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Abstract: This paper presents a simultaneous multi-segmented mirror orientation test system 
(SMOTS) using localized sheared images. A CMOS camera captures images of reflected 2D 
sinusoidal patterns from the test mirrors as their orientation changes. Surface orientation is 
measured to within 0.8 µrad (0.16 arcseconds) for a flat mirror. In addition, we measure the 
variation of seven mirror segments simultaneously. Furthermore, SMOTS is applied to 
measure the orientation of two concave mirrors with an accuracy of 2.7 µrad (0.56 
arcseconds). The measurement time for seven segments is 0.07 s. This technique can monitor 
the mirror segment orientation in an open/closed-loop for various optical setups. 
© 2017 Optical Society of America 

OCIS codes: (220.1140) Alignment; (120.3930) Metrological instrumentation; (120.5700) Reflection; (350.1260) 
Astronomical optics. 
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1. Introduction 

To see deeper into our Universe, scientists need to build larger telescopes [1,2]. The use of a 
multi-segment primary mirror is very useful to achieve this for large aperture telescopes, and 
has fabrication advantages [3,4]. However, this type of telescope can suffer from specific 
problems associated with segment misalignment. High accuracy fine alignment of the 
segmented mirror is essential to achieve optimum performance. It is also important to note 
that maintenance of the mirror segments (or any other multi-component optical systems) will 
necessitate realignment. 

There are various symptoms of misalignment in the segments, which include degradation 
in image quality. A point spread function (PSF) is a well-known metric to judge the image 
quality, and it can be an indicator for alignment [5]. This mathematical approach needs an 
influence parameter for each segment. However, this method does not have a one-to-one 
correspondence between image quality and segment orientation. This ambiguity increases 
with the number of segments. Therefore, a more straightforward and simple method of 
detecting misalignment in the mirror segments is desirable. 

To directly measure each segment, the Shack-Hartmann test [6] and curvature sensor [7,8] 
have been adapted for alignment. The Shack-Hartmann test is sensitive in a tip-tilt 
measurement, but it measures wavefront slopes (not surface slopes) at a certain conjugate 
plane and it is insensitive to local piston errors. The curvature sensor is convenient for a 
piston alignment test. An interferometric approach can also be adopted for segmented 
alignment [9]. Interferometry provides an abundance of high accuracy information about the 
orientation of each mirror, but is limited by its small dynamic range, and a stable environment 
is required to make a measurement. 

For the normal application of an angular measurement, laser interferometers [10], and 
photoelectric autocollimators [11] are standard solutions. Their accuracy is state of the art, but 
they have limited capability when measuring multiple segments and surface shapes. 

The capabilities of deflectometry that have been developed for measuring the shape of a 
specular surface [12] can be applied to alignment. The concept of deflectometry is based on 
the reverse Hartmann test, which measures optical slope by calculating the deflected angle of 
rays individually (pixel-by-pixel in detector approach). To get the slope data from 
deflectometry, many calculations are essential, such as phase unwrapping [12], Fourier 
transforms, filtering and inverse transforms [13], and slope integration [14]. Some advanced 
versions include instantaneous measurement technology [15] and structured light 
deflectometry systems. Especially, Li et al. have developed a deflectometry method that can 
achieve 1 arcsecond (4.5 µrad) resolution for a single flat mirror [16]. However, much of the 
information obtained from normal deflectometry is superfluous for an orientation 
measurement of a segmented mirror. Moreover, unnecessary calculations accumulate 
numerical errors. These can include fringe print-through from phase calculation/unwrapping 
[12] and frequency mask effects in reconstructing the surface [14,15]. Therefore, a more 
informationally efficient solution (acquiring and processing only the essential data) is highly 
desired for less noisy, highly dynamic, and simultaneous applications. 

We present a Simultaneous Multi-segmented mirror Orientation Test System (SMOTS) 
which parallels the Shack-Hartmann wavefront sensor (SHWS) [17] in a deflectometry 
technique. SMOTS directly measures the average slope value of a surface within a certain 
digital aperture. This method provides only the orientation information for several segments 
simultaneously and efficiently. 

