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Abstract: Stitching interferometry is performed by collecting interferometric data from over-
lapped sub-apertures and stitching these data together to provide a full surface map. The
propagation of the systematic error in the measured subset data is one of the main error sources
in stitching interferometry for accurate reconstruction of the surface topography. In this work, we
propose, using the redundancy of the captured subset data, two types of two-dimensional (2D)
self-calibration stitching algorithms to overcome this issue by in situ estimating the repeatable
high-order additive systematic errors, especially for the application of measuring X-ray mirrors.
The first algorithm, called CS short for “Calibrate, and then Stitch”, calibrates the high-order
terms of the reference by minimizing the de-tilted discrepancies of the overlapped subsets and then
stitches the reference-subtracted subsets. The second algorithm, called SC short for “Stitch, and
then Calibrate”, stitches a temporarily result and then calibrates the reference from the de-tilted
discrepancies of the measured subsets and the temporarily stitched result. In the implementation
of 2D scans in x- and y-directions, step randomization is introduced to generate nonuniformly
spaced subsets which can diminish the periodic stitching errors commonly observed in evenly
spaced subsets. The regularization on low-order terms enables a highly flexible option to add the
curvature and twist acquired by another system. Both numerical simulations and experiments are
carried out to verify the proposed method. All the results indicate that 2D high-order repeatable
additive systematic errors can be retrieved from the 2D redundant overlapped data in stitching
interferometry.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The surface topographic measurement based on interferometry is a major tool for optical
surfaces inspection [1,2]. As the accuracy and precision requirement is getting higher while
the measuring range and size being larger, the “standard” interferometer Field Of View (FOV)
becomes insufficient for some industrial applications, e.g. to measure large or long and curved
mirrors. To access a bigger measuring size with a limited interferometer FOV, the Sub-Aperture
(SA) stitching interferometry [3–5] was developed as a low cost solution to flexibly extend the
measuring range and size, while preserving the native lateral resolution. Stitching interferometry
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is one of the high-precision optical surface measurement techniques and it is applied in many
fields [3,4,6–10].

Stitching interferometry acquires many highly-overlapped SAs. Using the high redundancy of
the overlapped data in the acquisition process, it is possible to retrieve additional information
[11–13]. In some applications, the Surface Under Test (SUT) has the same quality as the reference
surface of the interferometer [8,9]. Therefore, it is a practical and meaningful task to carefully
design the stitching strategy from data acquisition to stitching algorithm. By doing this, we can
fully use the redundant measurement data to get an accurate estimation of the systematic error.
Polack et. al. use Legendre polynomial interpolation of the reference to solve the 1D stitching
problem in the case where the stitching steps are not an integer number of pixels [14]. Nicolas
et. al. provided a solution to reconstruct a one-dimensional (1D) profile of the surface and
extract the 1D additive systematic error in the stitching process [15]. These 1D solutions [14,15]
based on Legendre polynomials or cubic B-splines offer the capability of using the redundant
stitching data in a practical manner and paths a way for two-dimensional (2D) cases. The 2D
self-calibration stitching method for the general optics has been studied [16–20], which show the
effectiveness in reducing the reference errors.

In this work, we present two types of 2D stitching algorithms capable of estimating high-order
additive systematic errors of the interferometer with linear least squares method, especially for
measuring X-ray mirrors. The scanning steps during the data acquisition are specially designed
for reference retrieval to avoid unwanted periodic errors. We validate the proposed method with
simulation using a known reference as a benchmark. In parallel, experiments are also carried out
to demonstrate the feasibility of the proposed method to retrieve reference during the stitching
measurement process. The retrieved 2D reference map is compared with the calibrated reference
data. The capability and limitations of the proposed method are discussed for possible future
improvements.

2. Principle and method

2.1. Mathematical model of 2D data stitching

In order to clearly describe the stitching problem, a mathematical model of the 2D stitching
is established. As shown in Fig. 1, the measurement of nth subset among the total N subsets
mn(x, y) is taken by an interferometer at location (xn, yn) during the stitching acquisition process.

fields [3, 4, 6–10].
Stitching interferometry acquires many highly-overlapped SAs. Using the high redundancy of

the overlapped data in the acquisition process, it is possible to retrieve additional information
[11–13]. In some applications, the Surface Under Test (SUT) has the same quality as the reference
surface of the interferometer [8, 9]. Therefore, it is a practical and meaningful task to carefully
design the stitching strategy from data acquisition to stitching algorithm. By doing this, we can
fully use the redundant measurement data to get an accurate estimation of the systematic error.
Polack et. al. use Legendre polynomial interpolation of the reference to solve the 1D stitching
problem in the case where the stitching steps are not an integer number of pixels [14]. Nicolas
et. al. provided a solution to reconstruct a one-dimensional (1D) profile of the surface and
extract the 1D additive systematic error in the stitching process [15]. These 1D solutions [14, 15]
based on Legendre polynomials or cubic B-splines offer the capability of using the redundant
stitching data in a practical manner and paths a way for two-dimensional (2D) cases. The 2D
self-calibration stitching method for the general optics has been studied [16–20], which show the
effectiveness in reducing the reference errors.

In this work, we present two types of 2D stitching algorithms capable of estimating high-order
additive systematic errors of the interferometer with linear least squares method, especially for
measuring X-ray mirrors. The scanning steps during the data acquisition are specially designed
for reference retrieval to avoid unwanted periodic errors. We validate the proposed method with
simulation using a known reference as a benchmark. In parallel, experiments are also carried out
to demonstrate the feasibility of the proposed method to retrieve reference during the stitching
measurement process. The retrieved 2D reference map is compared with the calibrated reference
data. The capability and limitations of the proposed method are discussed for possible future
improvements.

2. Principle and method

2.1. Mathematical model of 2D data stitching

In order to clearly describe the stitching problem, a mathematical model of the 2D stitching
is established. As shown in Fig. 1, the measurement of nth subset among the total N subsets
mn(x, y) is taken by an interferometer at location (xn, yn) during the stitching acquisition process.

𝒙

𝒚

(𝟎, 𝟎)

𝒙𝒏

𝒚𝒏

The 𝒏th subset

SUT 

Fig. 1. Subsets with x- and y-shifts are captured in the 2D data stitching.

