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One of deflectometry’s cardinal strengths is its ability to
measure highly dynamically sloped optics without needing
physical null references. Accurate surface measurements
using deflectometry, however, require precise calibra-
tion processes. In this Letter, we introduce an alignment
technique using a computational fiducial to align a deflec-
tometry system without additional hardware equipment
(i.e., algorithmic innovation). Using the ray tracing pro-
gram, we build relationships between the plane of the screen
and detector and algorithmically generate a fiducial pattern
for the deflectometry configuration. Since the fiducial pat-
tern is based on ideal system geometry, misalignment of the
unit under test with its target position causes a discrepancy
between the actual image on the camera detector and the
ideal fiducial image. We leverage G and C vector polyno-
mials to quantify misalignment and estimate the alignment
status through a reverse optimization method. Simulation
and experimental results demonstrate that the proposed
algorithm can align the 195 mm × 80 mm of a rectangular
aperture freeform optic within 10 µm of peak-to-valley
accuracy. The computational fiducial-based alignment
algorithm is simple to apply and can be an essential pro-
cedure for conventional methods of deflectometry system
alignment. ©2021Optical Society of America

https://doi.org/10.1364/OL.442223

The demand for freeform metrology remains commen-
surate with the growing demand for freeform optics in
high-performance systems. Deflectometry is an attractive
solution in this metrology solution space because it possesses a
large dynamic slope-measuring range and does not require null
optics [1,2]. These features enable a single deflectometry system
to measure various types of optical surfaces without extensive
changes.

Without significant effort for pre-alignment, deflectometry
can measure the optics, but reliable calibration and align-
ment are critical for accurate surface slope measurement. To
determine the positions of deflectometry system components,
external measuring devices such as coordinate measuring

machines or laser trackers can be used [2,3]. Additionally, cal-
ibration techniques utilizing reference features with known
surfaces [4–8], employing Zernike polynomial to analyze mis-
alignment [9–11], or minimizing differences between model
and observed geometric parameters through iterative calcula-
tion [12–14] are studied by various researchers to calibrate the
deflectometry system or align optical surfaces.

In this Letter, we introduce an alignment algorithm for
deflectometry systems using an inversely calculated compu-
tational fiducial and demonstrate it in both simulation and
experiments. This method is analogous to an interferometer’s
alignment mode, which guides users to overlap two focused
spots from the reference beam and the test beam. The presented
algorithm leveraged G and C vector polynomials [15,16] to
quantify the alignment status and calculate the misalignment
using reverse optimization. Especially, the inverse ray tracing
calculation creates uniformly distributed fiducial grid spots on
the deflectometry camera image. This algorithmic innovation
enables systematic vector polynomial fitting on the measured
spots to solve the alignment problem of a non-null testing
nature (e.g., configuration dependent complex sinusoidal
patterns). The alignment quality was evaluated using optical
testing criteria to illustrate its sensitivity and utility in metrology
applications.

A deflectometry system consists of an illumination source,
a unit under test (UUT), and a camera (Fig. 1). Typically a
digital screen is used as the illumination source, and the camera
is focused on the UUT to establish conjugate imaging between
the camera detector and the UUT. By modulating the displayed
phase-stepped sinusoidal patterns and calculating phase at the
image detector, a pixel-to-pixel correspondence among the
screen, UUT, and detector is obtained. Using the coordinate
information of all associated data and the law of reflection,
deflectometry calculates the local slope distribution of UUT [1].

The deflectometry ray tracing simulator [17] provides coordi-
nate relationships among the screen, UUT, and detector pixels.
This feature is used to inversely generate the computational
fiducial pattern to assist alignment of the deflectometry setup.
The fiducial pattern is a specific pattern displayed on the screen
that maps a grid dot image onto the camera detector. In Fig. 2(a),
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Fig. 1. (top left) Schematic diagram of deflectometry setup. The
light source (screen) emits rays that are reflected at the UUT and col-
lected by the camera. (top right) Experimental setup of deflectometry.
(bottom left) UUT mounted on the computer-controlled rigid-body
motion stage. (bottom right) Zoom-in view of the freeform UUT.

Fig. 2. Simulated images for computational fiducial pattern appli-
cation. (a) Observed image of fiducial pattern at the detector plane.
White dots are measured patterns and yellow circles are fiducial from
model. (b) Vector map drawn from computational yellow circles to
measured white dots, which are updated real-time.

the yellow circles are the locations of the fiducial for a perfectly
aligned system, the recorded white dots mark their observed
locations, and the gray squares are equally distributed areas for
each zonal analysis. Each dot is 2D Gaussian shape to reduce
the ambiguity in position determination. Since this pattern
is calculated based on model geometry parameters, any devi-
ation from the fiducial points implies an inconsistency in the
geometry parameters between the model and the experimental
setup. It is worthy to note that, if a surface shape error is in a way
that it produces the same vector fiducial changes as a misalign-
ment, such fundamental degeneracy cannot be distinguished.
The rectangular grid dot pattern is also preferable to utilize G
and C polynomials sets that are introduced in the following
paragraphs.