In Section 2 we explain the principles of the technique proposed. Section 3 describes 
numerical simulation results and analysis. The experimental demonstration and test results are 
presented in Section 4 with concluding remarks in Section 5. 
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2. SMOTS theory 

When an image is viewed through a mirror, the angle of mirror determines the viewing 
direction. Furthermore, variation of the mirror tip-tilt angle causes motion of the image. 
SMOTS is based on this simple yet powerful scheme for orientation measurement. First, a 
two-dimensionally multiplexed sinusoidal pattern is imaged by a camera [Fig. 1 left]. We take 
the second picture after tilting the mirror. The updated pattern has a different phase [Fig. 1 
right]. The phase shift contains the orientation information of the mirror. Once you measure 
the distance from the mirror to the pattern, the orientation angle is calculated from the phase 
shift of the sinusoidal pattern. 

 

Fig. 1. Schematic SMOTS configuration (left) and the image of two-dimensionally 
multiplexed sinusoidal pattern captured by camera (right). 

The presented SMOTS uses a conventional LCD monitor and CMOS camera. The camera 
takes images of the screen in reflection from the mirror and calculates phase shift to obtain 
the mirror orientation change. The scheme is similar to deflectometry, but the actual data 
acquisition and processing is different. Traditional deflectometry is based on a reverse 
Hartmann test [12], which calculates the local slope of the surface under test pixel-by-pixel, 
measuring high spatial frequency surface features, while SMOTS only measures the overall 
orientation. For instance, SMOTS does not require mapping between the camera and screen 
pixels. The orientation is efficiently extracted from the captured images in the Fourier domain 
as explained in Section 2.1. 

SMOTS can be understood as a counterpart of SHWS in deflectometry. Comparing the 
geometry of a SHWS with SMOTS is depicted in Fig. 2. The SHWS was invented by Roland 
Shack in the early 1970s for astronomical purposes, but it has been adopted by various 
applications [17]. The smart configuration of SHWS placing a micro-lenslet array at the 
wavefront plane simplifies the process to sample average wavefront slopes within each micro- 
lenslet. SMOTS uses a digital aperture (binary mask on the camera image) to sample each 
segment’s surface by placing the detector at (or near) the imaging conjugate plane of the 
mirror. In the SHWS, the deviation of the focused spot position from the reference position 
directly indicates the current slope. The shifted pattern phase, in SMOTS, has the same direct 
relationship to the segment’s slope. To make an absolute measurement, an ‘absolute 
reference’ and calibration is necessary for both SHWS and SMOTS. 

 

Fig. 2. Comparison between the test methods of the (a) simultaneous multi-segmented mirror 
orientation test system (SMOTS) and (b) Shack-Hartmann wavefront sensor (SHWS). 
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For a SMOTS measurement, we first display the multiplexed sinusoidal pattern on the 
screen. A camera then captures an image of this pattern through the reflection from the 
surfaces under test as shown in Fig. 3. Both the surface under test and the screen would be in 
(or near) focus on the camera detector, which is achieved through a hyperfocal condition. 
Since the SMOTS camera is a small aperture (e.g., ~1–3 mm diameter) imaging system, such 
a hyperfocal configuration is available by locating the camera beyond a hyperfocal distance 
away from the segments under test (for flat segments) or the intermediate image of the 
sinusoidal pattern (for curved segments). The initial image constitutes the reference sinusoidal 
pattern, from which a relative orientation measurement is made. When a surface’s orientation 
changes, the sinusoidal pattern captured by the camera shifts linearly with the tip and tilt of 
the surface. To calculate the change in angle of the surface, we use the difference between 
first and second image, which is a sheared sinusoidal pattern. 

 

Fig. 3. Experimental SMOTS setup and picture of segmented target mirror used in 
experiments. The tilt angle θ of a segment causes the sinusoidal pattern to shift. 

The data processing pipeline is fundamentally different from the typical deflectometry 
methods. Deflectometry calculates pixel-by-pixel on the mirror surface to reconstruct the 
surface shape. However, our method calculates the entire image of the mirror as a single data 
set and gives the entire mirror tilted angle by using much simpler and quicker Fourier 
calculation than for surface reconstruction. The two acquired images (before and after) 
include all the information for every segment, so that we could measure all segmented mirrors 
simultaneously. In this configuration, any numbers of segments could be measured at one 
time as long as the camera captures the entire segmented mirror. In addition, due to this 
benefit, we could obtain relative angle distribution for the segmented mirror in a single 
implementation. 

