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Abstract: Computer Controlled Optical Surfacing (CCOS) is widely applied for fabricating
large aspheric optical surfaces. For large optics fabrication, various sizes of polishing tools are
used sequentially. This raises the importance of efficient and globally optimized dwell time
map of each tool. In this study, we propose a GEnetic Algorithm-powered Non-Sequential
(GEANS) optimization technique to improve the feasibility of the conventional non-sequential
optimization technique. GEANS consists of two interdependent parts: i) compose an influence
matrix by imposing constraints on adjacent dwell points and ii) induce the desired dwell time map
through the genetic algorithm. CCOS simulation results show that GEANS generates a preferable
dwell time map that provides high figuring efficiency and structural similarity with the shape of
target removal map, while improving computational efficiency more than 1000 times over the
conventional non-sequential optimization method. The practicability of GEANS is demonstrated
through error analyses. Random tool positioning error and tool influence function errors are
imposed on dwell time maps. Compared to the conventional non-sequential optimization method,
the power spectral density values of residual surface error from GEANS remain stable. GEANS
also shows superior applicability when the maximum acceleration of a tool is applied.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Since Computer Controlled Optical Surfacing (CCOS) developed, it has been widely applied for
large aspheric optical surface fabrication [1–8]. The next generation telescope projects, such as
Giant Magellan Telescope (GMT) [9], Thirty Meter Telescope (TMT) [10], and Extremely Large
Telescope (ELT) [11,12] are required to meet the challenge of manufacturing off-axis segments.
These projects contain from seven to several hundreds of meter-class segmented aspheric mirrors,
so the advanced CCOS process must be efficient while accomplishing high precision optical
surfaces.

In the CCOS process, dwell time calculation is an essential procedure. It deterministically
guides the motion of machine tools at successive dwell points to remove material from an optical
surface. In the past few decades, researchers have studied dwell time calculation algorithms which
can be categorized into iterative algorithms [13,14], Fourier transform-based algorithms [15–17],
matrix-based algorithms [18–24], and Bayesian-based algorithms [25]. These algorithms aim
to obtain non-negative and smooth dwell time solutions that minimize the estimated residual
errors of the optical surface. In the CCOS process of large optics fabrication, such as the CCOS
platform for GMT fabrication at The University of Arizona, multiple tools with different sizes
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and tool paths are utilized for a single workpiece [26–28] to correct the surface errors for various
spatial frequencies. The tool path parameters, such as the machining interval and the path type
(raster path, spiral path, random path, etc..), usually vary depending on the shape of the workpiece
and the physical constraints of the machine tools. Therefore, the matrix-based methods are
preferred in our CCOS process since the dwell time can be flexibly calculated for arbitrary dwell
positions. Also, to improve the overall processing efficiency, the dwell time is expected to be
calculated for multiple tools in the planning phase, and the metrology is only performed after all
the tools complete their assigned works.

The dwell time for multiple tools was mostly optimized sequentially until the Non-Sequential
dwell time optimization method (NS) was proposed in our previous research [19]. The NS method
considers multiple Tool Influence Functions (TIFs) simultaneously in a single optimization run,
which implicitly adds the necessary regularization to stabilize the linear solver. Therefore, it
balances the dwell time for each tool and reduces the generation of mid-spatial-frequency errors
effectively, which is a common issue in the sequential matrix-based methods. The results from
the Conventional NS (CNS) are mathematically ideal and show high figuring efficiency in terms
of the estimated residual errors. However, they have limitations in practical application. First, in
terms of accuracy, CNS considers neither the Computer Numerical Control (CNC) hardware
limitations (i.e., the maximum local slope of the dwell time between each two consecutive
dwell points) nor the practical preference that the dwell time map should smoothly resemble the
shape of the target removal map in order to minimize any mid-to-high spatial frequency residual
errors. Furthermore, in terms of computational efficiency, the increased size of the influence
function matrix due to multiple TIFs brings heavier computational burden and makes iterative
optimization difficult.

