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Abstract: We present an analytic methodology to guide the selection of a surface within an
optical design to apply freeform optimization. The methodology is discussed in the context of
other means currently available, such as human intuition, aberration theory, and other direct
surface construction methods. We describe the selection criteria for our proposed method and
provide the form of the parametric fitness function used to combine the criterion. Finally, a
case study comparing a design optimization procedure guided by the proposed methodology to
human intuition is presented based on a real instrument designed for a millimeter-wave astronomy
application. The methodology is shown to be effective even in the case of an optical system with
a large number of freeform/optical surfaces. The proposed approach provides an objective and
scalable solution to guide freeform optical system design by aiding a human’s design intuition.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Freeform optics are revolutionizing the capabilities of optical systems with applications across
the entire optical design spectrum [1]. Publications on the performance of freeform optical
systems highlight the improved field of view (FOV), system compactness, and imaging [2–4].
Researchers are developing and improving the theory to describe the aberration behavior of
systems that lack rotational symmetry [5–7]. The prescription of the freeform surface is also
an active area of research, where many different surface descriptions exist, some of which are:
Zernike polynomials, XY polynomials, NURBS, and Q polynomials.
Creating a first-order design is critical to achieving the optical requirements in an optimal

manner because the first-order principles constrain the design form of the optical system. In the
space of freeform optical design, methods to directly generate a starting configuration from a
set of planes have been developed [8–10]. Some methods solve analytic equations to set the
second-order imaging properties of the system [11,12]. Further methods develop the surface in a
step-by-step method, growing the FOV and therefore the surface [13]. Another method defines a
construction technique to generate the geometry and power distribution in a design optimally
suited for freeform optimization [14]. Aberration theory may be used to determine which surface
limits the optical performance and which freeform terms to apply, or even to determine the
initial system design [15]. However, once the system has many optical surfaces and the design
matures, numerical optimization is still necessary. Unlike other analytical approaches, we present
a parametric numerical alternative methodology to guide the process of choosing an optimal
surface in an existing design to optimize into a freeform optic.
Optical design is an art form that requires intuition and understanding from the optical

designer [16,17]; for now, there is no magic button to push in a program that returns the ideal
optical system. Instead, the software must be watched and guided with care to produce the
optimal results that many designers achieve. Choosing a surface in a design to make freeform and
optimize is no different. The designer must use their knowledge combined with the available data
obtained from the program (e.g. aberrations, pupil maps) to decide where to apply the freeform
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terms or rely on numerical optimization methods to guide the selection process [18–20]. The
choice of surface impacts the outcome of the design by constraining the design space, which is
potentially detrimental. Some commercial software provide similar or limited features, but the
methodology and specifics are trade-secrets.

2. Background

Modern optical design is enabled by computer modeling and optimization of the optical system,
where rays are traced and used to compute various parameters and metric concerning the design.
In the presented work, we leverage the computational power and ray tracing capabilities found in
the software package OpticStudio. At its essence, ray tracing involves computing the interaction
of a vector (ray) and the optical elements that comprise the optical system. The ray is propagated
from one surface to another, where its direction and location are recorded. This ray data can be
used to compute most properties of the optical system that concern the optical designer. The
raw ray data may also be accessed and used to compute a custom metric for the optical system.
We employ this style of computation, where our fundamental data is the ray information at a
given surface in the optical system. The ray data is composed of a location and direction in three
dimensions, where typically the location is expressed in Cartesian coordinates (x, y, z) and the
direction is given by the direction cosines (L, M, N). Rays from a point in the FOV (Field of
View) are normal to a wavefront, which is a surface of constant phase in the oscillations of the
electromagnetic field. A plane that is normal to the ray defines the local slope of the wavefront.
In this way, a ray direction is equivalent to the wavefront normal, which can be used to calculate
the local wavefront slope. Shown in Fig. 1 is a schematic of how the rays in an optical system
relate to the wavefront and its slope. To calculate the wavefront slope Sx and Sy in the x and y

directions, respectively, we use the ratio of the direction cosine in the direction of interest to the
direction cosine of the z-axis. The ray direction vector is a unit vector given by the direction
cosines (L, M, N), which leads to the vector ®H = Lx̂+M ŷ+Nẑ whose magnitude H = 1. Eq. (1)
gives the relationship between wavefront slope in the y-direction and the ray direction cosines,

Sy = tan
(
θy

)
=

Y
Z
=

Y/H
Z/H

=
cos

(
φy

)
cos (φz)

=
M
N
, (1)

where Y and Z are the projection of the ray onto the y and z axes, respectively, H is the length of
the vector, φy and φz are the angles between the vector and the y and z axes, respectively, and θy
is the wavefront slope angle in the y-direction. An equivalent formula is used for the x-direction,
where the ratio is between the x-direction cosine (L) and the z-direction cosine (N).