2.1. Sheared fringe pattern analysis: Fourier analysis 

To calculate the change in angle of the surface, a second image is captured by the camera and 
the first image is subtracted [in Fig. 4(b)]. The different phase in the sinusoidal pattern creates 
a sheared fringe pattern of the same frequency as the displayed pattern, but with varying 
amplitude, which directly corresponds to the amount of shift caused by the change in surface 
orientation as shown in Fig. 4(b). By performing a Fourier analysis on the sheared fringe 
pattern, we are able to simply and efficiently calculate the amplitude of the sheared fringe 
pattern. The details are explained below. 
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Fig. 4. Fourier analysis steps for sheared pattern calculation. 

From the amplitude of the Fourier transform of the sheared sinusoidal pattern, we 
calculate the amount of phase difference between the reference and the shifted fringe images. 
The Fourier transform of the difference has the same frequency content as the reference 
sinusoidal pattern as shown in Fig. 4(c). The ratio of the amplitude in the displayed sinusoidal 
frequency between the initial [Eq. (1)] and sheared image [Eq. (3)] is converted to the amount 
of phase shift using Eq. (4). Although a single frequency sinusoidal pattern is displayed on 
the screen, the camera might capture a distorted pattern due to system aberrations or surface 
deviations. The frequency of the recorded pattern will be different from the displayed pattern. 
However, the analysis scheme implemented in SMOTS is insensitive to the additional 
systematic phase shifts because the reference image will also contain these distortions. 
Therefore, when the surface angle changes, we are still able to measure the change because it 
is relative to the reference image. We show a Zemax modeling simulation in Section 3 to 
verify the phase shift amount for the tilt angle of a variety of mirror shapes. Whatever 
frequencies are measured by the camera, the shifted phase is calculated by the following 
equations. 

 ( )( ) ( )Initial pattern frequency bin : FT f x F f=                        (1) 

 ( )( ) 2Shifted pattern frequency ( )bin : iFT f x e F fπ− Δ+ Δ =                  (2) 

 
( ) ( )[ ] ( )( ) ( )( )

( )2

Sheared pattern frequency bin :   

( 1 ) i

FT f x f x FT f x FT f x

e F fπ− Δ

+ Δ − = + Δ −

= −                       

   

                                                           
 (3) 

In order to retrieve the phase information for the sheared pattern in Eq. (3), the shifted phase 
Δ can be expressed as 

 
( )( ) ( )( )

( )

2

2

FT FT1 1
cos 1

2 2

f x f x
arc

F fπ

   + Δ −   Δ = −  
  

  

 (4) 

In Eqs. (1)–(4), variable x represents length (on the screen, in our configuration), the 
transform variable f represents frequency (in m−1), and Δ represents the shifted phase during 
mirror is moving. The amplitude of the frequency domain of the sheared pattern is simply 
following a cosine function. We used the imaginary sign of the Fourier transform to resolve 
sign ambiguity at the cosine function, as shown in Fig. 5. In Fig. 5., Measured #1 and 
Measured #2 have same phase shift but opposite direction. Due to the same phase shift, the 
amplitude of FT is same for either case [Fig. 5(b)]. However, the imaginary parts of each case 
have different sign due to the shifted direction. 
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Fig. 5. Sign convention for SMOTS; The FFT amplitude has ambiguity of the shift direction. 
This direction issue is resolved by using the sign of the imaginary part. 

Compared to our shear approach, the standard arctangent phase retrieval using the real and 
imaginary amplitudes of the Fourier transform can also be considered [18]. If the pattern has a 
single frequency, then theoretically, this approach will work well. However, if there are 
mixed frequency contents in the pattern due to imaging distortion or aberrations (discussed in 
case study 2, Section 3), the phase angle calculation suffers from the finite domain effect with 
discrete sampling. For instance, if limited by a finite and numerically implemented Fourier 
transform, a phase shift of a single (or mixed) frequency pattern confined in a limited domain 
may induce various phase shifts in frequency space as shown in the different y-axis values of 
the red arrows between Fig. 6(b) and 6(e). However, because of the sheared approach, our 
method produces correct (i.e., identical) outcome values. It is important to clarify that, for a 
shifted pattern in the presence of distortion, every sampling point undergoes the same phase 
shift, not the same distance shift. 