The fiducial dot pattern can be used to systematically quan-
tify the misalignment status when it is associated with vector
polynomials. As misalignments shift the image of the fiducial
dots from their reference points, we can connect corresponding

dots from their referenced position to their perturbed position
to make vectors [Fig. 2(b)].

G and C polynomial sets are vector polynomials derived
from the two-dimensional Chebyshev polynomials [15,16].
The G polynomial set is derived from the gradients of the
two-dimensional Chebyshev polynomials of the first kind, and
the C polynomial set is based on the curl of two-dimensional
Chebyshev polynomials of the first kind. Since both G and C
polynomials are orthogonal sets in the rectangular domain,
specific vector terms can be directly related to system errors in
alignment of the UUT. While G and C vector polynomials
are utilized in this Letter, the general computational vector
fiducial method can be used with any other vector polynomi-
als to be used for different UUT aperture shape applications
(e.g., Zernike-based vector polynomials defined over a circular
domain).

The reverse optimization algorithm (Eq. 1) is widely used to
align optical systems [18,19]:

A = S1D,

A = [a1...ai ]
T , Sij =

δai

δx j
, 1D= x j − x jo. (1)

This algorithm consists of three matrices as follows: (1) the
measured G and C polynomial coefficients (A), (2) sensitivity
(S), and (3) the amount of misalignment (1D) displacement
of each degree of freedom between the current position (x j )
and target position (x jo). Sensitivity means how much the G
and C polynomial coefficients are changed when the system
is perturbed by a unit amount in each degree of freedom. The
sensitivity can be determined through simulation or actual
measurements at each location. After the sensitivity matrix is
determined, the misalignment can be calculated using least
square fitting from the measured coefficients [Eq. (2)]. This
algorithm provides an accurate solution when the sensitivity
is linear to the misalignment and the degrees of freedom are
orthogonal to each other:

1D= (ST S)−1 ST A. (2)

The performance of the algorithm is verified through simu-
lation and a physical alignment experiment. First the sensitivity
was investigated by moving the UUT by a known amount.
Random misalignments were then imposed to the UUT’s
position, and vector data of the fiducial displacements were
collected. The set of vector data was then fitted to the G and C
polynomials, and the amount of misalignment was calculated
through a reverse optimization process. These processes were
repeated until the criteria were met (Fig. 3).

A freeform optic with 2.99 mm peak-to-valley (PV) aspheric
departure within a rectangular aperture is used for the simula-
tion study (Fig. 4). During the computational fiducial and its
alignment mode generation process, the ideal deflectometry-
and-UUT configuration is perturbed and misaligned in the
simulation model.

We generated a 27× 20 grid of 540 dots for vector sampling
over the whole UUT aperture for the simulation. The inves-
tigated range of sensitivity was ±0.5 mm for translations and
±0.1◦ for tilts. The collected vector data were fitted to 100
terms of each G and C polynomial. Among the 100 coefficients,
we selected the first 22 terms from each G and C polynomial
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Fig. 3. Flowchart of the computational fiducial-based alignment
procedure for simulation and physical experiment.

Fig. 4. Surface map of sag departure from best-fit sphere for the sim-
ulation.

coefficient as the alignment modes, a total of 44 coefficients
to build the sensitivity matrix. To calculate the misalignment
without degeneracy, each degree of freedom should have distinct
sensitivities from one another. Hereafter, translation in x , y ,
and z axes are denoted as Dx, Dy, and Dz, and tilt about x , y ,
and z axes are denoted as Tx, Ty, and Tz, respectively. In general,
Dx-Ty and Dy-Tx are coupled motions that show similar tend-
encies. Figure 5 shows the normalized sensitivity ratio of some
representative coefficients that have high sensitivities among
the used 44 terms. Their sensitivities resemble each other but
have different ratios between coefficients to be distinguished as
a unique set of alignment mode fingerprints. Considering these
characteristics of the sensitivity matrix, we can expect that the
misalignments would converge eventually in every degree of
freedom with iterations (Fig. 3).

A total of 30 alignment simulations were performed, and the
random alignment errors were imposed within the sensitivity
investigated range. The alignment end criteria were 0.08 pixel
of RMS vector size (0.2 µm in this case) at the image plane.
Simulation results are shown in Fig. 6. Although the required

Fig. 5. (a) Normalized sensitivity of G coefficients. (b) Normalized
sensitivity of C coefficients. Both graphs are represented in log scales
due to small magnitudes of sensitivities.

Fig. 6. Result of alignment simulation. Dotted lines mean initial
random alignment error range, red lines represent mean values of
remaining errors, and blue boxes represent standard deviations of each.
(a) Translation errors. (b) Tilt errors.

number of alignment steps was varied, the RMS vector sizes
were converged and met the criteria at the end. The remaining
amounts of misalignments were reasonably small in all 6 deg of
freedom. The remaining error for Dy was relatively higher than
others (∼8 µm), but still within an affordable range to have
consistency in surface measurements with deflectometry.