2.1. Chebyshev polynomials and their gradients

Aftab et al. derive a vector polynomial basis set, called ®G polynomials [21]. This set is obtained
from gradients of the two-dimensional Chebyshev polynomials of the first kind, named F
polynomials. Both sets are complete and orthogonal across rectangular apertures. Chebyshev
polynomials are well known for their data fitting properties. They generally show a fast rate of
convergence [22] and hold discrete orthogonality in several cases [23]. F and ®G polynomials
form a modal data fitting model that is valuable in many situations. They are well-suited for
applications where a very large number of polynomials are needed for fitting data such as freeform
optics or the reconstruction of surfaces from slope data, where mid-to-high spatial frequencies
must be correctly represented. Some features of these polynomial sets that make this possible
and efficient [21] are: (a) development of recursive relations for both F and ®G polynomial sets
(b) a one-to-one correspondence between the coefficients of the two polynomial sets (c) ease
and accuracy of generating the gradient ( ®G) polynomials which, unlike most other gradient
polynomial sets, do not need an orthogonalization process. Shown in Eq. (2) is a mathematical
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Fig. 1. Relationship between the ray model (black arrows) and wavefront (W(x, y)), from
which the wavefront slope angle (θx,y) in each direction is obtained. Rays are normal to
the wavefront, and therefore their direction is related to the wavefront slope in the x and y

directions. The local ray coordinates in the intersection point are labeled with primes, while
the coordinates of the surface-vertex are un-primed. The x, y, z axes are oriented in the same
direction, but the origin is shifted.

description of the ®G polynomials in terms of the scalar F basis set, while Eq. (3) gives this
description in terms of the standard, recursive 1-D Chebyshev polynomials of the first kind,
called T(x) and T(y).
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∂
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∂
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where n and m are double index variables describing the polynomials’ order [21] while î and
ĵ are unit vectors indicating a Cartesian coordinate system’s axes. Quiver plots of the first 5
non-trivial ®G polynomials are given in Fig. 2.

F and ®G polynomials based data processing has also shown to be adaptable and efficient
in various practical situations [21, 24] such as the presence of NaNs (not a number) in data
(representing missing data, apertures, blockers etc.), uneven sampling or a different sampling in
two directions (e.g. x and y in Cartesian coordinates).

3. Optimal surface selection for freeform optimization

In this work, we present a methodology to select the optimal surface within an existing optical
design to optimize into a freeform shape. We use real ray data from design software (e.g. Code V,
OpticStudio) to inform and guide this methodology.

3.1. Underlying principles

The fundamental principle that motivates this work is the time-reversible nature of electromagnetic
(EM) radiation, or that the forward propagation of an EM wave is equivalent to its reverse
propagation. A similar approach is often used to design Computer Generated Holograms (CGH)
in order to create an aberration-free null condition. This can be expressed in terms of ray-tracing
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Fig. 2. First 5 non-trivial ®G polynomials plotted in quiver format with their corresponding
labels. Note that the x, y coordinates are all normalized from -1 to 1.