 

Fig. 6. Comparison between the direct and sheared pattern analysis methods. The same phase 
shift is applied to (a) single frequency and (b) mixed frequency case. The red arrow shows the 
nominal frequency of the reference pattern (x-axis) and its calculated phase value (y-axis). 
(Note: Since the numerical implementation of fast Fourier transform defined in a finite and 
discrete domain, the phase angle is defined in the entire frequency range. This can be 
suppressed by applying a threshold outside the expected frequency range, but it is presented 
without such treatment in this plot. The spikes in the plot represent the 2π jumps in the 
arctangent calculation.) 
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To clarify tilt direction for calculation, we consider the situation in Fig. 3 (tilt angle 
against to x-axis). Pixel numbers for one period in the display provide the physical length of 
the phase difference based on the real pixel size under a microscope. The phase Δ in Eq. (3) 
for the x-axis, gives the position of fx , defined in Fig. 3 as shown in Eq. (5). The ix  is the 

initial (i.e., reference) position where the camera looks at the screen. 

 
Pixel pitch in physical units number of pixels for one period

shifted phase ( ) 

f ix x ×

× Δ

= +            

                

 
 (5) 

The tilt angle θ can be calculated by 

 
( ) ( )00

x xx x1
tan  tan

2 z z

fi

d d

arc arcθ
  −−   = −        

 (6) 

where the zd is the distance between the mirror and the screen and x0 is the mirror position 
along the x-axis. 

Although an aberrated pattern imaging by the mirror surface is acquired, this calculation is 
valid since the 2θ deviation of the ray is still mostly caused by the tilt angle θ within a small 
angle regime. (See Section 3: Zemax modeling) It is also worth noting that the method 
response follows a cosine function [Eq. (4)], so the sensitivity of the measurements at both 
ends of the dynamic range (Δ = 0, 2π) are less than in the middle (Δ = π). 

Just like the other sinusoidal pattern-based approaches, there is 2π ambiguity when the tilt 
angle exceeds a single cycle sinusoidal dynamic range. A long period fringe has a wide 
dynamic range but loses sensitivity for small angle change. On the other hand, a short period 
has better sensitivity, but in this case, the phase difference could face 2π ambiguity for a 
smaller angle change. To resolve this problem, a multiplexing method to include many 
frequency signals in one picture can be adopted. For instance, a few multiplexed sinusoidal 
patterns with different periods (not a factor of each other) will reduce such ambiguity as they 
are clearly distinguishable in the Fourier domain and can be independently processed using 
the same SMOTS data processing. 

3. Zemax numerical case studies for linearity analysis 

The SMOTS configuration for a flat mirror application is the most intuitive case. The 
deflected ray angle is decided by its incidence angle and the surface normal, which relies on 
the orientation of the mirror. In this way, we can easily understand that a change in the 
orientation of the flat surface causes a shift of the reflected pattern. However, many mirrors 
are not flat, and the reflected image of the pattern may be magnified and/or aberrated. To 
clarify the validity of SMOTS for the various mirror surface shape cases, we present a 
numerical Zemax modeling analysis [Fig. 7]. 

 

Fig. 7. Reverse-raytracing spot diagram footprints at the screen for the Zemax modeled highly 
defocused (left), focused (middle), and highly aberrated (right) imaging cases. (Note: Only the 
outer bounds of the ray distribution are plotted here to distinguish shifted cases.) 
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We simulate the point imaging deviation during the mirror tilting. If all the rays reflected 
from mirrors surface show a slope of two linear angular deviation (calculated by the spot 
diagram’s centroid shift on the screen at a given distance away) with respect to the applied tilt 
angle, SMOTS can measure tilt angle base on the proportionally deviated pattern. In our 
reverse-ray tracing simulation, the rays travel from an arbitrary detector plane, which 
becomes a conjugate plane to the camera detector in a real implementation using a specific 
camera with lens, to the mirror and reflects back towards the display screen. Various spot 
diagram footprints showing the extreme extents of simulation cases are shown in Fig. 7. 