In this study, we proposed a GEnetic Algorithm-powered Non-Sequential (GEANS) dwell
time optimization method which enhances the feasibility of a dwell time map and improves its
adaptability in the practical CCOS process. GEANS provides a novel method to compose the
influence function matrix for multiple TIFs. It not only improves the computational efficiency of
CNS by a factor of 1000, but also induces the optimized dwell time map to be smooth and have
similar structure to the target removal map. The Genetic Algorithm (GA) is used to globally
optimize the detailed parameters related to CNC dynamics limitations such as local slope of the
dwell time. It also promotes the optimization results to have preferred characteristics that are
mentioned above while achieving high figuring efficiency. These features enable to find desirable
and practical dwell time maps for CCOS process.

The rest of the paper is organized as follows. The theoretical backgrounds for NS dwell
time optimization and genetic algorithm are briefly reviewed in Section 2. In Section 3, we
introduce GEANS method in detail. Section 4 presents the simulation results and the performance
comparison between CNS and GEANS. Section 5 discusses the limitations of the proposed
method, and Section 6 summarizes the implications of GEANS and concludes the paper.

2. Background

2.1. Non-sequential dwell time optimization

The purpose of dwell time optimization is to find a removal map, z(x, y), which is close or equal
to the target removal map, zd(x, y). Derived from the Preston equation [29], the material removal
process in CCOS has been modeled as the convolution of a TIF, t(x, y), with the corresponding
dwell time, d(ξ, η). When the sampling has finite resolution, the convolution process can be
represented in matrix form as

z(xk, yk) =

Nd∑︂
i=1

t(xk − ξi, yk − ηi) d(ξi, ηi) (1)
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for k = 1, 2, · · · , Nz, where Nz is the number of sampling points in z(xk, yk), Nd is the number of
dwell points, (ξi, ηi) is the ith dwell point, and t (xk − ξi, yk − ηi) represents the material removed
per unit time at point (xk, yk) when the TIF dwells at (ξi, ηi). Depending on the tool path or
available tool overhang distance, (xk, yk) and (ξi, ηi) coordinates can be different. Equation (1)
can also be represented as

⎛⎜⎜⎜⎜⎜⎜⎜⎝

z1

z2
...

zNz
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where z represents material removal map, t represents influence function, and d represents dwell
time of each dwell point in matrix form. Since the convolution result between a dwell time basis,
which is a group of tool location points with relative weights, and a TIF will compose a row of t,
it would be a sparse matrix that most elements of t are zero except the convolution area.

In large optics fabrication, multiple TIFs are combined with different tool paths to achieve the
desired residual error, zr(x, y) = zd(x, y) − z(x, y), in the shortest available overall polishing time.
In a previous study [19], we proposed the NS technique that counts multiple TIFs simultaneously
in a single optimization process, which can be expressed as

z(xk, yk) =

Nt∑︂
j=1

Nj
d∑︂

i=1
tj(xk − ξj,i, yk − ηj,i) dj(ξj,i, ηj,i) (3)

where Nt is the number of TIFs, (ξj,i, ηj,i) represents the ith dwell point on the tool path of the jth
TIF, and Nj

d is the number of total dwell points for the jth TIF. Each TIF has its own dwell time
map, and the dwell points of each TIF can be varied when necessary. By considering multiple
TIFs in optimization, the NS can achieve more balanced dwell time maps for each TIF to enhance
CCOS efficiency than those optimized in the sequential way. Equation (3) can be represented as

z =
[︂
t1, . . . , tNt

]︂ [︂
d1, . . . , dNt

]︂T
(4)

In Eq. (4), as the NS method utilizes multiple tools, multiple influence matrices (tNt) and
corresponding dwell time matrices are included in the calculation.