by stating that a model tracing rays from the source to the image is equivalent to tracing rays from
the image to the source. Forward traced rays from a perfect optical system (i.e. aberration free)
will start from a source plane and end at a point on the image plane as a point-to-point mapping.
If that same system is ray-traced from the same image point (i.e. no distortion) to the source
plane (reverse ray-trace) the rays will take the same path as those from the forward case. At every
surface within the optical system the rays will have the same position and direction. In other
words, the wavefronts in both the forward and reverse cases are identical at each surface in the
system. This principle is shown pictorially in Fig. 3, where an off-axis (in aperture) Cassegrain
telescope is simulated in OpticStudio and the wavefront at an intermediate surface is sampled in
both the forward and reverse models using the real ray data. In the zoom-in graphic of Fig. 3 we
see zero difference between the on-axis wavefronts (ray position and direction) of the forward
and reverse models (blue and yellow, respectively). However, as the conic are used away from
their geometric conditions, we see a disagreement between the forward and reverse models. This
demonstrates that the proposed method is able to include all the relevant ray information across
field points, but it is equally valid for any set of wavelengths, configurations, etc. that are ray
traced.
We utilize this principle by recognizing that a difference in wavefronts between the forward

and reverse case signifies a departure from the aberration and distortion free conditions on the
optical system. The difference between these cases contains data that can be used to generate an
initial freeform surface, as shown in the work by Yang [8–10], but in this work we demonstrate
another use case that compliments prior work by answering a more fundamental question of
where to optimally place the freeform surface within the design. Once a surface has been selected,
any number of methods [25] to generate that freeform surface may be used.

Our proposed methodology is able to synthesize all ray data at a selected surface across field
points, wavelengths, configurations, etc. that may be desired. As long as the ray positions and
directions are recorded at the surface, the information can be utilized cohesively when deciding
which surface to select. We are able to combine such disparate ray data by leveraging the
flexibility of modal fitting using the ®G polynomials described in Section 2.1. When we collect
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Fig. 3. Graphical representation of the time-reversibility of ray-tracing, where the red, green,
and blue rays are traced in a time-forward sense, from the source to the image, while the
cyan, magenta, and yellow rays are traced in a time-reversed sense, from the image point to
the source. The ray locations and directions at the surface of interest are shown as an insert
quiver plot. The rays from the reverse direction are plotted in the coordinate frame of the
forward direction rays, which allows a direct comparison of the two ray sets.

the ray data from all relevant sources, we simply use the entire data set at once, as described in
the following Section 3.2. If desired, the ray data can be weighted during this process to achieve
finer control over the surface selection criteria.

3.2. Parametric freeform surface selection criteria

At a surface within the optical system, the real ray data from forward and reverse ray-traces are
used to compute multiple parameters that inform the fitness of, or how well suited, the surface is
to the application of freeform terms. To compute these parameters, a set of steps shown below
are followed:

I Ray data is collected at every surface of interest, in the forward and reverse models,
which results in a discrete collection of x, y, z intersection points and L, M, N direction
cosines after interacting with the surface. A subscript f or r designates the forward and
reverse data, respectively. This ray data may be obtained by tracing multiple field points,
wavelengths, system configurations, etc.

II The ray data is used to define a discrete 3D vector field on each surface
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f , z

i
f

)
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where i = 1 . . . I and j = 1 . . . J, which represent the discrete sample index in the forward
and reverse directions, respectively.

III The discrete forward and reverse vector fields are then fit separately using a least squares
technique with a continuous vector field defined by the ®G polynomials (see Section 2.1 for
a description) whose polynomial coefficients are given by Gt for t = 1 . . .T .

®Af (1)
...

®Af (I)


=


®G1(1) . . . ®GT (1)
...

. . .
...

®G1(I) . . . ®GT (I)



G1, f
...

GT, f


(6)


®Ar (1)
...

®Ar (J)


=


®G1(1) . . . ®Gk(1)
...

. . .
...

®G1(J) . . . ®Gk(J)



G1,r
...

GT,r


(7)

IV The coefficients Gt in the forward and reverse direction are used to define new vector fields
®G f and ®Gr , respectively. These vector fields are sampled at K discrete points, which at
least include the same points as the measured vector fields, ®Af and ®Ar .

V The ®G polynomials have a direct correspondence to the F polynomials, which allows us to
integrate the vector field and obtain the wavefront described by the F polynomials at the
surface of interest. 

®G f (1)
...

®G f (K)


→


Ff (1)
...

Ff (K)


(8)


®Gr (1)
...

®Gr (K)


→


Fr (1)
...

Fr (K)


(9)

VI By computing the difference in the reconstructed forward and reverse wavefronts at the
surface of interest, we can obtain a new wavefront (F∆) that measures the degree of
mismatch between the forward and reverse wavefronts in the optical system, which we
want to fix through freeform optimization.