The nth subset can be described by the expression

mn(x, y) = z(x + xn, y + yn) + r(x, y) + tn · [x, y, 1]> + na(x, y), n ∈ [1, N], (1)

where xn and yn are the in-plane translation amount in x and y directions to move the nth subset
z(x+ xn, y+ yn) inside a single SA. In general, r(x, y) stands for the repeatable additive systematic
error of the interferometer, and here it is mainly represented by the interferometer reference
error inside the chosen SA. The geometric parameters tn = [an, bn, cn] denote the x-tilt, y-tilt
and piston of the nth subset with tn · [x, y, 1]> = anx + bny + cn from the motion errors of the
translations stage and the angular adjustment to null fringes. The last term na(x, y) stands for the
additive random noise in the measurement.
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translations stage and the angular adjustment to null fringes. The last term na(x, y) stands for the
additive random noise in the measurement.

2.2. Two self-calibration stitching algorithms

Two types of self-calibration stitching algorithms are presented. In the first self-calibration
stitching algorithm, the reference r is first calibrated and then stitch the reference-removed subsets
m − r into a whole piece of z. We name this algorithm CS which is short for “Calibrate, and
then Stitch.” The second self-calibration stitching algorithm, called SC short for “Stitch, and
then Calibrate”, stitches the ith updated reference-removed subsets m − ri to get zi first, and
then estimate the reference ri+1 for the next iteration. It is interesting to notice that the iterative
operation has also been studied and applied for the reference estimation with three-flat test
[21,22].
Both of CS and SC algorithms can be applied to any kind of underlying stitching strategy.

Since we solve the stitching problem based on matrix operation in this work, the proposed
self-calibration stitching algorithms (CS and SC) will be mainly addressed to cooperate with
the pixel-relation-based stitching strategy and the subset-relation-based stitching strategy [23].
In pixel-relation-based stitching strategy, all relations between the measured data m, t, z, and
r (if involved) are established at each pixel, while the subset-relation-based stitching strategy
establishes those dependant equations with each subset.
When the CS algorithm cooperating with the pixel-relation-based stitching strategy named

CS-P as illustrated in Fig. 2(a), we can consider that the SUT shape is cancelled out in the
overlapped height difference d. Similar to the 1D case [13], its relations with t and r can be
established by matching the corresponding pixels as

[
G D

] 
t>

r>


− d> → min, (2)

where G is the geometric relation matrix. In fact, we are not interested in the tip, tilt and
piston of the stitched z, so the matrix G can only have 3(N − 1) columns by simply regularizing
t1 = [0, 0, 0]. D is the pixel relation matrix carefully composed to match pixels in the sheared
reference maps. D has M columns, when there are M pixels in an SA. In this situation, t and r
can be estimated together directly with no iteration as


t>

r>


=

( [
G D

]> [
G D

] )−1 [
G D

]>
d>. (3)

After that, the stitching result z can be obtained by simply merging the reference-subtracted
data m − r with the known t.

If the subset-relation-based stitching strategy is used with the CS algorithm, named CS-S, the
initial reference r0 can be set as zeros. From the de-tilted height difference d̂i in the overlaps
with m − ri in the ith iteration, only the reference is estimated through a compensatory update
ri+1 = ri + r̂i, where the reference compensation amount r̂i is estimated from the de-tilted
discrepancies d̂i by

D · r̂>i − d̂>i → min. (4)
By solving this linear least squares problem, r̂i is calculated using

r̂>i =
(
D>D

)−1 D>d̂>i . (5)
If the iteration number i is larger than the maximum iteration number imax, or the standard
deviation of the estimated r̂i is smaller than a preset threshold thr in Fig. 2(b), the iteration ends
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height z is stitched from the reference-removed data m − ri+1 with the subset-relation-based
stitching strategy. The self-calibration stitching problem is divided into two sub-problems in the
CS-S algorithm: the reference estimation and the stitching with a known reference.
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Fig. 2. Two types of self-calibration stitching algorithms (CS and SC) can be applied
to both pixel-relation-based stitching and subset-relation-based stitching. (a) The CS-P
algorithm can be applied to the pixel-relation-based stitching strategy with no iterations.
(b) The CS-S algorithm is for the subset-relation-based stitching strategy with iterative
reference compensation. (c) The SC algorithm can work with either pixel-relation-based
or subset-relation-based stitching strategy via iterative reference compensations. Note: the
σ(·) operation is to calculate the RMS value.

The essential idea of the SC algorithm in Fig. 2(c) is based on the following consideration. If
the estimated reference r is correct, the discrepancy ds between the reference-removed subsets
m − r and the stitched height z in corresponding SA should only be a tilted plane with random
noise. The superscribe "s" denotes the operation in SA. The discrepancy ds can be de-tilted
and symbolized as d̂s. We can make iterative estimations of the reference r by minimizing this
de-tilted discrepancies d̂s with a least squares method. As illustrated in Fig. 2(c), the reference r0
is initialized with zeros. For the ith iteration, zi is stitched from the reference-subtracted subsets
m − ri . The reference compensation amount r̂i is then estimated from the de-tilted discrepancies
d̂s
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where Ds is the relation matrix. In this matrix based algorithm, some matrix operations are
carefully taken when composing Ds to match pixels in all subsets with the ones of the stitched
map in the corresponding SAs. The size of Ds can be fixed as M × M by collapsing matrices
describing different SAs into one. As the size of Ds becomes independent of N , this operation
will be useful when stitching a large number of SAs. By solving this linear least squares problem,
r̂i is calculated using
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Similarly, once i is larger than imax, or the standard deviation of r̂i is smaller than thr, it ends up
with the resultant zi and ri. Otherwise, the loop continues with the newly updated ri+1 = ri + r̂i
in the next iteration.
As a result, the interferometric measurements can be best explained by the stitched result z

and the estimated reference r using these two types of self-calibration stitching algorithms. In
the next section, we will address some possible ambiguity issues in this stitching model and
self-calibration estimation followed by our corresponding strategies to resolve them.

3. Ambiguities and regularization in data acquisition and processing

As shown in Eq. (1), the measured mn(x, y) is a combination of three unknowns (SUT shape
z, reference r, and geometric parameters t). Ambiguities may happen under certain conditions
which makes the stitching problem become ill-posed. To resolve the issues, some regularization
needs to be applied in the stitching strategy.

3.1. Regularization for periodic errors in two directions

In many stitching applications, the x- and y-translation step sizes ∆x and ∆y are selected as
a uniform value in one direction during the stitching process. However, using these uniform
stepped stitching, the stitched height map will suffer with periodic errors in both SUT stitching
and reference reconstruction, if we want to reconstruct the reference from the redundant data.