Additionally, we can add alignment terms, such as piston, tip and tilt, to the target removal
amount and run optimization. This process can be expressed as

z(xk, yk) =

Nt∑︂
j=1

Nj
d∑︂

i=1
tj(x − ξj,i, y − ηj,i) dj(ξj,i, ηj,i) +

Na∑︂
l=1

al(x, y) (5)

where Na is the number of optimized alignment terms and al(x, y) is adjusted amount of the lth
term. Considering the solution of a dwell time map must be non-negative in CCOS processes,
the alignment terms help relax this constraint in the optimization, although the total dwell time
may slightly increase.
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The optimized dwell time map dopt is calculated as

dopt =min
d,a

∥td − (zd + a)∥2
2

s.t. d ≥ 0
(6)

where zd, represent the target removal map and a represents adjusted alignment map. The amount
of alignments will be calculated and optimized to minimize residual figure error. Therefore the
estimated residual error map, zf , can be represented as

zf = zd − tdopt − a (7)

2.2. Genetic algorithm

A GA is an evolutionary algorithm that models processes of natural selection to search a globally
optimized solution [30,31]. It finds an optimized solution set (i.e., chromosome) which is
encoded in a sequence of numbers that representing optimizing parameters (i.e., gene) among
given parameter candidates (i.e., gene pool). Each chromosome of a population is evaluated by
predefined fitness function. The next generation of population is created through following genetic
operations. To prompt the evolution path towards as our preference, those operations are based on
the fitness. Chromosomes with higher fitness score has more probability to be mated (selection)
and transfer their genes to the next generation by exchanging genes (crossover). Especially,
chromosomes which have the highest fitness can be carried to the next generation directly (elitism)
to keep the superiority. While exchanging genes, some of genes can be randomly selected and
changed to others with a certain probability (mutation). Often, immigrants are joining to the next
generation to keep the diversity in population. Over generations, the chromosomes are evolving
toward the optimal solution until the maximum number of generation.

The GA has a high potential in solving complex problems such as dwell time optimization in
CCOS process. For example, we can guide the optimization result to reflect our preference using
the fitness function with preferred target criteria. Besides, if the gene pool has practical machining
parameters only, the optimized dwell time map will be achievable solution in consequence. Thus,
the GA enables us to find optimal combination of parameters while considering machining
feasibility or our preference in CCOS process.

3. Genetic algorithm-powered non-sequential dwell time optimization

Our previously proposed CNS method [19] has shown the performance improvement in figuring
efficiency compared to the sequential optimization. The optimized dwell time map from CNS,
however, has issues when applying it in a laboratory setting. Firstly, the hardware capabilities are
not reflected during the calculation. The applicable maximum local slope of dwell time map is
limited due to the finite acceleration of machine. Hence a smooth dwell time map is preferred
in actual CCOS processes, yet is not considered machine axis motion in CNS. Secondly, the
calculated dwell time map barely resembles the target surface error map shape. Because of
uncertainties in tool positioning and tool vibration, a dwell time map that is different from the
target removal map increases the risk of inducing new surface error after figuring. Lastly, as
the size of the influence matrix is multiplied by the number of TIFs in CNS, the computation
time rises considerably. Especially in large optics fabrication (e.g., GMT 8.4 m diameter mirror
segment), the computational burden is even heavier since the sizes of measured removal maps
and TIFs are enormous.

The main objectives of GEANS is to enhance the performance of CNS to produce a preferable
dwell time map which closely duplicates the shape of a target error map and reflects the machining
capability of the CNC unit while boosting the computational efficiency. GEANS consists of two
interdependent parts: Composing the bases of the influence function matrix, and optimizing the
dwell time using those bases via GA. Details of GEANS are explained in the rest of this section.
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3.1. Set up the bases of influence function matrix

As Eq. (3) is usually ill-posed, finding the dwell time map relies on an optimization process.
Constructing proper building blocks of the influence function matrix enables the optimization
algorithm to find desired results easily and improves computational efficiency. We set up dwell
time bases using following fundamental rules: i) grouping ii) dividing and iii) smoothing.
Because each TIF has its own dwell time map in NS, the following process would be applied to
each TIF case independently as well.