Ff (1)
...

Ff (K)


−


Fr (1)
...

Fr (K)


=


F∆(1)
...

F∆(K)


(10)

The quantities listed above form the basic building blocks upon which all the data processing is
founded. To fully describe the optical system, the FOV and pupil (for each field) is sampled in
both forward and reverse directions (Step I) and used for form the discrete vector fields given by
Eqs. (4) and (5) in Step II. Step III is applied to all forward or reverse direction data (both field
and pupil) at given surface to generate a continuous vector field that represents the normal (slope)
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of the wavefront. A continuous vector field is critical for this application since we are modeling
the potential effects of a freeform surface in the optical system, which requires a continuous
surface and a continuous first derivative (slope) for physical realization. We are not proposing this
solution for a Diffractive Optical Element or CGH or hybrid-type optics application in this respect.
Ensuring that the wavefront we generate through fitting is continuous (Step V), we guarantee that
there is a physical surface that can achieve or approximate the necessary wavefront manipulation,
disallowing any unphysical cases. The final process is taking the difference between the forward
and reverse wavefronts (Step VI).
With the data processed in the manner described above, we compute:

1. ∆SRMS
f ,r

: the root-mean-square (RMS) error between the data and the fit in the forward
and reverse directions, respectively. This quantity is a metric of how well a single surface
represents the ensemble of all simulated wavefront slope data. This metric is only evaluated
at the spatial points where both ®Af ,r and ®G f ,r are defined, which by definition is the set of
®Af ,r , but could be a subset of ®G f ,r .

∆SRMS
f = RMS

©«
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2. ∆SRMS
x,y : the RMS of the slope difference between the forward and reverse vector fields

describes a metric of the amount of potential aberration correction over the entire FOV at
the surface. The slope of the fitted vector field is computed by using the ratio of the vector
component along the desired slope axis to the z vector component.
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3. FPSD
∆

: the Power Spectral Density (PSD) of the wavefront difference evaluated at a spatial
frequency f1. The PSD of the surface is computed by taking the difference in forward and
reverse wavefronts (F∆). This calculation provides a tool to determine if the surface will
be manufacturable. A set of these parameters evaluated at multiple spatial frequencies
may be linearly combined if more than one spatial frequency are of interest.

FPSD
∆
= PSD

©«


F∆(1)
...

F∆(K)


ª®®®®¬
�����
f 1

(17)

The three criteria described above combine to give a metric for selecting the optimal surface at
which to apply the freeform terms.

3.3. Parametric fitness function definition

The four criteria defined in Section 3.2 are used in a fitness function to determine the optimal
surface for freeform optimization. As such, specific weight values and a method of combining
the parameters was chosen for this work. Furthermore, additional scaling factors based on the
quality of data (see Sec 3.4) obtained from ray-tracing were included in the computation of the
fitness function. The form of fitness function is given in Eq. (18),

f = w1Uf r − w2

√(
∆SRMS

f

)2
+

(
∆SRMS

r

)2
+ w3∆SRMS

x + w4∆SRMS
y − w5FPSD

∆
, (18)

where Uf r is the minimum fractional overlap between the forward ( f ) and reverse (r) data,
described in more detail in Section 3.4. ∆SRMS

f
and ∆SRMS

r are the parameters calculated by
Eqs. (11) and (12), ∆SRMS

x and ∆SRMS
y are the parameters computed in Eqs. (15) and (16), and

w1· · ·5 are the weight values applied to the parameters. Based on these parameters, a larger fitness
function value represents a more optimal candidate to be a freeform surface.
The fitness function incorporates the fractional overlap between the forward and reverse data

(Uf r ) because a surface with more overlap (closer to unity) has the potential to correct a larger
portion of the aberrations in the system compared to a surface with less overlap (Uf r closer to
zero). This is a representation of the spatial aspects of aberrations, where both the position and
direction of a ray must be considered. Note that as the design matures, and the aberrations in
the system are reduced, the overlap between the forward and reverse data will increase at all
surfaces as shown in Fig. 4. The terms ∆SRMS

x and ∆SRMS
y describe the amount of potential

aberration correction at the surface. A larger RMS difference states that the surface can affect
more meaningful change and correspondingly the fitness function value increases. Note that
this factor deals with the direction of the ray, in contrast to its position, as addressed above.
By combining these three parameters, when there is little aberration correction to be had at
the surface the fitness of the surface is reduced. This places an emphasis on getting the most
aberration correction out of a single freeform surface as possible. We then include a metric
concerning the manufacturability of the surface by computing the PSD (FPSD

