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We introduce a method of phase demodulation to distinguish
the ghost reflection commonly observed in optical testing.
The method digitally processes a sequence of fringe pat-
terns to separate the reflections from the front and rear
surfaces. First, we use a phase-shifting algorithm to com-
pute an analytic signal with the two reflections coupled, and
then we decouple them through a maximized spatial filtering.
The process requires the acquisition of at least three fringe
patterns, as well as fulfilling opposite signs for the magnifi-
cations of the two reflections. We demonstrate the decoding
process through a real phase measuring deflectometry data
processing example. © 2022 Optica Publishing Group

https://doi.org/10.1364/OL.468063

Introduction. It is well-known that sinusoidal patterns are
ubiquitous due to their mathematical efficiency in information
retrieval and their natural emergence in interferograms. Regard-
less of the data acquisition method, sinusoidal patterns have the
intrinsic properties of phase and amplitude which are visually
distinct and mathematically retrievable after a single reflection.
However, transparent media such as refractive optics invoke
Fresnel reflection at both the front and rear surfaces. The rear
ghost reflection superimposes itself upon the image formed by
the frontal surface. This ghost reflection easily breaks the infor-
mation in the phase retrieving process, and the calculated phase
loses its fidelity.

Phase measuring deflectometry (PMD) has been used widely
due to its flexibility and accuracy. Deflectometry is a non-null
testing that provide interferometric-level accuracy surface maps
from traditional optics testing to freeform optics, depending on
the quality of calibration [1]. However, the testing of refractive
surfaces also suffers from ghost reflection, as shown in Fig. 1.
The reflected fringe images from the frontal testing surface and
rear surface are superimposed at the imaging detector, which
erodes the original phase information.

In the literature, there has been some work toward reconcil-
ing this ghost reflection. The double reflection issue has been
addressed algorithmically by employing multiple frequency pat-
terns. Huang and Asundi [2] have proposed a two-step method

to deal with the double reflection by utilizing an extra pair of
sheared frequency fringe patterns. First, the authors employ a
four-step phase-shifting algorithm to retrieve those analytic sig-
nals, having coupled the phase from the two surfaces. Then,
they obtained both unwrapped phase maps through a nonlinear
regression for each pixel. Although the Levenberg–Marquardt
iteration can decouple both signals effectively, it requires not
only a well-selected starting of phase retrieving approximation
but also a suitable demodulation path. In this sense, Leung and
Cai [3] depict not only the complexity and importance of choos-
ing a good starting point but also that this method can fail in
some pixels.

Wang and collaborators [4] have proposed to remove the
second reflection by using frequency-domain filtering on the
temporal spectrum. The authors acquired 1000 frequency-
shifted fringe images to thoroughly sample the temporal fringe’s
spectrum, hence, they can carry out the frequency-domain fil-
tering in a pixelwise manner. Whence the phase retrieval can
meet high accuracy since the filtering is pixelwise. Nonetheless,
this approach requires thousands of images for accurate phase
retrieval, which can be impractical. Moreover, the authors must
adjust the filter’s frequency response for each pixel since the
temporal spectrum depends mainly on the phase values at each
pixel.

Siwei and colleagues [5] proposed their envelope curve algo-
rithm, which consists of hybrid least squares fitting the temporal,
multi-frequency fringe in a pixel-by-pixel manner. This algo-
rithm first carries out a linear regression to estimate the linear
variables, and then these estimates are utilized to retrieve the
nonlinear variables through nonlinear least squares regression.
The authors perform these two regressions iteratively until it
meets the convergence criterion. This iterative algorithm needs
a well-selected starting approximation to meet the suitable opti-
mum for the nonlinear variables and 500 fringe images. We
noted that this algorithm is significantly slow and computation-
ally expensive because of both the long acquisition time and the
use of nonlinear regression.