Once the viability of the algorithm had been tested, it was
applied to an experimental deflectometry setup (Fig. 1). A
546 mm LCD monitor with 1920× 1080 resolution was uti-
lized as the light source, and a 3.2 MP camera with a 16 mm
focal length objective lens was mounted near the LCD monitor.
The UUT we used was a freeform image projection mirror with
a rectangular aperture with a width of 195 mm and height of
80 mm.

To track the alignment status precisely, we mounted the UUT
on a five-axis motorized stage. (Note: the Tx was manually fixed
due to the limited motorized hardware available in the labora-
tory.) The as-built vector fiducial alignment hardware system
needs to be calibrated because the motion stage hardware, dis-
play, and camera are not ideal. It can be calibrated by aligning
and measuring a reference UUT. Because the reference surface
is known, after the alignment minimizing the surface residual
error (i.e., difference between the measured and known surface
shapes), the alignment state can be set as the nominal zero state,
and the residual error can be calibrated out as systematic error.

Similar to the simulation process, the sensitivity matrix was
investigated first. In this case, the UUT was translated±0.5 mm
along each axis, and tilted ±0.1◦ about the y and z axes. Then
we fit the vector data into 100 terms of each G and C polyno-
mial. The total measuring time for S was about 20 min, yet
∼90% of the time was due to the series of image acquisition
periods limited by the as-built motorized stage speed. We built
the sensitivity table using the first 20 terms or more from each
polynomial, and the alignment criteria were set to less than 0.3
pixel (0.75 µm) RMS for the vector size in the detector plane.
Then, the random misalignments were imposed within the
sensitivity investigated range, and the algorithm was applied to
calculate the amount of misalignment. These processes were
controlled automatically and calculated repeatedly in closed-
loop until alignment criteria were met. A commercial laptop
(CPU: i5-1135G7/RAM: 8 GB) was used for calculating and
controlling the system, and each iteration took less than 2 min.

A total of 10 alignment experiments were performed, and
results are summarized in Fig. 7. The RMS vector size met the
criteria, but the remaining amounts of misalignments were
various for each degree of freedom. Dy, Dz, and Tz converged
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Fig. 7. Result of physical experiments. (a) Translation errors.
(b) Tilt errors.

well, while Dx and Ty converged as well but had relatively large
amounts of errors remaining. This is because Dx and Ty give
the similar fiducial motion and are hard to distinguish in vector
space.

We highlight that the performance of the alignment status
estimation was limited by accuracy of the hardware, not the
algorithm itself as long as the misalignment is within a linear
range of sensitivity. Indeed, the coupled translation and tilt are
already predicted from the simulation stage. As shown in Fig. 5,
the translation and tilt motion have distinct behavior in higher
order coefficients that are small in magnitude. For this reason,
the accuracy of the algorithm can be improved by obtaining
more precise vector data or utilizing higher resolution cameras
in the deflectometry system. For application of a large misalign-
ment case where misalignments are nonlinear, an adaptive or
iteratively updating S throughout the alignment process can
be applied. Then, updating S comes at the cost of modeling or
measurement time.

Alignment in most metrology systems is important so that
misalignment is not embedded into surface measurements.
To validate alignment results, we compared the PV of the sub-
tracted map between a reference surface map and a before/after
aligned surface map. The reference is the surface map measured
at the home position. Thus the difference map shows both the
capability of the alignment loop to bring back the UUT to its
original position and repeatability of optical testing. The PV
surface map error due to the residual misalignment is less than
8.4 µm in 10 experiments (Fig. 8). The result demonstrated
that the proposed computational alignment algorithm can
guide deflectometry system alignment to secure repeatability
in optical testing without additional alignment devices. This

Fig. 8. Improvement of surface map matching via alignment loop.

is the deflectometry counterpart of the alignment mode of
interferometry.

In conclusion, we have introduced an automatic alignment
algorithm for deflectometry systems using computational
fiducials and G, C vector polynomials. The algorithm is
demonstrated through alignment simulation and experiments.
In simulation, remaining amounts of displacement were about
tens of micrometers in translation and about 0.001◦ in tilt. In
the actual alignment experiment, remaining amounts were
slightly higher than simulated due to hardware limitations, but
still less than 100µm in translation and 0.01◦ in tilt. The optical
testing results show only 8.4 µm of maximum difference from
the ideal metrology case. These results imply that the proposed
algorithm gives a self-calibration and alignment capability to
deflectometry that is inevitable for high accuracy testing.

The proposed algorithm provides quick guidelines and accu-
rate solutions in alignment that benefit freeform metrology,
especially when rapid and repeated surface measurements are
needed in commercial applications such as quality checks for
mass production without extra cost or hardware.
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