∆
) at specific spatial

frequencies and subtracting it from the fitness function. A larger PSD value at a frequency is
harder to produce due to larger slopes and therefore is counted negatively in the fitness function.
The PSD directly describes the magnitude of variation of the surface across the spatial frequency
domain. As the value of the PSD at a specific frequency increases, the slope of the surface
described by that spatial frequency also increases. Surface slope plays a critical role when
determining the manufacturability of a surface because of difficulty fabricating and testing high
slope surfaces. This is because creating a high slope requires challenging tool paths and removal
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while simultaneously pushing the needed dynamic range of the metrology tool. Therefore,
most freeform surfaces have a maximum allowable surface slope. The root-sum-square (RSS)
combination of ∆SRMS

f ,r
(RMS difference between the fit and measured slopes in the forward and

reverse directions) is subtracted from the fitness function because it is a metric of the quality of
the processed data. To produce reasonable and trustworthy results, the fit of the measured data
needs to be as good as possible. As the fit quality is reduced, the RMS error will increase and
therefore lower the fitness of the surface.

3.4. Data quality check factor

We implement data quality checks per evaluated surface after obtaining the forward and reverse
ray-trace data. We impose a minimum fractional overlap criterion between each sample in the
field of view to ensure that the data accurately represents and sufficiently samples the wavefronts.
If there were no overlap between field points, a freeform surface can perform highly localized
correction to minimize the aberrations across the discretely sampled field, but in reality the
continuous field will still contain significant aberrations. If the design was utilizing multiple
configurations or wavelengths that also sampled the surface at different locations, a fractional
overlap criterion should be included. The fractional overlap between the data sets is defined
by drawing a polygon encompassing the individual data and computing the overlap between
these regions. In this way, any grouping of rays may be formed, and the overlap between other
groups can be computed and used in the fractional overlap parameter. By specifying a minimum
amount of overlap between field sampling at every surface of interest we help ensure realistic
design guidance. Furthermore, we implement a method to control for the uncertainty caused by a
mismatch in data location (sampling of the wavefront) between the forward and reverse cases.
For any system with aberrations, the forward and reverse wavefronts will have regions where they
do not overlap. This creates a problem when evaluating the surface selection criteria because the
criteria depend on the difference between the forward and reverse cases, but the non-overlapping
sampled wavefronts have no physically meaningful data with which to take the difference. To
remedy such a case, we simply down-select the forward and reverse data until we are working
with the union of the data (i.e. the overlap region). As the design matures, and the aberrations
are reduced, the overlap region will grow, as shown pictorially in Fig. 4.
The fitness function definition that we have selected is based on our reasoning of how the

surface criterion should be combined. We recognize that a different method of combining the
terms and their specific weight values will change the outcome of this analysis. Furthermore, a
different set of criterion may be defined for a different application based on its needs. All these
variations should be investigated and optimized such that the surface recommendation is robust
and reliable.

4. Methodology case study: optimization path comparison

To validate the proposed methodology of selecting an optimal surface to apply freeform
optimization at, we present a case study of a millimeter-wave instrument for the Tomographic
Ionized-carbon Mapping Experiment (TIME). This design was generated by the authors as part
of a separate body of work. The instrument design required the use of freeform optics to fit
the system inside a spatially-constrained volume (telescope cabin) without sacrificing optical
performance. A design was optimized using human guided intuition that achieved this goal, as
shown in Fig. 5, and whose basic optical prescription is given in Table 1. The instrument has a
linear field-of-view of ±0.023◦, which is rotated to track celestial bodies [26,27] using a K-mirror
(K1–3 in Fig. 5). The orientation of the K-mirror is sampled at 5 different angles over its range
of -45 to 45 degrees as separate configurations in the optical design. The design has an entrance
pupil diameter of 12 m (telescope aperture), and a final working F/# of F/3 to couple into the
detector modules. The performance metrics of this millimeter-wave instrument are primarily
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OptimizationAberrated Wavefront Non-Aberrated Wavefront