Let’s consider there is situation in which z(x, y) and r(x, y) are replaced by another pair of SUT
shape and reference shape z∗(x, y) and r∗(x, y) given by the following expression

z∗(x, y) = z(x, y) + p(x) + q(y), (8)

r∗(x, y) = r(x, y) + p(x) + q(y), (9)
where p(x) and q(y) are periodic functions with periods Tx and Ty in x and y as

p(x) = p(x − k · Tx), k ∈ Z, (10)

q(y) = q(y − k · Ty), k ∈ Z. (11)
If the step sizes are uniform, xn = n · ∆x and yn = n · ∆y. Then choosing Tx = ∆x/nx with nx ∈ N
and Ty = ∆y/ny with ny ∈ N, we have xn = nnx · Tx and yn = nny · Ty. Since nnx ∈ N and nny ∈ N,
we get p(x − xn) = p(x − nnx · Tx) = p(x), and q(y− yn) = q(y− nny · Ty) = q(y). According to the
equations above, we have

z∗(x − xn, y − yn) − r∗(x, y) + anx + bny + cn

= z(x − xn, y − yn) + p(x − xn) + q(y − yn)
− r(x, y) − p(x) − q(y) + anx + bny + cn

= z(x − xn, y − yn) − r(x, y) + anx + bny + cn

= mn(x, y).

(12)

While n is an arbitrary index in [1,N], different pairs of SUT and reference (z(x, y) with r(x, y))
and (z∗(x, y) with r∗(x, y)) yield to the same measurement data mn(x, y). It is important to note
that it is impossible for the stitching algorithm to distinguish one pair of solutions from another,
since all of them can perfectly explain the measurement data everywhere at N subset locations.

This periodic error issue is due to the uniform stitching steps, in order to overcome this problem,
we suggest to make randomized nonuniform steps for both x- and y-directions during the data
acquisition process to make this ill-posed problem solvable. As illustrated in Fig. 3, the periodic
repeated pattern in Fig. 3(a) is “broken” by the nonuniform steps by randomization in Fig. 3(b).



Research Article Vol. 27, No. 19 / 16 September 2019 / Optics Express 26945

(a) Sub-apertures with uniform steps (b) Sub-apertures with nonuniform steps

Fig. 3. In 2D stitching interferometery, uniform steps (a) and randomized nonuniform steps
(b) are two kinds of possible SA stepping strategies. We suggest using nonuniform steps (b)
to avoid the periodic errors when estimating additive systematic errors.

in x- and y-directions to cover the entire SUT. We can make sure at least one randomization
solution is available by keeping the step number larger than the absolute value of the residual
pixel number. Row-by-row or column-by-column vectors of potential step size are added with
random variations. Because the random variations are generated in a certain range determined
from the previous steps, the step sizes in each vector are not absolutely random. Consequently,
we randomly sample the step sizes from one calculated step vector to make the resultant steps
completely random.

With this regularization implemented in data acquisition, the ambiguous periodic errors created
on SUT and reference by the self-calibration stitching algorithms can be significantly reduced.

3.2. Regularization for curvature and twist ambiguities

Despite the periodic errors when using uniform stitching steps, the curvature and twist are also
ambiguous in the mathematical model described in Eq. (1). We consider three second order
terms (x-curvature, y-curvature and twist) adding to z(x, y) and r(x, y) to compose the new
shapes of SUT z∗(x, y) and reference r∗(x, y) as

z∗(x, y) = z(x, y) + C11x2 + C12xy + C22y
2, (13)

r∗(x, y) = r(x, y) + C11x2 + C12xy + C22y
2, (14)

where the coefficients C11, C12, and C22 ∈ R can be arbitrary values. The linear terms
anx + bny + cn in Eq. (1) are replaced by a∗nx + b∗ny + c∗n whose coefficients are

a∗n = an + 2C11xn + C12yn, (15)

b∗n = bn + C12xn + 2C22yn, (16)

c∗n = cn − C11x2
n − C12xnyn − C22y

2
n. (17)

The measured data acquired by the interferometer will be given by
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= z(x − xn, y − yn) + C11(x − xn)2 + C12(x − xn)(y − yn) + C22(y − yn)2
− r(x, y) − C11x2 − C12xy − C22y

2

+ (an + 2C11xn + C12yn)x + (bn + C12xn + 2C22yn)y
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n

= z(x − xn, y − yn) − r(x, y) + anx + bny + cn
= mn(x, y).

(18)

Fig. 3. In 2D stitching interferometery, uniform steps (a) and randomized nonuniform steps
(b) are two kinds of possible SA stepping strategies. We suggest using nonuniform steps (b)
to avoid the periodic errors when estimating additive systematic errors.

In our implementation, the stitching step sizes are always integer pixels, and we first calculate
the preferred step sizes by the user-preferred overlapping ratios and the desired stitching length
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z∗(x − xn, y − yn) − r∗(x, y) + a∗nx + b∗ny + c∗n
= z(x − xn, y − yn) + C11(x − xn)2 + C12(x − xn)(y − yn) + C22(y − yn)2
− r(x, y) − C11x2 − C12xy − C22y2

+ (an + 2C11xn + C12yn)x + (bn + C12xn + 2C22yn)y
+ cn − C11x2n − C12xnyn − C22y2n
= z(x − xn, y − yn) − r(x, y) + anx + bny + cn

= mn(x, y).

(18)
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Again, different solutions with arbitrary coefficients C11, C12, and C22 yield to identical
measurement mn(x, y) for every subset, as n is arbitrary. Infinite combinations of SUT, reference,
and motions can perfectly explains the measured data. As a result, with the linear translations in
the stitching motion, there is no self-calibration stitching algorithm able to separate the 2nd order
terms on the SUT and the reference surfaces. Other measurement setups such as skip-flat test
could become possible ways to overcome this issue, but it is out of the scope of this work.
Unlike the periodic errors in Section 1 coupling with SUT and reference which occurs under

uniform step condition only, the curvature and twist ambiguity always exists in the stitching
model and couples not only with the curvature and twist on SUT and reference but also with
the mechanical motions. Since this ambiguity exists without any extra hypothesis, it implies
that the information from the stitching data acquisition is not enough to solve this ambiguity
problem. A possible regularization can be a better knowledge of the reference curvature and
twist or the mechanical motion. For example, the real curvature and twist of the reference can be
utilized in the stitching algorithm, or the motion angles and straightness can be traced to reduce
the uncertainties of the curvature and twist. In this work, our stitching algorithm is regularized to
not estimate the piston, x-tilt, y-tilt, x-curvature, twist, and y-curvature for the reference shape.

The estimation of r in Eq. (3) is implemented by using the extended matrices Gex and Dex, as
well as the extended vector dex as

t>

r>


=

( [
Gex Dex

]> [
Gex Dex

] )−1 [
Gex Dex

]>
dex
>, (19)

where the extensions are dexi =


di

06×1


, Gex =


G

06×3(N−1)


, and Dex =


D

(H>H)−1H>


, in which

H =
[
1>, x>, y>, (x2)>, (x · y)>, (y2)>

]
.