Recently, Ye et al. [6] have proposed a purely linear, iterative
algorithm to decouple both signals of the front and rear surfaces.
The authors obtain an equivalent over-determined linear system
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Fig. 1. Acquired deflectograms showing front and back surface
reflection where we observe the ghost image during PMD testing:
(a) plano–convex lens [67.7 mm radius of curvature (RoC)] and (b)
plano–concave (−66.0 mm RoC).

of equations. However, the coefficient matrix and response vari-
able depend on one another, translating into the linear system is
numerically unstable. Thence, one must provide a finely selected
starting point to get a suitable solution, or else it may diverge.
Furthermore, the numerical instability is more severe as the
phase differences become tiny. For the case that the front and
rear surfaces are significantly different from one another and
a good starting point is selected, this algorithm would retrieve
both surfaces well, while requiring around 30 images to retrieve
the surfaces.

We note that the correct selection of the starting points for
regressive methods requires prior information about the testing.
It is well-known that starting points are crucial for nonlinear
optimization and solving numerically unstable problems. In this
Letter, we introduce a novel temporal–spatial method for phase
demodulation of deflectograms in the presence of ghost reflec-
tion. Our method needs at least three fringe images and does not
require prior information about the testing surfaces. Our pro-
posal consists of firstly computing the analytic signal through
a phase-shifting algorithm (PSA), and then both phases are
decoupled by frequency-domain filtering of the analytic signal
retrieved by the PSA.

Theoretical framework. One particularly useful benefit of
deflectometry is the flexibility of the system layout. When the
unit under test (UUT) is the lens, we can adjust the distance
between the lens and monitor to have the layout shown in Fig. 2.
In this configuration, image magnification from the front and
back surfaces has an inverted sign. The monitor images are
flipped in the camera view through the front and back surfaces.
The phase shift along the monitor is implemented in the general
operation of the phase measuring deflectometry. So, in the con-
figuration in Fig. 2(a), the front and back surface images have
opposite phase flow directions. The proposed approach lever-
ages this flipped sign in the phase domain, as shown in Eq. (2)
the + and − sign in front of y. Considering that fringes are
horizontally oriented, the intensity distribution of the temporal
sequence of superimposed patterns can be described by

I(r, t) = a(r) + b1(r) cos [φ1(r) + ω0t] + b2(r) cos [φ2(r) + ω0t] ,
(1)

where r = r(x, y) is the pixel position; ω0 denotes the temporal
phase carrier; the background intensity is indicated by a(r);
b1(r) and b2(r) are the fringe modulation functions from the
front and back surfaces, respectively; φ1(r) and φ2(r) mean,
respectively, the searched phases from the front, h1(r), and back,
h2(r), surfaces. These phase functions can be described as

φ1(r) ∝ v1

[︃
∂h1(r)
∂y

+ y
]︃

, (2a)

Fig. 2. Raytrace of plano–convex and plano–concave cases and
their magnification. (a) Blue and green rays are reflected off the front
and back surface, respectively. In the plano–convex case, the rays
from the back surface are converged, and the flipped monitor images
are relayed to camera. (b) Front and back surface magnification is
always opposite in first-order optics. We admit that to leverage the
inverse phase flow, a particular layout (e.g., the distance between
UUT and monitor) is required.

φ2(r) ∝ v2

[︃
∂h2(r)
∂y

− y
]︃

, (2b)

where v1 = 2π/T1 is the fringe frequency observed in the front
surface being T1 its fringe period on the screen; v2 = 2π/T2

comes from the back surface. As mentioned prior, the phase
flow of the front and back surfaces are opposite each other, so
the flipped sign (or vice versa) in Eq. (1) is always correct. We
notice that the opposite sign of the phase flow is vital for our
technique that we are describing.