The first step is to form a single dwell time basis by grouping neighboring dwell points with
similar removal amount. The idea of grouping is valid as adjacent dwell points with similar target
removal amounts are expected to require similar dwell time distribution as well. It also benefits
in computing costs as the total size of dwell time matrix is decreased. For instance, if n-points
are combined and worked as a single dwell basis, the size of dwell time matrix is reduced by
n − 1. Then, if the size of a single basis is too large, the optimization engine would not have
enough degree of freedom in solution space. Therefore, in the algorithm, a criterion is set and a
big single basis will be divided into smaller pieces to secure flexibility in optimization so that
the overall figuring efficiency can be improved. A Smoothing filter is applied to all dwell time
bases that are generated from above steps. We applied the Gaussian smoothing filter in GEANS
to prevent sharp features and impose constraints on the local slope of the dwell time map. In
addition, smoothing prevents square-wave like dwell time solutions from grouping and dividing
processes and provides more reasonable solutions. After all, the convolution between each dwell
time basis and TIF forms the influence matrix (t) from Section 2. Through these processes, as
the dwell time basis is more chunky and smooth than that of CNS, we can expect the result dwell
time map would be less pointy than CNS. Figure 1 illustrates the process of making influence
matrix.

Fig. 1. The flowchart of generating an influence matrix. Specific figures relate to each
step, such as the number of groups at step will be optimized through GA. The detailed
explanations are illustrated in Fig. 2 in the following section.
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3.2. Optimization parameters to construct influence function matrix

By leveraging GA, we can find optimal parameter sets for the influence function matrix and
GEANS to generate a dwell time map while reflecting our preference in solution.

To implement GA, we need to define the parameters to be optimized (genes) and solution
space (gene pool) first. In the case of GEANS, the parameters related in making influence matrix,
explained in Section 3.1, comprise genes. Then the gene pool is built within the range available
to the machine to assure the feasibility of a dwell time map. The gene pool should be wide
enough to not restrain a possible solution space too hard, but at the same time, should not be too
wide for efficient optimization.

The dwell position of a tool is another essential parameter to be determined. Since the
accessible dwell points are limited by tool size and motion, a smaller size tool is advantageous to
edge-side fabrication of the workpiece in general. Therefore, in our application of GEANS, we
limited the coverage of the smallest tool to edge-side only to find reasonable balance between
total fabrication time and remaining surface error. The applied parameters are summarized in
Fig. 2.

Fig. 2. Parameters to be optimized through genetic algorithm. For GEANS, the number of
optimization parameters is multiplied with the number of TIFs. Note that P1 and P2 are
simulation-related parameters while P3, P4 and P5 are tool-related parameters which are
determined by machining capabilities.

3.3. Optimization and fitness function

Setting an appropriate fitness function is critical to lead the evolution of GA for our needs. The
valid dwell time map in CCOS should duplicate the target removal map shape while achieving
high figuring efficiency. Therefore, we evaluated the performance of the dwell time map with
two indices: figuring efficiency and structural similarity.

Figuring Efficiency (FE) represents the accuracy of the algorithm for a given target removal
map. The FE is defined as

FE(zd, zf ) ≡
RMS[zd] − RMS[zf ]

RMS[zd]
(8)
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where RMS means Root Mean Squared value of each map. FE varies from 0 to 1, and a higher
value means better figuring performance.

The Structural SIMilarity (SSIM) [32] is a quantified index to represent the visual similarity
between two signals, µA and µB, by comparing luminance (l), contrast (c), and structural
information (s). SSIM score varies from 0 to 1, and higher score means better similarity. The
SSIM equation is represented as

SSIM(µA, µB) = l(µA, µB) · c(µA, µB) · s(µA, µB) (9)

This index can be utilized to evaluate the validity of the dwell time map in CCOS since the
valid dwell time map should closely copy the shape of the target removal map. We represent
SSIM index between the normalized target error map and dwell time map of a TIF as

Sk(znorm
d , dnorm

k ) ≡ SSIM(znorm
d , dnorm

k ) (10)

where znorm
d and dnorm

k represent normalized target error map and dwell time map of kth TIF.
With FE and Sk, we form the fitness function (Q) as

Q(FE, Sk) =
FE +

∑︁l
k=1 wk · Sk

1 +
∑︁l

k=1 wk
(11)

where w is relative weight of SSIM of each TIF case compared to FE. Note that the w has no
general solution for the simulation, and can be changed based on the priority of the optimization
result or machining capability.

The whole process of GEANS simulation is shown in the following Fig. 3.

Fig. 3. Flowchart of GEANS simulation.