Similarly, the estimation of r̂i in Eq. (5) becomes

r̂>i =
(
Dex
>Dex

)−1 Dex
> ˆdex

>
i , (20)

where ˆdexi =


d̂i

06×1


. Considering to the large size and the sparsity of the matrices, e.g. Gex and

Dex, sparse matrices should be used in the calculation to reduce the memory cost. The function
LSMR() [24,25] is recommended to solve large sparse least-squares problems.
The estimation of r̂i in Eq. (7) can be regularized as

r̂>i =
(
Ds

ex
>Ds

ex

)−1
Ds

ex
> ˆds

ex
>
i , (21)

where Ds
ex =


Ds

(H>H)−1H>


and ˆds

exi =


d̂si

06×1


.

The regularization in Eqs. (19)–(21) enables a highly flexible option to add the curvature and
twist acquired by another system. The high-order additive systematic errors are estimated with
the redundant data.

4. Simulation-based numerical case study

A stitching measurement of a 40mm × 10mm sample is simulated to verify the proposed iterative
self-calibration algorithms. The height distribution of the SUT in Fig. 4(a) is generated as

z = A ·
[
sin

(
2π

xy
pxpy

)
+ cos

(
2π( x

px
+

y
py
)
)]

, (22)



Research Article Vol. 27, No. 19 / 16 September 2019 / Optics Express 26947

where the amplitude A = 200 × 10−9m, and the periods px = py = 16 × 10−3m.where the amplitude A = 200 × 10−9m, and the periods px = py = 16 × 10−3m.
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Fig. 4. In our simulation, the SUT is captured in 3 × 23 unevenly-spaced subsets (a) with a
simulated reference r (b). Note: PTV is the value for Peak-To-Valley.

The SA of the interferometer is 64×64 pixels with 0.12 mm lateral resolution. The user-defined
overlapping ratio is set as 80% for both directions. As discussed in Section 3.1, randomized
step sizes are performed to resolve the periodic errors. The range for the randomization is ±3
pixels. In total, 3 × 23 subsets of interferometric height maps are simulated with the reference
r shown in Fig. 4(b), 1 µrad RMS angular adjustment in geometric parameters t, and 0.5 nm
RMS additive normally distributed random noises na. The CS-P, CS-S, and SC algorithms are
performed to demonstrate the performance of the proposed 2D self-calibration stitching.

The non-iterative CS-P result is shown in Fig. 5. The stitching result in Fig. 5(a) and estimated
reference in Fig. 5(b) are very close to the simulated SUT and reference in Fig. 4. The up to
the 2nd order removed stitching error in Fig. 5(c) is about 0.26 nm RMS, and corresponding
reference estimation error is 0.07nm RMS as shown in Fig. 5(d).
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Fig. 5. Stitching results in simulation verifies the CS-P algorithm. (a) Stitching result and
(b) Estimated reference. (c) Stitching error (terms up to the second order removed). (d)
Reference estimation error (terms up to the second order removed).

The results using CS-S algorithm are shown in Fig. 6. The first estimated reference r1 in
Fig. 6(b) is similar to the simulated truth with only 0.11 nm RMS in Fig. 6(c). However,
low-frequency variations are shown on the stitching error in Fig. 6(d). With the compensation
r2 = r1 + r̂1 in the first iteration, the reference estimation error is 0.07 nm RMS in Fig. 6(g)
and the stitching error is only 0.21 nm RMS in Fig. 6(h). Since the RMS value of the next
compensation amount r̂2 in Fig. 6(i) is less than the preset threshold thr = 0.01 nm, the iteration
terminates with the final stitching error shown in Fig. 6(l). In fact, the stitching calculations
in iterations shown in Figs. 6(d) and 6(h) are not necessary in CS-S algorithm, and only the
reference is estimated through iterative compensation.

By applying the SC algorithm, the reference is estimated during the iterative stitching process
in Fig. 7. As shown in Figs. 7(a), 7(e), and 7(i), the RMS value of the up to the 2nd order
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Reference estimation error (terms up to the second order removed).

The results using CS-S algorithm are shown in Fig. 6. The first estimated reference r1 in
Fig. 6(b) is similar to the simulated truth with only 0.11 nm RMS in Fig. 6(c). However,
low-frequency variations are shown on the stitching error in Fig. 6(d). With the compensation
r2 = r1 + r̂1 in the first iteration, the reference estimation error is 0.07 nm RMS in Fig. 6(g)
and the stitching error is only 0.21 nm RMS in Fig. 6(h). Since the RMS value of the next
compensation amount r̂2 in Fig. 6(i) is less than the preset threshold thr = 0.01 nm, the iteration
terminates with the final stitching error shown in Fig. 6(l). In fact, the stitching calculations
in iterations shown in Figs. 6(d) and 6(h) are not necessary in CS-S algorithm, and only the
reference is estimated through iterative compensation.

By applying the SC algorithm, the reference is estimated during the iterative stitching process
in Fig. 7. As shown in Figs. 7(a), 7(e), and 7(i), the RMS value of the up to the 2nd order

Fig. 5. Stitching results in simulation verifies the CS-P algorithm. (a) Stitching result and
(b) Estimated reference. (c) Stitching error (terms up to the second order removed). (d)
Reference estimation error (terms up to the second order removed).

The results using CS-S algorithm are shown in Fig. 6. The first estimated reference r1 in
Fig. 6(b) is similar to the simulated truth with only 0.11 nm RMS in Fig. 6(c). However,
low-frequency variations are shown on the stitching error in Fig. 6(d). With the compensation
r2 = r1 + r̂1 in the first iteration, the reference estimation error is 0.07 nm RMS in Fig. 6(g)
and the stitching error is only 0.21 nm RMS in Fig. 6(h). Since the RMS value of the next
compensation amount r̂2 in Fig. 6(i) is less than the preset threshold thr = 0.01 nm, the iteration
terminates with the final stitching error shown in Fig. 6(l). In fact, the stitching calculations
in iterations shown in Figs. 6(d) and 6(h) are not necessary in CS-S algorithm, and only the
reference is estimated through iterative compensation.