We now analyze the spectral characteristics of the intensity
distribution in Eq. (1). By taking the temporal Fourier transform
of I(t), we obtain the temporal spectrum as

I(ω) = Ft {I(t)} = aδ(ω) +
1
2
[︁
b1eiϕ1 + b2eiϕ2

]︁
δ(ω − ω0)

+
1
2
[︁
b1e−iϕ1 + b2e−iϕ2

]︁
δ(ω + ω0),

(3)

at pixel r; where Ft{·} is the operator of the temporal Fourier
transform, and δ(·) is Dirac’s delta function. From Eq. (3), we
can realize that this temporal spectrum has three spectral compo-
nents, particularly, the searched component at ω = ω0 contains
the sum of the two searched signals; see Fig. 3(a). Thence, the
searched signals cannot be decoupled by means of a PSA since
front and back signals are located at the same frequency ω0.
We want to point out that this fact is not due to the number
of equations and unknown variables as many previous publica-
tions have mentioned, but rather this is because PSAs are linear
approaches and this problem is ill-conditioned for the temporal
domain. Refer to Ref. [7] for a spectral and algebraic analysis of
PSAs.

On the other hand, the spatial spectrum of I(r) is given by

I(q) = Fr {I(r)} = A(q) +
eiω0 t

2
[C(q − q1) + D(q − q2)]

+
e−iω0 t

2
[C∗(−q − q1) + D∗(−q − q2)] ,

(4)

at certain moment t. Here Fr {·} is the operator of the spatial
Fourier transform; superscript ∗ indicates complex conjugation;
q = q(u, v) is the radial-frequency position. Here A(q) is the
spectrum of the intensity background (DC term); C(q − q1) =
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Fig. 3. Schematic description of the spectra of the superimposed
fringe patterns: (a) temporal and (b) spatial. It is noticeable the
spectrum overlapping between the lobe C(q − q1) and D∗(−q − q2),
and also between C∗(−q − q1) and D(q − q1).

Fr {b1(r) exp[iφ1(r)]} is the searched signal of the front sur-
face being q1 ← v1 the observed phase carrier; D(q − q2) =

Fr {b2(r) exp[iφ2(r)]} corresponds to the searched signal of the
back surface being its q2 ← −v2 the spatial phase carrier. Assum-
ing that v1>v2, then the spatial spectrum can be depicted by
Fig. 3(b), from which one can see the correct sign of the phase
is on the right-hand side for the front surface, C(q − q1), whereas
on the left-hand side for the back surface, D(q − q2). The spatial
spectrum will have this behavior provided that the conditions
in Eq. (2) are fulfilled. Furthermore, we can straightforwardly
realize that one searched signal will be on the left-hand side
of the spatial spectrum and the other on the right-hand side as
long as only one fringe pattern (of the two) is imaging inversely
(negative magnification), i.e., ±v1 while ∓v2.

Based on the previous characteristics of both temporal and
spatial spectra, we propose to retrieve the two phase maps using
a temporal–spatial approach. Our proposal consists of first com-
puting an initial analytic signal using a PSA, and then spatially
decoupling the two phase maps through a frequency-domain
spatial filtering. Based on the frequency transfer function (FTF)
formalism for PSA [7], we first compute temporally the initial
analytic signal as

z =
1
2
[︁
b1eiϕ1 + b2eiϕ2

]︁
= I(t) ∗ h(t)|t=N−1 =

N−1∑︂
n=0

c∗nIn, (5)

for all pixels r. Here In = I(tn) is the nth superimposed fringe
pattern, and h(t) indicates the PSA’s impulsive response with
coefficients c∗n = (1/N) exp(−inω0), or the complex conjugate of
cn. These coefficients come from Bruning’s formula and corre-
spond to the least squares PSA [8]. Its FTF H(ω) accomplishes
the quadrature conditions H(0) = H(−ω0) = 0 [7], and therefore
retains only the right-sided Dirac delta function corresponding
to C + D; see Fig. 3 and Eqs. (3) and (4). We do point out that
we have been using only one PSA to retrieve the coupled ana-
lytic signal in Eq. (5), so the reader can realize that there is not
a special PSA for front or back surfaces. Then, by taking the
spatial Fourier transform of z(r), we obtain the spectrum given
by