Fig. 4. Diagram showing the development of the spatial overlap region between the forward
and reverse ray traces at a surface. The system in (a) is aberrated, and at the surface of
interest, the sampled rays in the aperture do not overlap. However, after optimization (b), the
ray footprint on the surface matches.

dictated by eliminating unwanted signals coupling to the detectors, and distortion. The unwanted
signals can come from aberrations, both at the image and pupil. Image space telecentricity is
also important to ensure the desired signal is coupled to the detectors.
The instrument designed for TIME has a total of 6 mirror surfaces: three powered, three flat,

and a single cold lens made from high-density polyethylene (HDPE), arranged in a folded-path
geometry about the full volume of the cabin. Each powered surface employs a freeform, or
non-rotationally symmetric, surface to control the aberrations and obtain the required performance
in such a folded geometry. The second surface within the K-mirror uses a powered freeform
surface as part of the image and pupil relay comprised of K2, P1, and P2. The flat mirror
(F1) folds the optical path so that the relay can fit within the cabin volume. A Lyot stop is
formed within a cryostat after the second powered mirror (P2) to control stray light and eliminate
unwanted loading on the detectors. The cold lens serves to form the final image and create a
telecentric object space in order to couple the radio waves to the detector modules within the
cryostat.
When a clear global optimum to an optical design problem is not readily available, either

through human intuition or numerical optimization, a methodology to guide the optimization
process is desirable. Finding the global optimum of a complex optical system is typically limited
by numerical power or time, and is therefore often confined within a local optimum. This study
attempts to provide guidance in the optimization process in a way that can lead to a high-potential
local optimum space with more objective and parametric methods. We will now present three
cases in which the same starting point design was optimized using the same merit function, but
the optimization procedure was guided by different sources. Please, note that this merit function
is not the fitness function defined in Eq. (18). All designs start from the same place, but the
order of freeform surface optimization changes. The first case follows the same procedure as the
original instrument design, which was guided by human intuition and met the requirements and
is being manufactured now. The second case employs the methodology introduced in this paper
to optimize for the lowest merit function (i.e. best optical performance), while the third case
also employs the proposed methodology but with the goal of finding the highest merit function
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Top

Cryostat
Bottom

Object

Fig. 5. 3D wire frame view of the millimeter-wave instrument design created for the
Tomographic Ionized-carbon Mapping Experiment (TIME). The folded path was required to
fit within a cabin of an existing telescope, and as such needed freeform optics to maintain
optical performance. This design was optimized using human intuition, where the surfaces
K2, P1, P2, and C1 are freeform. The remaining surfaces (K1, K3, and F1) are flat. Note
that surface C1 is a refractive optic where one side is flat and the other is freeform.

Table 1. Basic optical prescription of the TIME instrument which is used in the case study
on optimal freeform surface selection. Up to 6th order XY -polynomials and the first 36
Zernike terms were used during optimization.

Surface Type Spacing (mm) Tilt X (deg) Tilt Y (deg) Tilt Z (deg)

Object – -150 0 0 0

K1 Flat 1100 55 0 [-45, 45]

K2 XY -polynomial 1100 20 0 [-45, 45]

K3 Flat 750 55 0 [-45, 45]

F1 Flat 1650 55 0 120

P1 Standard Zernike 2600 -10 -17 0

P2 XY -polynomial 873.65 -28.75 -1.6 60

C1 (front) XY -polynomial 40 0 0 0

C1 (back) Flat 201.32 0 0 0

Image Flat 0 0 0 0
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(i.e. worst case). The third case was selected to demonstrate that the TIME design is not in a
gentle and wide local solution space, which would lead to a final design that is independent of
the path guidance. These three cases were chosen to compare the human guided (case 1) to the
fitness function guided (case 2) and show that by implementing an analytic method of choosing
the surface to apply freeform optimization, we can obtain a better performing optical system.
Furthermore, the third case was selected to demonstrate that the proposed methodology was not
obtaining a result by coincidence, that in fact our fitness function definition given by Eq. (18) was
seeking the specified goal. A summary of the results from this case study is shown in Table 2,
where the order of surface selection and final merit function are listed.