By applying the SC algorithm, the reference is estimated during the iterative stitching process
in Fig. 7. As shown in Figs. 7(a), 7(e), and 7(i), the RMS value of the up to the 2nd order
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Fig. 6. Stitching results verifies the CS-S algorithm. (a), (e), and (i) are the estimated r̂i
after each iteration. (b), (f), and (j) are the updated reference ri+1 , (c), (g), and (k) are the
reference estimation errors (terms up to the second order removed), and (d),(h), and (l) are
the stitching errors (terms up to the second order removed) after each iteration.
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Fig. 7. Stitching results with the SC algorithm. (a),(e), and (i) are the stitching errors (terms
up to the second order removed) after each iteration. (b), (f), and (j) are the r̂i after each
iteration. (c), (g), and (k) are the updated reference ri+1, and (d), (h), and (l) are reference
estimation errors (terms up to the second order removed) after each iteration.

Fig. 6. Stitching results verifies the CS-S algorithm. (a), (e), and (i) are the estimated r̂i
after each iteration. (b), (f), and (j) are the updated reference ri+1 , (c), (g), and (k) are the
reference estimation errors (terms up to the second order removed), and (d),(h), and (l) are
the stitching errors (terms up to the second order removed) after each iteration.

removed stitching error is getting lower, as the reference r is updated during the stitching process.
The stitching error with repeating patterns shown in Fig. 7(a) is very typical if the reference
is not well calibrated. The reference compensation amount r̂0 in Fig. 7(b) is estimated from
the stitched result z0 in this step and the raw SA measures. The updated reference r1 = r0 + r̂0
in Fig. 7(c) has a reference estimation errors (terms up to the 2nd order removed) only at the
sub-nanometer level with a period correlated to the average step size. In the 1st iteration, the
stitching errors are reduced from 3.14 nm RMS down to 0.29 nm RMS, which also indicates that
the previous reference estimation are effective. The remaining errors are small but still evident
with a periodic shape shown in Fig. 7(e). The estimated r̂1 in Fig. 7(f) is very similar to the
previous reference estimation error in Fig. 7(d). After updating the reference r2 = r1 + r̂1, the
high-order discrepancy from the true value is almost random noise as shown in Fig. 7(h). A
small random noise like stitching error(terms up to the 2nd order removed) can be expected in the
next iteration as demonstrated in Fig. 7(i) with 0.2 nm RMS. The stitching algorithm converges
after the 2nd iteration, as the reference compensation amount r̂2 in Fig. 7(j) is less than the preset
RMS threshold thr = 0.01 nm.

The simulation demonstrates that the proposed method is effective in estimating the reference
r and stitching the SUT shape z. Next, we will show a real stitching interferometry measurement
to verify the feasibility of the proposed method.
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Fig. 7. Stitching results with the SC algorithm. (a),(e), and (i) are the stitching errors (terms
up to the second order removed) after each iteration. (b), (f), and (j) are the r̂i after each
iteration. (c), (g), and (k) are the updated reference ri+1, and (d), (h), and (l) are reference
estimation errors (terms up to the second order removed) after each iteration.

Fig. 7. Stitching results with the SC algorithm. (a),(e), and (i) are the stitching errors (terms
up to the second order removed) after each iteration. (b), (f), and (j) are the r̂i after each
iteration. (c), (g), and (k) are the updated reference ri+1, and (d), (h), and (l) are reference
estimation errors (terms up to the second order removed) after each iteration.

5. Experimental verification

Some experiments are implemented on the interferometric stitching platform developed at
NSLS-II [23] to test and verify the proposed method. The setup of the stitching interferometer
(see Fig. 8) is composed of a Fizeau interferometer and several translation and rotation stages to
adjust the relative position and angle between the SUT and the interferometer reference surface.
As marked in Fig. 8, we only need the x- and y-motions, θx and θy rotations to perform 2D scans
and to null the fringes at each subset location in this experiment.

The SUT is a 190-mm-long flat silicon mirror. The central 180 mm × 10 mm area is the region
of interest. We use a 256 × 64 pixels rectangular mask window as the interferometer SA, and the
pixel lateral resolution is 0.12 mm. The user-defined overlap ratios are set as 80% for both x-
and y-directions. The software algorithm automatically calculates the random step variation to
cover the whole region of interest. It ensures that the random step size variations are within the
preset limits ([−2,+2] pixels) and the sizes are in integer pixel to avoid the sub-pixel matching
issue. As a result, the actual overlap ratio is about 81% in x-direction and 85% in y-direction.
In total, 3 × 26 subsets are captured to fully cover the region of interest. We take 64-averaged
measurement at each SA. The repeatability of a 64-averaged measurement in our environment is
about 0.2 nm RMS. The tip-tilt threshold is set as 1 µrad to null fringes before capturing each
subset. The RMS threshold for reference compensation thr = 0.01 nm.
In order to make a quantitative evaluation of the proposed self-calibration, a well-polished

240mm×40mm flat X-ray mirror with about 0.6 nm RMS is used to calibrate the reference
by averaging several uncorrelated regions. This calibrated reference (Fig. 9(a)) is used as the
benchmark to judge the estimated reference during iterations. The stitched SUT shape in Fig. 9(b)
is used as the benchmark to evaluate the stitching errors.
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in Fig. 7(c) has a reference estimation errors (terms up to the 2nd order removed) only at the
sub-nanometer level with a period correlated to the average step size. In the 1st iteration, the
stitching errors are reduced from 3.14 nm RMS down to 0.29 nm RMS, which also indicates that
the previous reference estimation are effective. The remaining errors are small but still evident
with a periodic shape shown in Fig. 7(e). The estimated r̂1 in Fig. 7(f) is very similar to the
previous reference estimation error in Fig. 7(d). After updating the reference r2 = r1 + r̂1, the
high-order discrepancy from the true value is almost random noise as shown in Fig. 7(h). A
small random noise like stitching error(terms up to the 2nd order removed) can be expected in the
next iteration as demonstrated in Fig. 7(i) with 0.2 nm RMS. The stitching algorithm converges
after the 2nd iteration, as the reference compensation amount r̂2 in Fig. 7(j) is less than the preset
RMS threshold thr = 0.01 nm.

The simulation demonstrates that the proposed method is effective in estimating the reference
r and stitching the SUT shape z. Next, we will show a real stitching interferometry measurement
to verify the feasibility of the proposed method.

5. Experimental verification

Some experiments are implemented on the interferometric stitching platform developed at
NSLS-II [23] to test and verify the proposed method. The setup of the stitching interferometer
(see Fig. 8) is composed of a Fizeau interferometer and several translation and rotation stages to
adjust the relative position and angle between the SUT and the interferometer reference surface.
As marked in Fig. 8, we only need the x- and y-motions, θx and θy rotations to perform 2D scans
and to null the fringes at each subset location in this experiment.
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Fig. 8. The 2D self-calibration stitching experiment is performed by using the NSLS-II
interferometric stitching platform.

