the current searching range. When the ilFT evaluates a spectral value 
for a subsequent grid location, it examines the gradient of the newly evaluated spectral value 
and adapts the next evaluation grid point in situ. If the gradient is positive (i.e., indicating the 
approach to the peak), the opposite direction in the spectral domain is not investigated 
because it has a negative gradient. For a negative gradient case, the opposite direction in the 
spectral domain is examined. With this assumption, the number of necessary calculations to 
locate the peak can be further reduced. As the ilFT calculation time decreases almost 
proportionally to the number of evaluated spectral points, the total data processing time can be 
reduced by the third algorithm. The additional in situ searching process costs some computing 
resources but the gain from fewer ilFT calculations (with a 50% probability) is much more 
significant. The third algorithm can be disabled if too much noise exists near the peak or if the 
ilFT is utilized for a general spectrum zoom-in analysis, which is beyond single-peak 
detection and investigates fine details within a certain spectral range of interest (e.g., double-
peak analysis, discussed in Section 3.3). 

With the three algorithms, the overall data processing performance of the ilFT becomes 
highly efficient. For instance, the total time required for a spectral peak determination (for a 
1280 × 1024 pixels original image size) using ten ilFT iterations and the PC mentioned earlier 
in this section was measured to be ~1.8 s. Although 1.8 s is longer than the 0.21 s needed for 
the fFT calculation, the final precision of the ilFT analysis was ~0.000092 ( = 1/(2048 × 
0.0052)/210) mm−1 compared to the frequency resolution of the fFT, which was ~0.094 ( = 
1/(2048 × 0.0052)) mm−1. 

3. Numerical performance analysis 
The performance of the ilFT was evaluated and demonstrated using a series of numerical 
case-study simulations. In each case study, an ideal and mathematically defined input data set 
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was prepared, sampled, and processed using different Fourier transform methods in a 
common computing environment including computer, operating system, and programming 
language (i.e., MATLAB). Since the synthetic input data set represents the ideal signal, an 
algorithm’s absolute performance can be objectively evaluated for various input data cases. 
Two widely used Fourier analysis methods were compared with the ilFT: a) a fFT with zero 
padding to control the final resolution [7,13,14] and b) an interpolated/fitting fFT method 
[14–17,20]. Various fields have successfully adopted these two approaches to analyze high-
precision spectral data. 

The total computing time was considered as the main performance figure of merit, as an 
indicator of the numerical efficiency of the method. A synthetic input wave was 
independently processed with the zero-padding fFT, the fitting fFT, and the ilFT to examine 
the reliability of the output frequency against the ideal input value, as shown in Fig. 3. For a 
visual demonstration and for simplicity, these case-study simulations were performed and are 
presented for N × 1 cases (i.e., vector cases), while a two-dimensional case using 
experimental data is presented in Section 4. 

 
Fig. 3. Numerical case-study simulations comparing different Fourier analysis methods. 

3.1 Case I: Computing efficiency comparison 

The computing efficiency of the zero-padding fFT and the ilFT were evaluated and compared 
by measuring the computing time as a function of the final frequency resolution. The plot of 
the computing time as a function of resolution (Fig. 4) highlights the radically different trends 
of the two approaches. 

The synthetic input sinusoidal signal was sufficiently sampled and fed to both a zero-
padding fFT and an ilFT analyzer so that the output precision was not limited by the input 
signal sampling, but by each method’s internal processing limits. The final frequency 
precision was defined as the resolution of the output spectrum map for this synthetic noise-
free simulation study. 

As shown in Fig. 4, the zero-padding fFT approach shows an exponentially increasing 
computing time as the necessary zero-padding area increases quickly to produce higher-
resolution output. However, the ilFT exhibits an almost constant efficiency in the log-log plot 
as it continuously zooms into the spectral region of interest. For a relatively low target 
resolution (Zone-A in Fig. 4), the zero-padding fFT shows higher efficiency as the ilFT 
calculation in the iterative process requires more numerical computations. However, beyond a 
certain resolution point (Zone-B in Fig. 4), the ilFT provides higher efficiency. The resolution 
intersection point changes for a given computing environment but such a breakpoint should 
exist for every condition. The absolute slope of the efficiency plot may change for different 
hardware (e.g., faster CPU) but the relative trends remain the same. 

                                                                                     Vol. 24, No. 19 | 19 Sep 2016 | OPTICS EXPRESS 22115 



 

Fig. 4. Log-log plot comparing the computing efficiency between zero-padding fFT and ilFT. 

The fitting fFT method was not included in this case study as such a fitting and 
interpolation approach can report any arbitrary resolution. However, with a suitable choice of 
fitting model, the fitting fFT may produce a meaningful high-precision result comparable to 
that of the ilFT. This topic is discussed in more detail in Section 3.3. 

3.2 Case II: Precision comparison with a computing time constraint 

The computing time and frequency resolution are often the most common trade-offs in 
spectrum analysis. For instance, a larger zero padding for fFT produces higher-precision 
frequency spectrum data at the expense of computing time and memory. The precision of the 
three different Fourier transform methods under the same time restriction (< ~0.1 s) are 
compared in Fig. 5. (This case study was evaluated in Zone-B (Fig. 4) to provide a practical 
indication about the performance of the ilFT with a reasonable time limit and using modern 
computing resources.) 