Research Article Vol. 30, No. 10 / 9 May 2022 / Optics Express 16449

4. Verification of GEANS through simulations

4.1. CCOS simulation setup

We performed CCOS simulation to verify the performance of GEANS compared to CNS. We
employed actual measurement data of the target removal map (Fig. 4), and TIF data for a more
realistic simulation. The target workpiece was a mirror, 4.25 m in diameter with an initial RMS
surface figure error of 0.749 µm. The target removal map was 341 by 341 pixels with a 12.5 mm
pixel scale.

Fig. 4. Target removal map for CCOS simulation. RMS of surface figure error is 0.749 µm.

Three different TIFs were used for the simulation. The radius of orbital stroke TIFs [29] were
100 mm (TIF 1), 250 mm (TIF 2), and 400 mm (TIF 3) respectively. Due to the limited overhang
ratio, we assumed that TIF 2 and 3 cannot travel farther than 100 mm (8 pixels) from the edge.

Defining the proper range of our parameters and hyperparameters are important to induce the
desired result from GEANS. It is worthy to note that the used range of optimization parameters
and hyperparameters can be varied upon the CCOS circumstances of users based on their
target removal map, practical limitations (e.g. maximum tool size and weight), available
polishing resources (e.g. sufficient and stable polishing compound supply chain, available
pitch types), or achievable machining specifications (e.g. maximum motor speed, gear wear).
For hyperparameters related to GA, we set the maximum generation number to 20, and each
generation consists of 50 chromosomes. Among 50 chromosomes, 5 chromosomes were from
the previous generation which scores high, 30 chromosomes were children that formed through
crossover with a random multiplication rate of 0.3, and 15 chromosomes were new immigrants.

Domains of parameters illustrated in Section. 3.1 is another critical part to improve the
performance of GEANS, yet the general solutions do not exist. In this simulation, we set the
domains of each parameter empirically as summarized in Table 1.

As the smallest TIF (TIF 1) is dedicated to edge area only, we take into account the SSIM
index of TIF 2 and 3 in the fitness function. Although multiple TIF sizes will be optimized
simultaneously in GEANS, the actual polishing runs will remain sequential (e.g., from larger to
smaller tool sizes). We set higher weight to the TIF 3 than TIF 2 in the simulation. The fitness
function we used here is

Q(FE, S3, S2) =
FE + 5 · S3 + 2 · S2

8
(12)

The simulations were performed with MATLAB verison 2021a on a desktop equipped with
AMD Ryzen 9 3950X (16 cores, 3.5 GHz) and 128 GB RAM.
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Table 1. Ranges of parameters to be optimized through
GA. These values are determined empirically. Numbers
in brackets represent the range of each parameter. For
example, [5:5:30] means [minimum : steps : maximum].

TIF 1 TIF 2, 3

P1 (px.) [5:5:30]

P2 (px.2) [1000:200:2000] [20000:20000:120000]

P3 (px.) [13×13]:[4×4]:[29×29]

P4 (px.) [1:1:4]

P5 (px.) [5:5:30] N.A

4.2. Simulation results

4.2.1. Simulation result from CNS

We baseline our performance with the results of the CNS algorithm. In the simulation, we assume
the dwell points are equal to the sampling points, and the raster tool path is used while this can
be any other tool path (e.g., spiral) according to the actual machine’s configuration. Note that the
CCOS simulation conditions were mostly identical between CNS and GEANS except for the
constraints of TIF 1 and the spatial resolution of data. Due to the high memory occupation, we
needed to use less sampled data that has half the spatial resolution (171 by 171) in CNS. The
computing efficiency between algorithms is summarized at Table 2 in the following chapter.

Table 2. Computing speed comparison between GEANS and CNS.