The SUT is a 190-mm-long flat silicon mirror. The central 180 mm × 10 mm area is the region
of interest. We use a 256 × 64 pixels rectangular mask window as the interferometer SA, and the
pixel lateral resolution is 0.12 mm. The user-defined overlap ratios are set as 80% for both x-
and y-directions. The software algorithm automatically calculates the random step variation to
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cover the whole region of interest. It ensures that the random step size variations are within the
preset limits ([−2,+2] pixels) and the sizes are in integer pixel to avoid the sub-pixel matching
issue. As a result, the actual overlap ratio is about 81% in x-direction and 85% in y-direction.
In total, 3 × 26 subsets are captured to fully cover the region of interest. We take 64-averaged
measurement at each SA. The repeatability of a 64-averaged measurement in our environment is
about 0.2 nm RMS. The tip-tilt threshold is set as 1 µrad to null fringes before capturing each
subset. The RMS threshold for reference compensation thr = 0.01 nm.
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Fig. 9. By subtracting a well-calibrated reference (a) from the captured subsets, the stitching
result of the SUT (b) will be used as the benchmark for the stitching error evaluation.

In order to make a quantitative evaluation of the proposed self-calibration, a well-polished
240mm×40mm flat X-ray mirror with about 0.6 nm RMS is used to calibrate the reference
by averaging several uncorrelated regions. This calibrated reference (Fig. 9(a)) is used as the
benchmark to judge the estimated reference during iterations. The stitched SUT shape in Fig.
9(b) is used as the benchmark to evaluate the stitching errors.

5.1. Self-calibration stitching results

We present self-calibration stitching results with CS-P and SC algorithms. The CS-P estimated
reference is shown in Fig. 10(a) with a 0.11 nm RMS high-order reference estimation error in
Fig. 10(b). With the reference r, the stitched height z is shown in Fig. 10(c).

(c)
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Fig. 10. The CS-P algorithm directly estimates the reference r (a) with a reference estimation
error (b) and stitch the height z (c).

The iterative stitching and reference estimation results with the SC algorithm are shown in Fig.
11. The calculation starts with r0 = 0. The stitched z0 shows repeating error patterns due to the
lack of knowledge on the reference. It is obvious that their period is about the averaged step size.

Fig. 9. By subtracting a well-calibrated reference (a) from the captured subsets, the stitching
result of the SUT (b) will be used as the benchmark for the stitching error evaluation.

5.1. Self-calibration stitching results

We present self-calibration stitching results with CS-P and SC algorithms. The CS-P estimated
reference is shown in Fig. 10(a) with a 0.11 nm RMS high-order reference estimation error in
Fig. 10(b). With the reference r, the stitched height z is shown in Fig. 10(c).
The iterative stitching and reference estimation results with the SC algorithm are shown in

Fig. 11. The calculation starts with r0 = 0. The stitched z0 shows repeating error patterns due to
the lack of knowledge on the reference. It is obvious that their period is about the averaged step
size.
The reference compensation amount r̂0 is estimated from the difference between m and z0.

The main topography of the reference r1 = r0 + r̂0 is updated via this estimation. However,
comparing to the calibrated reference, there are periodic errors shown in Fig. 11(d), which results
in obvious waviness errors on the stitched height map in the next iteration shown in Fig. 11(e).
In SC iteration 1, The reference compensation amount r̂1 is estimated as shown in Fig. 11(f).
After this compensation, the discrepancy between the updated reference r2 = r1 + r̂1 and the
calibrated reference benchmark is very small (only a 0.11 nm RMS) with no obvious periodic
error shown in Fig. 11(h). The periodic patterns on the stitched z2 is reduced (see Fig. 11(i)) in
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Fig. 10. The CS-P algorithm directly estimates the reference r (a) with a reference estimation
error (b) and stitch the height z (c).

the SC iteration 2. Finally, the calculated r̂2 in Fig. 11(j) is less than the preset RMS threshold
thr = 0.01 nm. The iteration ends up with the final stitched SUT height z2 and the estimated
reference r2. The final results of the SC algorithm in Fig. 11 is very similar to the result of the
CS-P algorithm in Fig. 10. The following studies are based on results of the SC algorithm.

5.2. Repeatability study

To study the repeatability of the proposed self-calibration stitching method, 10 repeating scans
are performed. These 10 SC algorithm stitched SUT maps are shown in Fig. 12(a). To highlight
the details of the height variation on the SUT, the color range is only within [−3σ,+3σ] where
σ is the RMS value of the stitched height values.
Illustrated with the same color map, Fig. 12(b) shows their discrepancies from the average

map. All the discrepancies give an overall repeatability value less than 0.1 nm RMS.
The 10 estimated reference maps are displayed in Fig. 13(a) with only 0.015 nm RMS overall

repeatability in their discrepancies shown in Fig. 13(b), which illustrates excellent repeatability
of the reference estimation.

5.3. Comparison with the stitching result using the calibrated reference

The stitched SUT height with the proposed SC algorithm (Fig. 11(i)) is evaluated by comparing
with the stitching result using the calibrated reference as benchmark (Fig. 9). The stitching
result without subtracting the systematic error (Fig. 11(a)) is also evaluated as a contrast. The
comparison results are shown in Fig. 14.

The obvious periodic error in Fig. 14(a) is one of the drawbacks to use a stitching mechanism
with systematic errors. Our proposed self-calibration method provide a way to in situ estimate
the repeatable high-order additive systematic error during the analysis of the measurement data.
As shown in Fig. 14(b), the artificial waviness diminishes in our stitched results without any
pre-knowledge of the systematic error.

5.4. Self-consistency study using different SA windows

We perform another measurement of the same SUT using a new SA with the same size (256 × 64
pixels) but in a different location on our 4-inch pupil interferometer. The previous SA is labelled
as SA1 and the new one as SA2.
Comparing to SA1, the SA2 window is shifted 128 pixels to the right as shown in Fig. 15.