3.1. Case study 1: Linearity check for defocused imaging case 

The SMOTS camera detector plane is focused on the mirror under test in order to apply the 
digital aperture/mask on each segment as explained in Section 2. Although a hyper-focal 
condition makes the image of the sinusoidal pattern focused at the same time, there will be 
always some amount of defocus depends on the specific mirror power reimaging the screen at 
a certain intermediate image plane. Thus, confirming the pattern shift linearity for a 
defocused case is critical. 

To analyze an extreme defocusing case, for various field points, we used five source 
points along the x-axis leaving the arbitrary detector plane. A 50 mm diameter mirror with a 
radius of curvature 500 mm was located 1000 mm away from the detector. Thus, in this case, 
the intermediate focusing plane (i.e., conjugate plane) is located around 500–250 mm away 
from the mirror as shown in the schematic diagram in Fig. 8(a). This reverse configuration 
exactly simulates an extreme defocused case for the sinusoidal pattern finally imaged by a 
given SMOTS camera (focused on the mirror, not the sinusoidal pattern). 

 

Fig. 8. (a) A schematic reverse Zemax model (showing only three field points) for the linearity 
check simulating a defocused sinusoidal pattern case. (b) The error in the calculated angle is 
plotted as a function of input mirror tilting angle for the five field points. 

In Fig. 8(b), the errors (i.e., difference) between the simulated tilt angle and the calculated 
angle from 0 to 90 µrad are presented. In this configuration, the camera captures a slightly 
distorted picture, and the spot is not now a perfect disk. However, as shown in Fig. 8(b), the 
deviation from the expected linear angle deviation is well within ± 0.0015 µrad, which is the 
numerical error range of the simulation. Thus, the defocus effects and off-axis imaging does 
not affect the linearity of the fringe shifts. 

3.2. Case study 2: Linearity check for aberrated imaging case 

Certain types of SMOTS configuration and mirror surface shapes (e.g., freeform) might 
image the sinusoidal pattern with distortions and other aberrations. Unlike the typical 
deflectometry, the distortion and aberrations should not affect the presented data processing 
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accuracy as long as the overall mean phase shift of the pattern is linear. In this case study, a 
mirror with comatic (Standard Zernike 7th term coefficient: 0.4 mm) and astigmatic 
(Standard Zernike 5th and 6th term coefficients: −0.3 mm and 0.3 mm) aspheric surface 
departure was placed at a distance from the screen equal to its radius of curvature (1000 mm) 
as shown in Fig. 9(a). The errors in the processed angle against the input tilt angle are within 
± 0.0015 µrad (similar to case study 1) as shown in Fig. 9(b). This result confirms that the 
spot position shift at the screen plane is also linear for the aberrated imaging case. 

 

Fig. 9. (a) A schematic reverse Zemax model (showing only three field points) for the linearity 
check simulating an aberrated sinusoidal pattern case. (b) The error in the calculated angle is 
plotted as a function of input mirror tilting angle for the five field points. 

3.3. Case study 3: Linearity check for multiple segments case 

The third case study confirms the linearity for a multiple mirror configuration. We simulated 
a situation where multiple concave mirror segments are being measured. The segmented 
concave mirrors have 1000 mm radius of curvature and are placed 1000 mm away from the 
screen and detector as shown in Fig. 10(a). All three mirrors are concave spherical mirrors 
and have arbitrary initial tilt angles. The tilt angle of each mirror was changed up to ~90 µrad 
and the calculated shift angles were compared with the input tilt angles. As shown in Fig. 
10(b), the errors are well within 0.002 µrad level for all three segments. All the Zemax 
modeling results show that SMOTS can measure the angle variation of any mirror and in a 
segmented situation. 