Method Map size [px.] Size of tm×n m × n Computation [s] FE [%]

GEANS 341 × 341 72641×3681 267,391,521 Single: 24.4 Total: 22,082 94.3

GEANS (Low samp.) 171 × 171 18317×3898 71,399,666 Single: 4.9 Total: 4,437 94.4

CNS (Low samp.) 171 × 171 18317×51423 941,915,091 5,131 98.0

Figure 5 shows the dwell time maps of each TIF and remaining error map after applied
each dwell time map from CNS method. In this simulation, we assumed TIFs were applied
sequentially from TIF 3 to TIF 1. The adjusted alignment amounts for CNS were −0.86 µm of
piston, 6.57 × 10−5mrad in x-tilt and −3.04 × 10−4mrad in y-tilt. The RMS of residual surface
error (Fig. 5(f)) is about 15 nm which corresponds to 98 % of FE. Although CNS shows very
high FE, the outcome dwell time maps have several point-like, disconnected spots (top row of
Fig. 5). These dwell time maps are not preferred in actual CCOS running because the machine
requires high acceleration and deceleration. It usually requires the post-processing to translate
dwell time maps into affordable machine motion, and it induces the unexpected error on final
outcome. Besides, the dwell time maps barely followed the shape of target removal map, so that
the risk of inducing unexpected spatial frequency errors on residual surface is high. Therefore
the results from CNS have limited potential for practical implementation.

4.2.2. Simulation result from GEANS

Figure 6 shows the result of GEANS. Similar to CNS, the dwell points were equal to the sampling
points. In GEANS, however, the smallest tool (TIF 1) only covers the area determined by P5 as
illustrated at Section. 3.2, and the sampling interval is 12.5 mm which yields double resolution of
CNS. After optimization the RMS of the residual surface error was 0.043 µm which corresponds
to 94.3% of FE. Adjusted alignment amounts were −1.26 µm of piston, −1.46 × 10−6mrad in
x-tilt and 1.79 × 10−5mrad in y-tilt. Compared to CNS, the FE value was dropped 3.7 percentage
points but still reasonably high FE. In terms of similarity of dwell time map, dwell time map of
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Fig. 5. CNS results dwell time maps and residual error maps. Dwell time map of (a) TIF 3
(b) TIF 2 and (c) TIF 1. Surface error maps after applying (d) TIF 3 (e) TIF 2 and (f) TIF 1
sequentially. Residual surface figure error after CNS was about about 15 nm.

TIF 3 (Fig. 6(a)) and 2 (Fig. 6(b)) closely replicate the shape of target removal map (Fig. 4) as we
intended. The SSIM indices of each tool are 0.91 for TIF 3 and 0.85 for TIF 2.

Fig. 6. Resulted maps from GEANS. Dwell time maps of (a) TIF 3 (b) TIF 2 (c) TIF 1.
Residual surface error maps after applying (d) TIF 3 (e) TIF 2 and (f) TIF 1 in sequentially.
Residual error map of GEANS was 43 nm of RMS.

Figure 7 shows how the fitness function, RMS of residual surface error, and similarity of
TIF 2 and 3 were changed over 20 generations. The RMS and similarity values were from the
chromosome which has the highest score in that generation. Though the RMS of the residual
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map and both SSIM do not monotonically decrease or increase, the fitness function increases as
the generations pass.

Fig. 7. (Left) Fitness function value over 20 generations of evolving. (Right) RMS of
remained surface error and S2 and S3 of each generations. The transformation of TIF 3 over
generations is shown in Visualization 1.

4.3. Validation of GEANS

Compared to CNS, GEANS shows enhanced practicality of dwell time maps through three main
features: building the influence matrix, smoothing dwell time maps, and employing SSIM index
to make dwell time map to copy the shape of target removal map. In this chapter, we analyze how
these aspects affect GEANS’s performance.

Since GEANS utilized a GA that requires large number of repeated optimization calculations,
improved computing efficiency was essential. By grouping and dividing, GEANS cuts down the
size of elements of the influence function (t) to more than 10 times smaller than CNS at the same
resolution (Table 2) while maintaining enough degrees of freedom in optimization for figuring
efficiency. As a result, GEANS shows 1000 times optimization speed increase for a single
optimization on average. The total calculation time was shorter yet, as GEANS required 905 (50
times from the first generation, and 45 times from the rest generations) iterative optimizations. It
also enables us to use higher resolution data which benefits in large optics fabrication. Even with
higher resolution, the size of influence matrix of GEANS is smaller so that the single computation
took still less time than CNS.