Table 2. Overview of the case study results showing the final merit function value obtained by
following the specified surface order and methodology. The same merit function definition
is used in all cases and is a combination of multiple performance metrics: spot size, Lyot
stop quality, telecentricity, and distortion, which are set by the TIME science goals [28, 29].

Surface Order Methodology Merit Function Value

K2 P1 P2 C1 Human Intuition 0.0151

P1 K2 P2 C1 Fitness (Optimal) 0.0124

P2 C1 K2 P1 Fitness (Worst-case) 0.0153

The fitness function given by Eq. (18) combines parameters with different units and individual
weights per surface. This allows for maximum flexibility when defining what metrics are
important to the designer, but also leads to larger uncertainty about how to choose the weighting.
In the presented cases, we decided that the weighting was best expressed as the value with which
the parameter was normalized. For instance, the RMS of the slope difference was weighted by
the factor that made the parameter expressed in terms of a normalized RMS. This weighting
allowed us to concisely compare the parameters, but also did not select against large surface
slopes, which is not typically allowable. We were able to not consider the impact on surface
deviation and slope because the fabrication methods used can handle practically any surface
shape required. Furthermore, because the manufacturability of the surfaces was not a driving
metric, the PSD metric was weighted by zero, and therefore not included in the fitness function.

The general procedure for optimizing each cases design is as follows. The starting point design
is loaded into OpticStudio and the chosen methodology is used to select a surface at which to
apply freeform optimization. The selected surface definition is changed to handle freeform terms.
For the standard Zernike surface (P1), we allowed terms Z5–36 and up to 6th order aspheric
terms to vary, while for an XY -polynomial surface (K2, P2, and C1) we varied all terms up to 6th
order excluding terms with a linear component (i.e., xyn or xny). The design is then optimized
given a fixed merit function definition until there is no significant change in the merit function
value over multiple cycles of the optimizer. This process repeats until all four potential surface
candidates are optimized, where each previously optimized surface is allowed to continue to vary
its prescription as further surfaces are optimized. We allow all non-flat surfaces to vary their
respective parameters (freeform and non-freeform) during the optimization process so that the
design can mature as more surfaces are made freeform. As each surface is selected for freeform
optimization, the same parameters are chosen to describe the surface, maintaining consistency
across each case. We evaluate the design’s final merit function value, which determines how well
the methodology performed given the desired outcome. Since the merit function definition is the
same across all cases, this single number represents the optimized performance of the design.
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4.1. Case-1: human intuition guided

The human guided case follows the same surface selection ordering as used in the design of the
TIME instrument, but uses a slightly modified merit function definition and employs a different
style of optimization. These changes from the real instrument design were made in order to
eliminate systematic sources of error and create an apples-to-apples comparison in this work.
Furthermore, we acknowledge that this case result may vary depending on the designer, since this
approach is by default, subjective. Since the final performance already met the required science
performance, we stopped optimization and it is now being manufactured.

4.2. Case-2: fitness function guided for best performance

To guide the design towards the lowest merit function, we use the results from the fitness function
methodology present in Sec 3.2 to select the surface for freeform optimization that obtains the
largest fitness function value. The surface selection ordering and the value for each evaluation of
the fitness function on the freeform candidate surfaces is summarized in Table 3, where after a
surface has been selected, it is removed from further evaluations, as represented by the dashes.

Table 3. Fitness function evolution throughout the objectively guided case for best perfor-
mance. The largest value of fitness function determined which surface would be chosen next
for freeform optimization.

Fitness Value

Step Selected Surface K2 P1 P2 C1

1 P1 0.688 0.772 0.415 0.662

2 K2 0.791 – 0.539 0.647

3 P2 – – 0.565 0.393

4 C1 – – – –

4.3. Case-3: fitness function guided for worst performance

After obtaining the result from the fitness function guided method for best performance and
finding that it led to a more optimal design, we wanted to check if the methodology was actually
guiding the optimization in the direction we expected, even for the worst case. To accomplish
this, we selected the least optimal surface for freeform optimization at each step in the process. A
summary of these results is shown in Table 4, where the selected surface and fitness function
values for each surface are listed.