 

Fig. 10. (a) A schematic reverse Zemax model for the linearity check simulating multiple 
mirror segments. (b) The error in the calculated angle is plotted as a function of input mirror 
tilting angle for the three segments. 
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4. Experimental demonstration 

In order to experimentally validate SMOTS, we used seven hexagonal flat mirror segments to 
represent a typical arrangement. The center mirror has two Piezoelectric inertia motors 
(Thorlabs, PIA25) controlling tip and tilt angles to microradian precision. Other mirrors were 
attached to kinematic mirror mounts (Thorlabs, KM100). An off-the-shelf monitor (Dell, 
1097FP) and camera (Pointgrey, FL3-U3-13Y3M-C) were utilized in the setup. We 
concurrently crosschecked the results with a photoelectric autocollimator (Möller-Wedel, 
ELCOMAT 3000) as a reference. The overall configuration of the experimental SMOTS 
setup is shown in Fig. 3. 

The two-dimensional sinusoidal pattern was used to measure tip and tilt at the same time. 
A binary digital mask was applied to the camera detector image on each mirror segment 
during the image processing such that only the pattern in each masked area was used to 
calculate the corresponding mirror orientation change. 

4.1. SMOTS and autocollimator comparison 

The autocollimator oriented a flat mirror, then SMOTS was aligned to see the reflected 
pattern through the camera. We took an initial picture of the pattern and set this as the 
reference image because we measure the change in angle from the initial orientation. 

We tested SMOTS across its dynamic range, from large angular change steps (~100 µrad) 
to fine angular change steps (~3 µrad). The distance from the mirror to the screen is 2020 ± 5 
mm, and the pixel size of the screen is 294 μm. One period of the two-dimensional sinusoidal 
pattern was 30 pixels (8.82 mm). While scanning the mirror angle, the measured angle from 
both SMOTS and autocollimator was recorded concurrently [Fig. 11 and 12]. 

 

Fig. 11. Large dynamic range with large step size measurement comparison (left) between 
SMOTS and autocollimator for a flat mirror tilted up to ~1400 µrad. The difference between 
the two measurements (right) shows less than 0.8 µrad RMS errors. (Note: The error bars 
represents ± 1 σ standard deviation for 30 data measurements.) 

Ten sets of autocollimator data were acquired in 10 s and averaged. Fifty SMOTS data 
sets were acquired to statistically evaluate the performance. As shown in Figs. 11 and 12, the 
errors for both ends of the dynamic range are about 0.8 µrad RMS, which is smaller than the 
noise (error bar) of the data. The noise comes from the CMOS white noise and the blinking of 
the monitor. The fully random intensity fluctuation (white Gaussian noise over time) of every 
single pixel can generate frequency errors in the frequency domain. Therefore, even though 
we chose a specific range of frequency domain in the orientation calculation, we cannot be 
free from such random noise. 
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Fig. 12. The small dynamic range with fine step size measurement comparison (left) between 
SMOTS and autocollimator for a flat mirror tilted up to ~1400 µrad. The difference between 
the two measurements (right) shows less than 0.8 µrad RMS errors. (Note: The error bars 
represent ± 1 σ standard deviation for 30 data measurements.) 

4.2. Simultaneous multiple mirror segments measurement 

Multiple hexagonal mirror segments were tested using the SMOTS to demonstrate its 
simultaneous capability. In order to highlight its information efficient data processing, a high-
speed experiment updating the tip-tilt values at ~15 Hz (with Intel® Xeon® CPU E3 −155M 
v5, 2.80 GHz) was performed and a snapshot image is shown in Fig. 13. (The most time-
consuming process is the image acquisition from the camera detector.) 

 

Fig. 13. A snapshot image of the seven hexagonal segments in SMOTS detector showing the 
over-layered seven digital apertures and calculated instantaneous tip-tilt. The ~15 Hz real-time 
measurement result is present in Visualization 1. 

The simultaneous capability enables real-time compensation such as distinguishing 
meaningful orientation data from accidental effects such as vibration. As a demonstration, in 
Fig. 14 (left), a change in tilt angle on M4 was applied at 4 s but an environmental 
perturbation was introduced around 12 and 15 s duration. By monitoring the entire seven 
segments together, the environmental incident was successfully recognized as a common 
motion and compensated (or can be ignored during the data analysis) in the M4 calculation as 
shown in Fig. 14 (right) and Visualization 2. In a related scenario, any misaligned orientation 
of SMOTS is distinguished easily because all the mirrors will have the same amount of tip 
and tilt as a common value. Once the camera grabs the image of the segment, the identical 
relative angles will be given with a different placement of the setup. 
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Fig. 14. (left) Simultaneous orientation measurement plot of the seven hexagonal segments 
using SMOTS. An environmental perturbation was introduced around 12 and 15 s duration. 
(right) Time sequence snapshots of the seven segments orientation for the perturbed case and 
the compensated case [Visualization 2]. 