Smoothing with Gaussian filtering also increased practicality of dwell time maps from GEANS.
Figure 8 shows the resulted dwell time map of TIF 3 from GEANS when smoothing was applied
(Fig. 8(a)) and was not (Fig. 8(b)). Without smoothing, the slope of dwell time change was
abruptly between adjacent well points. Further the dwell time map was less similar (S3 = 0.59)
to the shape of target removal map than GEANS result (S3 = 0.91).

SSIM also has an important role to produce desirable dwell time map in GEANS. Figure 9
shows the obtained dwell time maps of TIF 3 with and without SSIM index in the fitness function.
Without SSIM (Fig. 9(b)), dwell time map is not duplicating the target removal map noticeably.
Besides, some dwell points were not linked together and slope of dwell time map is steep which
causes inessential acceleration of tool (Fig. 9(c)).

4.4. Error analysis of dwell time maps

Simulation results are degraded while applying in actual CCOS process due to various error
sources which include tool positioning error, random variation in TIF, limited acceleration of

https://doi.org/10.6084/m9.figshare.19316423
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Fig. 8. Comparison of dwell time map to show smoothing affects. Dwell time map of TIF 3
are shown here. (a) GEANS (b) GEANS without smoothing. (c) Center line profile (Red
dotted lines in (a) and (b)) of each dwell time map.

Fig. 9. Dwell time maps of TIF 3 when SSIM was (a) considered and (b) not considered in
fitness function. Without SSIM, the resulted dwell time map was neither copying the shape
of target removal map and smoothly continuous. (c) Center line profile (Red dotted lines in
(a) and (b)) of each dwell time map.

tool, or laboratory environment. Considering these factors, we implemented robustness test to
compare the stability and usability of dwell time maps from GEANS and CNS.

First, we imposed random errors to dwell position and TIF and checked how the Power Spectral
Density (PSD) is changed. Both random error had rectangular distribution function of which
boundary values were up to ±10 mm for tool positioning errors and ±10% for TIF value errors.
Within the boundary, random errors were added or subtracted from the original dwell time.
Figure 10 shows the variation of PSD with perturbations. Without error (thick blue lines in
the figure), the CNS method (Fig. 10(b)) shows lower PSD in overall frequency than GEANS
(Fig. 10(a)). However, with perturbations, PSD of CNS was changed and distributed broadly
while PSD of GEANS was remained stable. These results implied that GEANS result is more
predictable and robust against to the given errors so that more applicable than CNS in actual
CCOS operation.

We then evaluated applicability of dwell time maps from each method. In actual CCOS
running, since the maximum acceleration of tool is limited, dwell time maps that have smooth
slopes along tool path are preferred and feasible solutions. Especially in large optics fabrication,
as the sizes of tools are larger, controlling the tool acceleration is getting more difficult. Figure 11
is a histogram showing distribution of dwell time slopes of TIF 2 and TIF 3 from GEANS and
CNS. As expected, slopes of CNS were higher than GEANS in general.

We investigated how the limited acceleration affects the residual error map. We employed the
continuous raster motion tool path, and set limits in dwell time difference along the path. If the
difference is larger than the set limit, the dwell time limit is added or subtracted to an adjacent
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Fig. 10. Compared PSD of remained surface error map after considering practical operation
of (a) GEANS method and (b) CNS method. PSD of GEANS was remained steady while
the PSD of CNS was worsened with perturbation.

Fig. 11. Histogram of dwell time slopes. X and Y axis are represented in log-scale.
This different distribution in slopes of each method implies that the required maximum
acceleration for GEANS is lower than CNS.
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dwell point along the tool path until every difference is under the limit. Assuming the TIF 1 can
have higher acceleration, this adjustment is applied to TIF 2 and 3.

We applied various slope limitations from 10−2 mm/hour to 10−5 mm/hour and analyzed
how the dwell time maps and residual maps were changed. Figure 12 shows how the dwell
time map of TIF 3 is changed when the maximum slope is limited to 0.001 mm/hour. In CNS,
compared to the original map (Fig. 12(a)), dwell points with steep slopes were elongated and in
consequence total dwell time was increased (Fig. 12(b)). GEANS, on the other hand, had no
change in dwell time maps from the initial results since most of dwell points were already within
the limit (Fig. 12(c), (d)).