Below the ~0.1 s processing time limit, the fFT could not afford sufficient zero-padding 
area to extract the fine frequency information of the varying input signal. The ± 2σ deviation 
from the ideal input signal was ± 5.08 × 10−6 mm−1. In contrast, both the fitting fFT and the 
ilFT sufficiently extracted the exact frequency values of the input signal with ± 2σ of ± 1.84 × 
10−7 mm−1 (for ilFT) and ± 1.82 × 10−7 mm−1 (for fitting fFT). The superb precision 
performance (within a local spectral range of interest) of the ilFT and fitting fFT is thus 
demonstrated. 

 

Fig. 5. Input frequency vs. evaluated frequency plot (with < ~0.1 s processing time limit). The 
zero-padding fFT failed to trace the varying input frequency but the fitting fFT and the ilFT 
showed a good correlation between the input and evaluated values. 
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3.3. Case III: Zoom-in analysis for an unknown spectrum 

Various fitting fFT methods have been successfully used as a high-precision analysis tool 
when a relevant fitting model is available. For instance, in Case I and Case II, a well-defined 
single-frequency output was expected and the fitting fFT method can provide a high-precision 
result. However, if the expected spectrum is unknown or no appropriate model exists, a pure 
zoom-in capability without the limitation of a pre-set model is highly desired. 

A synthetic input signal containing two closely spaced frequency peaks was prepared and 
processed using the ilFT and fitting fFT with two basic polynomials (4th and 8th order). The 
performance comparison of the final spectrum outputs is presented in Fig. 6. 

 

Fig. 6. Zero-padding fFT result showing the overall spectrum of the input data (a) and the 
zoom-in (red-box) spectrum comparing the ilFT and fitting fFT near the region of interest (b). 

As shown in Fig. 6, the fitting fFT method using the 4th-order polynomial (red circles) 
cannot distinguish the double-peak input signal. Even when using the 8th-order polynomial 
(blue triangles), the fitted double-peak profile deviates from the ideal input signal (green solid 
line). The performance of the fitting fFT method can be improved if a more appropriate fitting 
model is applied. In contrast, the ilFT produced a high-fidelity result tracing the input signal 
with high resolution without any prior knowledge of the spectrum. Thus, the ilFT can be 
applied not only to a well-defined single frequency data case, but also to any complex 
frequency data cases such as aberrated fringes/images and multi-frequency signals. This 
demonstrates the powerful zoom-in capability of the ilFT to investigate a specific spectral 
region of interest. 

4. Talbot self-image data analysis using the ilFT 

The ilFT method was applied to process Talbot self-image experimental data, which require a 
precise spatial frequency analysis of the acquired fringe data [1–5]. Figures 7(a) and 7(b) 
show the experimental setup and a schematic diagram of the Talbot self-image configuration, 
respectively. A standard He-Ne laser (λ = 0.6328 μm) with a 5-μm-diameter pinhole was used 
to create a diverging point source. A translation stage was mounted with a 0.05-mm-period 
grating (Edmund optics #58-777) and a CMOS (Complementary metal–oxide–semiconductor) 
detector (Mightex MCN) at a distance of approximately 116 mm from the pinhole. A 
micrometer with 0.01 mm resolution was attached to the translation stage. 

The CMOS detector was located near the Talbot distance from the grating and the self-
image of the grating was measured as a function of the distance between the pinhole and the 
grating/detector module. Each image acquired by the detector was stored in 8-bit depth (256 
gray scale levels) at 1024 × 1280 resolution. The detector pixel size was 5.2 × 5.2 μm. The 
gain and exposure time for the camera were adjusted so that the overall intensity of the image 
was below the saturation level. Each image was averaged after the acquisition of ten frames. 
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Figure 7(c) displays a 512 × 512 section from the central area of a measured Talbot self-
image. 

The laser beam without the pinhole was used to align the detector and the grating. The 
microscope objective and pinhole were also aligned to generate a diverging beam with a 
uniform intensity over the detector area. The setup had no other optical elements (e.g., lens) 
that could cause optical wavefront aberrations. The low-spatial-frequency fringe pattern (on 
top of the regular vertical stripes) shown in Fig. 7(c) was attributed to the interference of 
multiple beams reflected from both sides of the grating glass substrate and from both sides of 
the protective cover glass in front of the detector. The off-axis concentric patterns indicate 
some residual misalignments. 

 
Fig. 7. (a) Talbot self-image experiment setup, (b) schematic layout (PH: pinhole, Sz: 
translation length), and (c) measured Talbot self-image. 