4.3. Two concave mirror measurement 

Two concave mirrors with 200 mm radius of curvature were measured simultaneously using 
the SMOTS configuration. In order to verify the accuracy, we compared the results using 
autocollimator data using the same autocollimator as Section 4.1. Since an autocollimator 
cannot measure two mirrors at the same time, we tested only one of the two mirrors from 
behind using its flat back surface (depicted in Fig. 3). This highlights the simultaneous 
measurement capability of SMOTS. The distance from the mirror to the screen was 434 ± 2 
mm, and the one period of the two-dimensional sinusoidal pattern was 30 pixels (8.82 mm). It 
is worth to note that the distance from the mirror to the screen does not have to be same as the 
mirror’s radius of curvature (200 mm) as SMOTS works with hyper-focal condition. While 
tilting the both mirrors, the measured angle from both instruments was recorded and 
compared. 

 

Fig. 15. The tilt measurement comparison (left) and the difference (right) between SMOTS and 
autocollimator for a concave mirror tilted up to ~800 µrad. (Note: The error bars represents ± 1 
σ standard deviation for 30 data measurements.) 

In contrast to the flat mirror result [Section 4.1], this result has more standard deviation, as 
shown in Fig. 15. Unlike the flat mirror tip-tilting, the curved mirror rotation is much more 
sensitive to its pivot point. In our experimental setup, the rotation axis was not exactly located 
at the vertex of the mirror surface due to practical limitations of the mounting hardware 
fixtures. Such a non-ideal rotation in our experimental set up affected our measurement 
accuracy and degraded the performance to an error level of 2.7 μrad RMS as shown in Fig. 15 
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(right). In practice, for a high precision mirror tip-tilt control system, the actuators and/or 
mounting fixtures are often designed and calibrated to prevent or minimize this effect. 

 

Fig. 16. Picture of the target using two concave mirrors (left) and one frame of measured 
SMOTS data showing the orientations of the mirrors (right) [Visualization 3]. 

Similar to the multiple hexagonal segments case, a simultaneous measurement for two 
pieces of a concave mirror was also performed (Fig. 16 is a snapshot image of Visualization 
3). As a side note, due to the smaller number of segments (compared to the seven segments in 
Section 4.2), the measurement was made and processed at around 23 Hz using the same 
hardware and software. 

5. Conclusion 

We developed the Simultaneous Multi-segmented mirror Orientation Test System (SMOTS) 
with an off-the-shelf camera and display. Without precise calibration, SMOTS can measure 
angular changes of flat and curved mirrors with an RMS error of 0.8 µrad and 2.7 µrad, 
respectively. SMOTS measures many segmented mirrors simultaneously as long as the field 
of view of the camera can cover all the segments and each digital aperture has a sufficient 
sample of the sinusoidal pattern. Furthermore, due to the simple and robust sheared sinusoidal 
pattern approach, high-speed implementation (e.g., 15 Hz for seven hexagonal segments) is 
available for real-time monitoring or compensation. 

The accuracy of this method is limited by the resolution of the camera and screen. To 
make higher precision metrology, we need to display a small period fringe on the screen, and 
the camera needs to capture the image without aliasing. A longer distance between the mirror 
and screen can improve the resolution, but a higher resolution camera is required to ensure 
sufficient sampling. All these limitations are mainly hardware issues, not the fundamental 
boundaries of the concept or the data processing. 

The accuracy and precision of SMOTS is worse than a conventional autocollimator and 
interferometric method. However, it has a larger dynamic range with a real-time simultaneous 
capability for multiple mirrors within the camera’s field of view and is available to various 
surface shapes. The relative orientation measurement for multiple segmented mirror system 
can benefit system level monitoring, vibration compensating, re-adjusting (back to a reference 
or initial stage), or active controlling in a closed-loop. 
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