Z(q) = Fr {z(r)} =
1
2

C(q − q1) +
1
2

D(q − q2). (6)

Here, we can observe that the PSA allowed us to isolate
the searched signals with the additional benefit that they are
spectrally separated as sketched in Fig. 4. Since these spectral
components are well-separated, we can decouple them utiliz-
ing frequency-domain filters. Let H1(q) and H2(q) be the spatial
frequency responses of two filters being tuned at q1 and q2,
respectively. Then, we can retrieve the final analytic signals by

Fig. 4. Schematic description of the analytic signal’s spectrum
computed by the PSA. Note that this spectrum has two well-
separated components which could be decoupled using two spatial
filters H1(q) and H2(q) as illustrated.

Fig. 5. Frequency-domain filtering of the analytic signal esti-
mated by the PSA: (a) plano–convex data and (b) plano–concave
data. Note that the filters H1(q) and H2(q) may not be the same for
both spectral components.

frequency-domain spatial filtering as

b1(r)
2

eiϕ1(r) = F −1
r {Z(q)H1(q)} , (7)

b2(r)
2

eiϕ2(r) = F −1
r {Z(q)H2(q)} . (8)

Since the conditions in Eq. (2) govern the disposition of
the spectrum on Eq. (6), we notice that the distance v1 + v2,
between the two spectral components, can allow the employing
of broadband filters with the aim of getting enough amounts
of spectral information, which it is not allowed via traditional
frequency domain filtering. To this end, one should increase the
filter’s bandwidth through optimizing this distance by means
of decreasing the pitch of the projected fringes. We simulated
the challenging ghost reflection cases and the proposed method
show 0.028 % error in retrieved phase map (see Supplement 1
for simulation result).

Experimental results. We now draw the effectiveness of
our approach for phase retrieval with the experimental data
from Fig. 1. Figure 5 illustrates the frequency-domain filter-
ing of the two analytic signals coming from the plano–convex
[Fig. 5(a)] and plano–concave [Fig. 5(b)]. The frequency of the
plano–concave case is a very challenging case for general fre-
quency domain filtering because the frequencies of the front
and back surfaces are similar to each other and both spectra are
overlapped. This will also occur when the RoC of the UUT is
small as shown in Fig. 2. The proposed filtering could clean
up redundant spectral information even though they are mostly
overlapped. In the same vein, the spectral width of the determin-
ing filter is large enough to keep sufficient spectral information
translating to an accurate phase estimation.

https://doi.org/10.6084/m9.figshare.20338590
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Fig. 6. Plano–concave experimental data: (a) superimposed pat-
tern exhibiting ghost reflection; and the fringe patterns from the
decoupled surfaces (b) concave (top) and (c) plano (bottom).

Fig. 7. Calculated wrapped phase maps from the series of phase
shifting images from (a) plano–convex lens (b) plano–concave
lens. Left and right subpanels are front and back surface phase,
respectively. Note that we use the different size field of view (FoV).

Figure 6 depicts the results of the extracted fringes images
of the plano–concave case. The amplitude is fully recovered
without any distortion and fringe-print-through. In the PMD
data process, the phase is calculated from the intensity variation
of the individual pixel while the phase shifts. The fluctuation
of the amplitude can be a serious phase error source but this
error did not occur since the frequency filtering does not lose
essential information. The series of the phase shifting images
are processed, and decoupled fringe maps are used for phase
calculation.

In Fig. 7, the calculated wrapped phases maps are shown. As
aforementioned, we adjusted the deflectometry layout to have
the inverted phase flow direction of front and back surfaces. In
the case of the plano–convex [Fig. 7(a)], the phase direction is
bottom-up in the front phase (left) and it reverses in the back
surface phase (right).