This shift will allow us to check if the self-calibration stitching method will give self-consistent
reference results in their common area SA1∩ SA2.
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Fig. 11. With iterative compensations to the reference r in the SC algorithm, the SUT height
z is stitched with better visualization (less periodic errors).
Fig. 11. With iterative compensations to the reference r in the SC algorithm, the SUT
height z is stitched with better visualization (less periodic errors).
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The reference compensation amount r̂0 is estimated from the difference between m and z0.
The main topography of the reference r1 = r0 + r̂0 is updated via this estimation. However,
comparing to the calibrated reference, there are periodic errors shown in Fig. 11(d), which results
in obvious waviness errors on the stitched height map in the next iteration shown in Fig. 11(e).
In SC iteration 1, The reference compensation amount r̂1 is estimated as shown in Fig. 11(f).
After this compensation, the discrepancy between the updated reference r2 = r1 + r̂1 and the
calibrated reference benchmark is very small (only a 0.11 nm RMS) with no obvious periodic
error shown in Fig. 11(h). The periodic patterns on the stitched z2 is reduced (see Fig. 11(i)) in
the SC iteration 2. Finally, the calculated r̂2 in Fig. 11(j) is less than the preset RMS threshold
thr = 0.01 nm. The iteration ends up with the final stitched SUT height z2 and the estimated
reference r2. The final results of the SC algorithm in Fig. 11 is very similar to the result of the
CS-P algorithm in Fig. 10. The following studies are based on results of the SC algorithm.

5.2. Repeatability study

To study the repeatability of the proposed self-calibration stitching method, 10 repeating scans
are performed. These 10 SC algorithm stitched SUT maps are shown in Fig. 12(a). To highlight
the details of the height variation on the SUT, the color range is only within [−3σ,+3σ] where
σ is the RMS value of the stitched height values.

(a) Stitched SUT height maps (b) Discrepancies from the average map
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Fig. 12. The data acquisition and the self-calibration stitching algorithm are robust and
repeatable in 10 repeating scans. (a) 10 stitched SUT shapes and (b) their discrepancies.

Illustrated with the same color map, Fig. 12(b) shows their discrepancies from the average
map. All the discrepancies give an overall repeatability value less than 0.1 nm RMS.

(a) Estimated reference
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30.8 mm
(b) Discrepancies

Fig. 13. The estimated reference (a) and the discrepancies (b) from their average of these 10
repeating scans indicate the reference estimation is very repeatable.

Fig. 12. The data acquisition and the self-calibration stitching algorithm are robust and
repeatable in 10 repeating scans. (a) 10 stitched SUT shapes and (b) their discrepancies.
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in obvious waviness errors on the stitched height map in the next iteration shown in Fig. 11(e).
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After this compensation, the discrepancy between the updated reference r2 = r1 + r̂1 and the
calibrated reference benchmark is very small (only a 0.11 nm RMS) with no obvious periodic
error shown in Fig. 11(h). The periodic patterns on the stitched z2 is reduced (see Fig. 11(i)) in
the SC iteration 2. Finally, the calculated r̂2 in Fig. 11(j) is less than the preset RMS threshold
thr = 0.01 nm. The iteration ends up with the final stitched SUT height z2 and the estimated
reference r2. The final results of the SC algorithm in Fig. 11 is very similar to the result of the
CS-P algorithm in Fig. 10. The following studies are based on results of the SC algorithm.

5.2. Repeatability study

To study the repeatability of the proposed self-calibration stitching method, 10 repeating scans
are performed. These 10 SC algorithm stitched SUT maps are shown in Fig. 12(a). To highlight
the details of the height variation on the SUT, the color range is only within [−3σ,+3σ] where
σ is the RMS value of the stitched height values.
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Illustrated with the same color map, Fig. 12(b) shows their discrepancies from the average
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repeating scans indicate the reference estimation is very repeatable.
Fig. 13. The estimated reference (a) and the discrepancies (b) from their average of these
10 repeating scans indicate the reference estimation is very repeatable.

The 10 estimated reference maps are displayed in Fig. 13(a) with only 0.015 nm RMS overall
repeatability in their discrepancies shown in Fig. 13(b), which illustrates excellent repeatability
of the reference estimation.

5.3. Comparison with the stitching result using the calibrated reference

The stitched SUT height with the proposed SC algorithm (Fig. 11(i)) is evaluated by comparing
with the stitching result using the calibrated reference as benchmark (Fig. 9). The stitching
result without subtracting the systematic error (Fig. 11(a)) is also evaluated as a contrast. The
comparison results are shown in Fig. 14.

Fig. 14. The comparison of stitching errors (a) without subtracting system error and (b)
with the proposed self-calibration stitching method indicates its effectiveness. These two
stitching error maps are plotted with surfaces in the same coordinate system with a relative
shift in y-direction for better comparison.

The obvious periodic error in Fig. 14(a) is one of the drawbacks to use a stitching mechanism
with systematic errors. Our proposed self-calibration method provide a way to in situ estimate
the repeatable high-order additive systematic error during the analysis of the measurement data.
As shown in Fig. 14(b), the artificial waviness diminishes in our stitched results without any
pre-knowledge of the systematic error.

5.4. Self-consistency study using different SA windows

We perform another measurement of the same SUT using a new SA with the same size (256 × 64
pixels) but in a different location on our 4-inch pupil interferometer. The previous SA is labelled
as SA1 and the new one as SA2.

SA1 SA2

SA1 ∩ SA2

Fig. 15. Experiments with a 50% overlapping area in common between SA1 and SA2 are
designed to study the self-consistency of the 2D self-calibration stitching method.

Fig. 14. The comparison of stitching errors (a) without subtracting system error and (b)
with the proposed self-calibration stitching method indicates its effectiveness. These two
stitching error maps are plotted with surfaces in the same coordinate system with a relative
shift in y-direction for better comparison.
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The 10 estimated reference maps are displayed in Fig. 13(a) with only 0.015 nm RMS overall
repeatability in their discrepancies shown in Fig. 13(b), which illustrates excellent repeatability
of the reference estimation.

5.3. Comparison with the stitching result using the calibrated reference

The stitched SUT height with the proposed SC algorithm (Fig. 11(i)) is evaluated by comparing
with the stitching result using the calibrated reference as benchmark (Fig. 9). The stitching
result without subtracting the systematic error (Fig. 11(a)) is also evaluated as a contrast. The
comparison results are shown in Fig. 14.

Fig. 14. The comparison of stitching errors (a) without subtracting system error and (b)
with the proposed self-calibration stitching method indicates its effectiveness. These two
stitching error maps are plotted with surfaces in the same coordinate system with a relative
shift in y-direction for better comparison.

The obvious periodic error in Fig. 14(a) is one of the drawbacks to use a stitching mechanism
with systematic errors. Our proposed self-calibration method provide a way to in situ estimate
the repeatable high-order additive systematic error during the analysis of the measurement data.
As shown in Fig. 14(b), the artificial waviness diminishes in our stitched results without any
pre-knowledge of the systematic error.

5.4. Self-consistency study using different SA windows

We perform another measurement of the same SUT using a new SA with the same size (256 × 64
pixels) but in a different location on our 4-inch pupil interferometer. The previous SA is labelled
as SA1 and the new one as SA2.