5. TIME optical performance comparison

The three cases presented above show that the fitness function method provides a means of
analyzing a design in a meaningful way. The fitness function definition and analysis methodology
work together to give the designer a non-biased and objective way of selecting a surface to
optimize. But what is the actual performance difference between using the analytic method
and a human’s intuition? The answer depends strongly on the merit function definition, as
well as the specific design, but we now present a comparison between the three cases to give
the proposed methodology more grounding in optical performance. The merit function we
used during optimization was based on a combination of minimizing the geometric spot size,
uniformity of the Lyot stop, image-space telecentricity, and distortion as the TIME science
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Table 4. Fitness function evolution throughout the objectively guided case for worst
performance. The lowest value of fitness function determined which surface would be
chosen next for freeform optimization.

Fitness Value

Step Selected Surface K2 P1 P2 C1

1 P2 0.688 0.772 0.415 0.662

2 C1 0.732 0.561 – 0.516

3 K2 0.270 0.756 – –

4 P1 – – – –

requirements dictate. These four metrics are shown for each of the three cases used to validate
the proposed methodology in Fig. 6 and 7.
We have separated the metrics into two categories, where the imaging and distortion metrics

were straight-forward and intuitive to optimize for, while the Lyot performance and the telecen-
tricity were complex and less-stable merit function definitions. The imaging performance is

Configuration Maximum Chief 
Ray Angle (deg)

1 0.053

2 0.053

3 0.057

4 0.061

5 0.058

Configuration Maximum Chief 
Ray Angle (deg)

1 0.038

2 0.038

3 0.035

4 0.034

5 0.031

Configuration Maximum Chief 
Ray Angle (deg)

1 0.031

2 0.033

3 0.035

4 0.043

5 0.050

Fig. 6. Complex optical performance specification comparison between the three cases of
guiding methodology. Each color represents a different field point in the design, while the
five configurations of the K-mirror are plotted on top of one another in the Lyot metric. For
each K-mirror configuration a maximum chief ray angle on the image plane is reported.

measured by the fraction of enclosed energy within a given radius, as computed using diffraction
and aberrations. Distortion is measured by the deviation of the centroid location of the spot to the
ideal image location, which for our case should be a straight vertical line. The Lyot uniformity is
measured by looking at the circularity of the rays at the edge of the pupil and their deviation from
one another. Telecentricity is measured by calculating the maximum chief ray angle on the image
plane surface. We see that the human intuition case has the best Lyot performance, its internal
pupil is most circular and uniform across the field and configurations, but suffers in all other
metrics. The fitness function guided for worst performance has the poorest imaging performance
and distortion, while its telecentricity is the 2nd best. The optimally guided design has the best
telecentricity, imaging, and distortion, while its Lyot uniformity is worst. We note that depending
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Fig. 7. Typically defined optical performance comparison between the three cases of guiding
methodology. Each color represents a different field point in the design, while the imaging
performance shows the diffraction limit as a solid black line and the distortion metric shows
the overlay of rays at the image plane with a circle of diameter 135 mm in black.

on how the merit function is constructed, a different result is obtained. Therefore, while the
fitness function guided for optimal performance has lowest Lyot performance, the structure of the
merit function weights the other metrics as higher priority. Furthermore, the Lyot uniformity is a
complex merit function to optimize for, and is more unstable than the other metrics.

6. Conclusion

In this work we present a methodology to objectively guide the selection of a surface in an optical
design for freeform optimization. The methodology is based in the real ray data obtained from
ray tracing an optical system in a time-forward and time-reversed sense. We show that for our
proposed selection criteria, the methodology correctly informs the designer on what ordering of
surface optimization will yield the desired performance outcome, whether that be optimal or
worst. This work attempts to navigate the space between local and global optimization, providing
overall design insights. We hope that this work may be used by the optical design community
to inform the continuing development and blossoming of the freeform design space. The goal
of the demonstrated parametric fitness approach is not to replace analytical or intuition based
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approaches. Instead, this objective methodology will help a designer to check other possible
optimization paths, which may lead to a hidden local minimum. This is especially true when
the design has many optical surfaces and the designer has too many options. In this case, our
proposed numerical approach can provide top candidates to the designer so that they can apply
theoretical or analytical approaches to the filtered options.
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