Figure 7(c) shows ~50 vertical stripes corresponding to a spatial frequency of ~19 ( = 
1/(512 × 0.0052/50)) mm−1. Figure 8(a) presents the partial section of the frequency spectrum 
map processed by the fFT and a high-resolution zoom-in spectrum obtained by the ilFT is 
shown in Fig. 8(b). As shown in Fig. 8(b), the local frequency map provides a very fine 
resolution after ten ilFT iterations. For instance, with the standard MATLAB fFT, the spectral 
peak was detected at (18.87, 0) mm−1, which corresponds to a spatial period of 0.053 mm. In 
contrast, the ilFT method located the peak at (18.8732, 0.0059) mm−1, which corresponds to a 
period of 0.05299 mm. This high resolution also resolved the slight 0.02° rotation of the 
vertical stripes with respect to the vertical line of the detector. 

 
Fig. 8. Partial section of the frequency spectrum calculated by (a) the standard MATLAB fFT 
and (b) by ilFT for the Talbot self-image shown in Fig. 7(c). fx and fy represents the spatial 
frequency in x and y axis, respectively. 

To confirm the reliability of the ilFT analysis, a set of Talbot self-images was measured 
and compared with the expected theoretical values. After a set of initial measurements, the 
pinhole-to-grating distance was varied up to 10 mm with an interval of 0.25 mm using the 
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micrometer attached to the mechanical stage. The grating-to-detector distance and the gain 
and exposure time of the camera remained fixed during the measurements. Each image was 
analyzed through the fFT and ilFT data processing pipelines. 

Figure 9 shows the magnified (including demagnification) periods, p’, of the self-images 
processed by the ilFT and fFT as a function of translation length, Sz (shown in Fig. 7). The p’ 
value for the Talbot self-image is theoretically expressed [22] as: 

 ' 1 ,dp p
z

 = − 
 

 (3) 

where p is the grating period, d is the grating-to-detector distance, and z is the pinhole-to-
grating distance. The distance z changed with the change of the micrometer as follows: 

 0 ,zz z S= +  (4) 

where z0 is the unknown initial value for z (Sz = 0) and Sz denotes the micrometer reading. 
In practice, exact z0 and d measurements are often limited by the internal/external 

structures of the pinhole and detector. In addition, the magnified period depends nonlinearly 
on the variables, z0, d, and p. Therefore, instead of fitting the variables to a specified period 
(which, strictly speaking, contains some unknown uncertainties), the most-likely values were 
searched using the least sum of the squared differences between the measured and computed 
periods, which were calculated for each combination of variables (z0, d, and p) over a set of 
ranges. The final (best) parameter values were z0 = 116.56 mm, d = 8.1820 mm, and p = 
500.00 μm. The black solid line in Fig. 9 represents the theoretical p’ value obtained using 
these parameters and Eq. (3). 

 
Fig. 9. Magnified period p’ of the measured Talbot self-images as a function of pinhole-to-
grating distance, denoted by the micrometer reading Sz. The red squares represent the fFT 
result and the black squares the ilFT result. The black solid line corresponds to the expected 
theoretical model. 

The black square symbols in Fig. 9 show that the ilFT results have an excellent agreement 
with the expected theoretical values (black solid line) as a function of Sz. The decreasing p’ 
trend exhibited by both the experimental data and the corresponding theoretical prediction 
suggests that the ilFT can be utilized to determine a frequency or the corresponding period as 
precisely as anticipated. In contrast, the results of the fFT analysis (red squares in Fig. 9) 
suffer from insufficient precision in detecting the small variations of p’. In other words, the 
fFT-processed p’ values did not change in the 41 images. 

The frequency resolution of the fFT, 0.094 mm−1, can be considered as the frequency 
uncertainty, Δf. The corresponding uncertainty for the period measurement, Δp’, can be 
expressed as: 
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Therefore, Δp’≈0.00026 mm when p’ is equal to the average value of 0.053 mm. To 
demonstrate the relative resolution advantage of the ilFT, a 10-mm Sz range was selected after 
a number of trials to limit the expected variation of the magnified period to below Δp’/2. 
Figure 9 shows that the total variation was approximately ± 0.00011 mm. Therefore, the 
period values in the examined range varied so little that they could not be resolved by the fFT. 
(This does not represent a fundamental limit of the fFT method. With sufficient computing 
resources allowing sufficient zero padding, fFT could also produce similar results, as 
discussed in Section 3.) This experimental result successfully demonstrates the attractive 
advantages of the ilFT, which allows simultaneously efficient and precise spectrum analysis. 

5. Concluding remarks 

The ilFT method, which implements a set of new algorithms combined with the optimal use 
of the discrete Fourier transform, has been developed for a precise frequency peak 
determination and/or zoom-in spectrum investigation. Based on systematic case-study 
simulations presented in Section 3 and the Talbot self-image analysis detailed in Section 4, 
the high computing efficiency and superb precision of the ilFT have been successfully 
demonstrated and confirmed. For instance, an improvement by a factor of 210 compared to the 
frequency resolution of standard fFT was achieved in a few seconds of processing time. A set 
of measurements of the magnified period of Talbot self-images was analyzed using the ilFT 
method and a good agreement between the experimental data and the theoretical model was 
confirmed. The ilFT method can be applied to various types of spectral analysis (e.g., 
interferogram conditioning and phase retrieval in optical metrology [23]) that require both 
calculation efficiency and high-precision capability within the spectral range of interest. 
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