SA1 SA2

SA1 ∩ SA2

Fig. 15. Experiments with a 50% overlapping area in common between SA1 and SA2 are
designed to study the self-consistency of the 2D self-calibration stitching method.
Fig. 15. Experiments with a 50% overlapping area in common between SA1 and SA2 are
designed to study the self-consistency of the 2D self-calibration stitching method.

From Fig. 16, it is not difficult to notice that the stitched SUT shapes using different SAs
are very close to each other with only 0.12 nm RMS height difference on the 180 mm × 10
mm surface area. On the other hand, the estimated reference maps in Fig. 17 also indicate the
self-consistency of the stitching method as the reference maps in the common area of the two
SAs are similar to each other with only 0.10 nm RMS difference, and this difference is dominated
by the second order terms.

Comparing to SA1, the SA2 window is shifted 128 pixels to the right as shown in Fig. 15.
This shift will allow us to check if the self-calibration stitching method will give self-consistent
reference results in their common area SA1∩ SA2.
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Fig. 16. Two separate stitching results of the same SUT with different SAs on the reference
give very similar height maps with a tiny difference of 0.12 nm RMS. The color range is
only within [−3σ,+3σ] where σ is the RMS value of the stitched height values.

From Fig. 16, it is not difficult to notice that the stitched SUT shapes using different SAs
are very close to each other with only 0.12 nm RMS height difference on the 180 mm × 10
mm surface area. On the other hand, the estimated reference maps in Fig. 17 also indicate the
self-consistency of the stitching method as the reference maps in the common area of the two
SAs are similar to each other with only 0.10 nm RMS difference, and this difference is dominated
by the second order terms.
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Fig. 17. The reference estimations in these two 50% overlapped SAs (a) give self-consistent
results in their common area (b) and (c). There is only a tiny height difference in their
common area with the tilt terms removed (b) or up to the 2nd order terms removed (c).

By removing the 2nd order terms, the difference inside the common area drops to 0.03 nm
RMS, which shows excellent self-consistency of the proposed method. Since the terms up to
the 2nd order are not involved in the estimation as mentioned in Eq. (15), the small curvature
difference in the common area between the two estimated reference maps is due to the different
height variations in the non-overlapping regions of these two SAs which result in different
curvature values in each SA.

6. Discussion

We have proposed two types of 2D self-calibration stitching algorithms (the CS and SC algorithms)
for stitching interferometry. In this work, the calculation is fully based on pixel-to-pixel relations,
since the stitching steps are exact integer pixel numbers. However, the proposed algorithms can
be easily extended and applied to an interpolation representation of the reference surface with
a linear combination of basis functions when the stitching steps are not integer pixels and the
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give very similar height maps with a tiny difference of 0.12 nm RMS. The color range is
only within [−3σ,+3σ] where σ is the RMS value of the stitched height values.
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reference results in their common area SA1∩ SA2.
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are very close to each other with only 0.12 nm RMS height difference on the 180 mm × 10
mm surface area. On the other hand, the estimated reference maps in Fig. 17 also indicate the
self-consistency of the stitching method as the reference maps in the common area of the two
SAs are similar to each other with only 0.10 nm RMS difference, and this difference is dominated
by the second order terms.
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RMS, which shows excellent self-consistency of the proposed method. Since the terms up to
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difference in the common area between the two estimated reference maps is due to the different
height variations in the non-overlapping regions of these two SAs which result in different
curvature values in each SA.

6. Discussion

We have proposed two types of 2D self-calibration stitching algorithms (the CS and SC algorithms)
for stitching interferometry. In this work, the calculation is fully based on pixel-to-pixel relations,
since the stitching steps are exact integer pixel numbers. However, the proposed algorithms can
be easily extended and applied to an interpolation representation of the reference surface with
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Fig. 17. The reference estimations in these two 50% overlapped SAs (a) give self-consistent
results in their common area (b) and (c). There is only a tiny height difference in their
common area with the tilt terms removed (b) or up to the 2nd order terms removed (c).

By removing the 2nd order terms, the difference inside the common area drops to 0.03 nm
RMS, which shows excellent self-consistency of the proposed method. Since the terms up to
the 2nd order are not involved in the estimation as mentioned in Eq. (15), the small curvature
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difference in the common area between the two estimated reference maps is due to the different
height variations in the non-overlapping regions of these two SAs which result in different
curvature values in each SA.

6. Discussion

We have proposed two types of 2D self-calibration stitching algorithms (the CS and SC algorithms)
for stitching interferometry. In this work, the calculation is fully based on pixel-to-pixel relations,
since the stitching steps are exact integer pixel numbers. However, the proposed algorithms can
be easily extended and applied to an interpolation representation of the reference surface with
a linear combination of basis functions when the stitching steps are not integer pixels and the
interpolation is unavoidable. In that case, the relation matrices in the CS-P and CS-S algorithms
are no longer that sparse which could yield heavier computation issues.
The merits and limitations of the proposed CS-P, CS-S, and SC algorithms are discussed

below.
In pixel-relation-based stitching strategy, the CS-P algorithm directly estimate the reference

and stitched height at the same time. Although it can provide a direct least squares solution with
LSMR() function for data with a reasonable size shown in the experiment, it needs to pay careful
attentions to the tolerances in LSMR() and the weights of the extended equations to get accurate
stitching and estimation results.
Different from the CS-P algorithm, the CS-S and SC algorithms separate the reference

estimation and height stitching, which reduces the computational dimension of the problem.
The CS-S algorithm estimates the reference first and then uses it for shape stitching. In CS-S
algorithm flow, the reference estimation has less influence from the stitched SUT result, and it has
a better efficiency in utilizing the estimated reference comparing to the SC algorithm. The merit
of SC algorithm is its capability of keeping the size of the relation matrix Ds in Eq. (6) fixed as
M ×M, which does not depend on the subset number N. Therefore, it has a unique advantage
in dealing with stitching with large number of subsets. It is worth to note that the computation
in assembling the matrix Ds can be time consuming for a limited computing resources, if M
becomes a huge number.

7. Conclusion

In our work, the repeatable high-order additive systematic errors can be estimated from the
redundant data acquired in x- and y-directions stepping with big overlaps of neighboring subsets.
The periodic errors due to the uniform steps in data acquisition are carefully studied. Randomized
nonuniform step sizes are suggested to “break” the artificial periodicity during the data acquisition.
Regularization on curvature and twist are introduced in the algorithms to potentially preserve the
measured reference curvature and twist. The proposed algorithms have been cross-checked and
verified using both simulation and experimental data. Further study on the memory cost and
speeding up the computation will be our future work to resolve this practical issue.
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