Fig. 12. Variation of dwell time map when the acceleration limit (0.001 mm/hour) is
applied. (a) Original dwell time map of TIF 3 from CNS and (b) Dwell points with high
slopes were adjusted. As dwell time map was smoothed, total dwell time was extended as
well. (c) Original dwell time map of TIF 3 from GEANS. (d) Slope limitation was applied
but no difference in dwell time map.

The variation in dwell time maps, of course, affect to the final CCOS results as well. Figure 13
shows how the residual error map changed due to acceleration limitations. The FE of CNS
was rapidly worsening because the dwell time maps could not be applied as optimized yet the
results fron GEANS remained stable. The effects of other maximum slope cases are shown in
Visualization 2 for GEANS case and Visualization 3 for CNS case.

https://doi.org/10.6084/m9.figshare.19316426
https://doi.org/10.6084/m9.figshare.19316429
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Fig. 13. Changes of residual error map when the acceleration limit was applied. (a) Original
result from CNS. (b) Residual map when maximum acceleration was applied (CNS). (c)
Difference map between (a) and (b). (d) Original result from GEANS. (e) Residual map
when maximum acceleration was applied (GEANS). (f) Difference map between (d) and (e).

5. Discussion

The increased residual RMS and total dwell time in GEANS compared to CNS. It is also worth
mentioning that, although CNS showed better initial results than GEANS in simulation, the
results from CNS have limited potential for practical implementation as the results from CNS are
very sensitive to common errors in CCOS process (e.g. tool positioning, TIF model accuracy) or
machine capabilities (e.g. tool acceleration limits). For example, the total dwell times of each
CNS (Fig. 5) and GEANS (Fig. 6) were 494 hour and 642 hour respectively. Also the residual
RMS of CNS (0.015 µm) was lower than that of GEANS (0.043 µm). However, with machining
errors, the outcome from CNS is less predictable than that of GEANS (Fig. 10). Further, when
we consider the limit in tool acceleration as shown in Figs. 12, 13 and Visualization 3, the total
run time of CNS will be increased notably as well as the estimated residual RMS unless the
CCOS machine can meet the rapid motion limit which is not easy to be achieved especially for
large optics fabrication tools.

6. Conclusion

In this paper, we proposed a novel dwell time optimization method called GEANS (Genetic
algorithm-powered non-sequential), which can combine the modern numerical optimization
computing power and the skilled human expert’s brain power (e.g., optician’s intuitive dwell time
estimation). To provide practical and applicable dwell time map solution, we built an influence
matrix through grouping, dividing, and smoothing procedures. In this process, excessive number
of parameters were needed to be optimized such as criteria of grouping and dividing, and the
size of Gaussian smoothing filter. However, the correlation between parameters and final dwell
time map was not easy to identify mathematically. Therefore, we employed genetic algorithms
to find optimal parameters associated with influence matrix. The performance of GEANS was
demonstrated with CCOS simulation using the real surface error map and TIF data. Compared

https://doi.org/10.6084/m9.figshare.19316429
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to CNS, GEANS achieved comparable FE (94.3 %) and 1000 times faster computation speed.
Further, the result dwell time maps were closely reproduced the shape of target removal map
which are preferable in actual CCOS running. Error analyses were also performed to demonstrate
the stability and applicability of each algorithm. Up to 10 mm of tool position and 10 % of TIF
were perturbed and checked impact in PSD. Results showed that dwell time maps from GEANS
were remarkably more practicable and stable than those of CNS in given perturbations. We
also applied maximum achievable tool acceleration and examined how dwell time maps and
final residual surface error maps were changed. The GEANS dwell time maps were smooth
and continuous compared to CNS, which allowed much slower tool acceleration to complete
calculated dwell time maps.

We believe that the flexibility and capability of being expanded adds more unique value to
GEANS. The optimizing parameters can be included or withdrawn depending on the achievable
system conditions. Further, beyond the dwell time, other CCOS items such as the tool path or
types of TIF also can be optimized while reflecting the priorities of CCOS result in GEANS.
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