When the retrieved phase (Fig. 7) has the fractured phase
(e.g., ghost reflection and fringe-print-through), the unwrapped
phase shows the distinct discontinuity due to the broken phase
information. The unwrapping process is implemented on Fig. 8
via employing the algorithm in Ref. [9]. In Fig. 8, the y-profile
confirmed the continuity of the unwrapped map.

We notice that although the experimental verification is pre-
sented for plano–convex and plano–concave cases, the proposed
method can be applied to other cases as long as Eq. (2) is satis-
fied. Furthermore, the proposed method can be also utilized in
interferometry or other optical metrology techniques provided
that the Eq. (2) is satisfied.

Conclusion. We introduced a novel technique that can cope
with optical metrology’s double reflection issue using a two-
step phase retrieval approach. Firstly, it consists of getting two
coupled analytic signals through a phase-shifting algorithm
and then decoupling them through frequency-domain spatial
filtering of the analytic signals. Finally, we obtain the clear

Fig. 8. Unwrapped phase maps and profile plot along the y axis:
(a) plano–convex lens and (b) plano–concave lens. The center of the
surface in Fig. 7 are cropped out and Zernike removal is applied for
profile plot.

separated fringe images from the decoupled analytic signals
without cross talking. The processed fringes images are further
processed via phase unwrapping calculations and the validity
is checked via continuity of phase map profile. This method
shows perfect separation even in the case of the fully over-
lapped frequency from ghost reflection in the frequency domain.
Since the unwanted frequency information is placed at the oppo-
site quadrant of the frequency domain, a reasonably large filter
could be adopted, enabling it to include sufficient frequency
information. It minimizes information loss and increases the
accuracy of decoupling. We admit that a specific deflectome-
try system layout is required to have the inverted phase flow
from the front and back surfaces. However, PMD can eas-
ily adjust the optical layout compared with the other optical
testing methods such as phase-shifting interferometry. This con-
cept can be extended to suppressing even rear surface ghosts
in plane-parallel plates (PPP). By placing the flat face of
an auxiliary plano–convex optic against the PPP and index-
matching their gap, the inverted sign magnification requirement
is met.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this Letter are
not publicly available at this time but may be obtained from the authors upon
reasonable request.

Supplemental document. See Supplement 1 for supporting content.

REFERENCES
1. P. Su, R. E. Parks, L. Wang, R. P. Angel, and J. H. Burge, Appl. Opt.

49, 4404 (2010).
2. L. Huang and A. K. Asundi, Meas. Sci. Technol. 23, 085201 (2012).
3. Y.-C. Leung and L. Cai, Appl. Opt. 61, 208 (2022).
4. R. Wang, D. Li, L. Li, K. Xu, L. Tang, P. Chen, and Q. Wang, Opt. Eng.

57, 1 (2018).
5. T. Siwei, Y. Huimin, C. Hongli, W. Tianhe, C. Jiawei, W. Yuxiang, and

L. Yong, Results Phys. 15, 102734 (2019).
6. J. Ye, Z. Niu, X. Zhang, W. Wang, and M. Xu, Opt. Lasers Eng. 137,

106356 (2021).
7. S. Ordones, M. Servin, M. Padilla, A. Mu noz, J. L. Flores, and I.

Choque, Opt. Lett. 44, 2358 (2019).
8. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D.

White, and D. J. Brangaccio, Appl. Opt. 13, 2693 (1974).
9. A. Asundi and Z. Wensen, Appl. Opt. 37, 5416 (1998).

https://doi.org/10.6084/m9.figshare.20338590
https://doi.org/10.1364/AO.49.004404
https://doi.org/10.1088/0957-0233/23/8/085201
https://doi.org/10.1364/AO.443274
https://doi.org/10.1117/1.OE.57.10.104104
https://doi.org/10.1016/j.rinp.2019.102734
https://doi.org/10.1016/j.optlaseng.2020.106356
https://doi.org/10.1364/OL.44.002358
https://doi.org/10.1364/AO.13.002693
https://doi.org/10.1364/AO.37.005416

